• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/arch/x86/mm/
1/*
2 *  Copyright (C) 1995  Linus Torvalds
3 *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5 */
6#include <linux/magic.h>		/* STACK_END_MAGIC		*/
7#include <linux/sched.h>		/* test_thread_flag(), ...	*/
8#include <linux/kdebug.h>		/* oops_begin/end, ...		*/
9#include <linux/module.h>		/* search_exception_table	*/
10#include <linux/bootmem.h>		/* max_low_pfn			*/
11#include <linux/kprobes.h>		/* __kprobes, ...		*/
12#include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
13#include <linux/perf_event.h>		/* perf_sw_event		*/
14
15#include <asm/traps.h>			/* dotraplinkage, ...		*/
16#include <asm/pgalloc.h>		/* pgd_*(), ...			*/
17#include <asm/kmemcheck.h>		/* kmemcheck_*(), ...		*/
18
19/*
20 * Page fault error code bits:
21 *
22 *   bit 0 ==	 0: no page found	1: protection fault
23 *   bit 1 ==	 0: read access		1: write access
24 *   bit 2 ==	 0: kernel-mode access	1: user-mode access
25 *   bit 3 ==				1: use of reserved bit detected
26 *   bit 4 ==				1: fault was an instruction fetch
27 */
28enum x86_pf_error_code {
29
30	PF_PROT		=		1 << 0,
31	PF_WRITE	=		1 << 1,
32	PF_USER		=		1 << 2,
33	PF_RSVD		=		1 << 3,
34	PF_INSTR	=		1 << 4,
35};
36
37/*
38 * Returns 0 if mmiotrace is disabled, or if the fault is not
39 * handled by mmiotrace:
40 */
41static inline int __kprobes
42kmmio_fault(struct pt_regs *regs, unsigned long addr)
43{
44	if (unlikely(is_kmmio_active()))
45		if (kmmio_handler(regs, addr) == 1)
46			return -1;
47	return 0;
48}
49
50static inline int __kprobes notify_page_fault(struct pt_regs *regs)
51{
52	int ret = 0;
53
54	/* kprobe_running() needs smp_processor_id() */
55	if (kprobes_built_in() && !user_mode_vm(regs)) {
56		preempt_disable();
57		if (kprobe_running() && kprobe_fault_handler(regs, 14))
58			ret = 1;
59		preempt_enable();
60	}
61
62	return ret;
63}
64
65/*
66 * Prefetch quirks:
67 *
68 * 32-bit mode:
69 *
70 *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
71 *   Check that here and ignore it.
72 *
73 * 64-bit mode:
74 *
75 *   Sometimes the CPU reports invalid exceptions on prefetch.
76 *   Check that here and ignore it.
77 *
78 * Opcode checker based on code by Richard Brunner.
79 */
80static inline int
81check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
82		      unsigned char opcode, int *prefetch)
83{
84	unsigned char instr_hi = opcode & 0xf0;
85	unsigned char instr_lo = opcode & 0x0f;
86
87	switch (instr_hi) {
88	case 0x20:
89	case 0x30:
90		/*
91		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
92		 * In X86_64 long mode, the CPU will signal invalid
93		 * opcode if some of these prefixes are present so
94		 * X86_64 will never get here anyway
95		 */
96		return ((instr_lo & 7) == 0x6);
97#ifdef CONFIG_X86_64
98	case 0x40:
99		/*
100		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
101		 * Need to figure out under what instruction mode the
102		 * instruction was issued. Could check the LDT for lm,
103		 * but for now it's good enough to assume that long
104		 * mode only uses well known segments or kernel.
105		 */
106		return (!user_mode(regs)) || (regs->cs == __USER_CS);
107#endif
108	case 0x60:
109		/* 0x64 thru 0x67 are valid prefixes in all modes. */
110		return (instr_lo & 0xC) == 0x4;
111	case 0xF0:
112		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
113		return !instr_lo || (instr_lo>>1) == 1;
114	case 0x00:
115		/* Prefetch instruction is 0x0F0D or 0x0F18 */
116		if (probe_kernel_address(instr, opcode))
117			return 0;
118
119		*prefetch = (instr_lo == 0xF) &&
120			(opcode == 0x0D || opcode == 0x18);
121		return 0;
122	default:
123		return 0;
124	}
125}
126
127static int
128is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
129{
130	unsigned char *max_instr;
131	unsigned char *instr;
132	int prefetch = 0;
133
134	/*
135	 * If it was a exec (instruction fetch) fault on NX page, then
136	 * do not ignore the fault:
137	 */
138	if (error_code & PF_INSTR)
139		return 0;
140
141	instr = (void *)convert_ip_to_linear(current, regs);
142	max_instr = instr + 15;
143
144	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
145		return 0;
146
147	while (instr < max_instr) {
148		unsigned char opcode;
149
150		if (probe_kernel_address(instr, opcode))
151			break;
152
153		instr++;
154
155		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
156			break;
157	}
158	return prefetch;
159}
160
161static void
162force_sig_info_fault(int si_signo, int si_code, unsigned long address,
163		     struct task_struct *tsk)
164{
165	siginfo_t info;
166
167	info.si_signo	= si_signo;
168	info.si_errno	= 0;
169	info.si_code	= si_code;
170	info.si_addr	= (void __user *)address;
171	info.si_addr_lsb = si_code == BUS_MCEERR_AR ? PAGE_SHIFT : 0;
172
173	force_sig_info(si_signo, &info, tsk);
174}
175
176DEFINE_SPINLOCK(pgd_lock);
177LIST_HEAD(pgd_list);
178
179#ifdef CONFIG_X86_32
180static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
181{
182	unsigned index = pgd_index(address);
183	pgd_t *pgd_k;
184	pud_t *pud, *pud_k;
185	pmd_t *pmd, *pmd_k;
186
187	pgd += index;
188	pgd_k = init_mm.pgd + index;
189
190	if (!pgd_present(*pgd_k))
191		return NULL;
192
193	/*
194	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
195	 * and redundant with the set_pmd() on non-PAE. As would
196	 * set_pud.
197	 */
198	pud = pud_offset(pgd, address);
199	pud_k = pud_offset(pgd_k, address);
200	if (!pud_present(*pud_k))
201		return NULL;
202
203	pmd = pmd_offset(pud, address);
204	pmd_k = pmd_offset(pud_k, address);
205	if (!pmd_present(*pmd_k))
206		return NULL;
207
208	if (!pmd_present(*pmd))
209		set_pmd(pmd, *pmd_k);
210	else
211		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
212
213	return pmd_k;
214}
215
216void vmalloc_sync_all(void)
217{
218	unsigned long address;
219
220	if (SHARED_KERNEL_PMD)
221		return;
222
223	for (address = VMALLOC_START & PMD_MASK;
224	     address >= TASK_SIZE && address < FIXADDR_TOP;
225	     address += PMD_SIZE) {
226
227		unsigned long flags;
228		struct page *page;
229
230		spin_lock_irqsave(&pgd_lock, flags);
231		list_for_each_entry(page, &pgd_list, lru) {
232			if (!vmalloc_sync_one(page_address(page), address))
233				break;
234		}
235		spin_unlock_irqrestore(&pgd_lock, flags);
236	}
237}
238
239/*
240 * 32-bit:
241 *
242 *   Handle a fault on the vmalloc or module mapping area
243 */
244static noinline __kprobes int vmalloc_fault(unsigned long address)
245{
246	unsigned long pgd_paddr;
247	pmd_t *pmd_k;
248	pte_t *pte_k;
249
250	/* Make sure we are in vmalloc area: */
251	if (!(address >= VMALLOC_START && address < VMALLOC_END))
252		return -1;
253
254	/*
255	 * Synchronize this task's top level page-table
256	 * with the 'reference' page table.
257	 *
258	 * Do _not_ use "current" here. We might be inside
259	 * an interrupt in the middle of a task switch..
260	 */
261	pgd_paddr = read_cr3();
262	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
263	if (!pmd_k)
264		return -1;
265
266	pte_k = pte_offset_kernel(pmd_k, address);
267	if (!pte_present(*pte_k))
268		return -1;
269
270	return 0;
271}
272
273/*
274 * Did it hit the DOS screen memory VA from vm86 mode?
275 */
276static inline void
277check_v8086_mode(struct pt_regs *regs, unsigned long address,
278		 struct task_struct *tsk)
279{
280	unsigned long bit;
281
282	if (!v8086_mode(regs))
283		return;
284
285	bit = (address - 0xA0000) >> PAGE_SHIFT;
286	if (bit < 32)
287		tsk->thread.screen_bitmap |= 1 << bit;
288}
289
290static bool low_pfn(unsigned long pfn)
291{
292	return pfn < max_low_pfn;
293}
294
295static void dump_pagetable(unsigned long address)
296{
297	pgd_t *base = __va(read_cr3());
298	pgd_t *pgd = &base[pgd_index(address)];
299	pmd_t *pmd;
300	pte_t *pte;
301
302#ifdef CONFIG_X86_PAE
303	printk("*pdpt = %016Lx ", pgd_val(*pgd));
304	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
305		goto out;
306#endif
307	pmd = pmd_offset(pud_offset(pgd, address), address);
308	printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
309
310	/*
311	 * We must not directly access the pte in the highpte
312	 * case if the page table is located in highmem.
313	 * And let's rather not kmap-atomic the pte, just in case
314	 * it's allocated already:
315	 */
316	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
317		goto out;
318
319	pte = pte_offset_kernel(pmd, address);
320	printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
321out:
322	printk("\n");
323}
324
325#else /* CONFIG_X86_64: */
326
327void vmalloc_sync_all(void)
328{
329	unsigned long address;
330
331	for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END;
332	     address += PGDIR_SIZE) {
333
334		const pgd_t *pgd_ref = pgd_offset_k(address);
335		unsigned long flags;
336		struct page *page;
337
338		if (pgd_none(*pgd_ref))
339			continue;
340
341		spin_lock_irqsave(&pgd_lock, flags);
342		list_for_each_entry(page, &pgd_list, lru) {
343			pgd_t *pgd;
344			pgd = (pgd_t *)page_address(page) + pgd_index(address);
345			if (pgd_none(*pgd))
346				set_pgd(pgd, *pgd_ref);
347			else
348				BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
349		}
350		spin_unlock_irqrestore(&pgd_lock, flags);
351	}
352}
353
354/*
355 * 64-bit:
356 *
357 *   Handle a fault on the vmalloc area
358 *
359 * This assumes no large pages in there.
360 */
361static noinline __kprobes int vmalloc_fault(unsigned long address)
362{
363	pgd_t *pgd, *pgd_ref;
364	pud_t *pud, *pud_ref;
365	pmd_t *pmd, *pmd_ref;
366	pte_t *pte, *pte_ref;
367
368	/* Make sure we are in vmalloc area: */
369	if (!(address >= VMALLOC_START && address < VMALLOC_END))
370		return -1;
371
372	/*
373	 * Copy kernel mappings over when needed. This can also
374	 * happen within a race in page table update. In the later
375	 * case just flush:
376	 */
377	pgd = pgd_offset(current->active_mm, address);
378	pgd_ref = pgd_offset_k(address);
379	if (pgd_none(*pgd_ref))
380		return -1;
381
382	if (pgd_none(*pgd))
383		set_pgd(pgd, *pgd_ref);
384	else
385		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
386
387	/*
388	 * Below here mismatches are bugs because these lower tables
389	 * are shared:
390	 */
391
392	pud = pud_offset(pgd, address);
393	pud_ref = pud_offset(pgd_ref, address);
394	if (pud_none(*pud_ref))
395		return -1;
396
397	if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
398		BUG();
399
400	pmd = pmd_offset(pud, address);
401	pmd_ref = pmd_offset(pud_ref, address);
402	if (pmd_none(*pmd_ref))
403		return -1;
404
405	if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
406		BUG();
407
408	pte_ref = pte_offset_kernel(pmd_ref, address);
409	if (!pte_present(*pte_ref))
410		return -1;
411
412	pte = pte_offset_kernel(pmd, address);
413
414	/*
415	 * Don't use pte_page here, because the mappings can point
416	 * outside mem_map, and the NUMA hash lookup cannot handle
417	 * that:
418	 */
419	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
420		BUG();
421
422	return 0;
423}
424
425static const char errata93_warning[] =
426KERN_ERR
427"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
428"******* Working around it, but it may cause SEGVs or burn power.\n"
429"******* Please consider a BIOS update.\n"
430"******* Disabling USB legacy in the BIOS may also help.\n";
431
432/*
433 * No vm86 mode in 64-bit mode:
434 */
435static inline void
436check_v8086_mode(struct pt_regs *regs, unsigned long address,
437		 struct task_struct *tsk)
438{
439}
440
441static int bad_address(void *p)
442{
443	unsigned long dummy;
444
445	return probe_kernel_address((unsigned long *)p, dummy);
446}
447
448static void dump_pagetable(unsigned long address)
449{
450	pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
451	pgd_t *pgd = base + pgd_index(address);
452	pud_t *pud;
453	pmd_t *pmd;
454	pte_t *pte;
455
456	if (bad_address(pgd))
457		goto bad;
458
459	printk("PGD %lx ", pgd_val(*pgd));
460
461	if (!pgd_present(*pgd))
462		goto out;
463
464	pud = pud_offset(pgd, address);
465	if (bad_address(pud))
466		goto bad;
467
468	printk("PUD %lx ", pud_val(*pud));
469	if (!pud_present(*pud) || pud_large(*pud))
470		goto out;
471
472	pmd = pmd_offset(pud, address);
473	if (bad_address(pmd))
474		goto bad;
475
476	printk("PMD %lx ", pmd_val(*pmd));
477	if (!pmd_present(*pmd) || pmd_large(*pmd))
478		goto out;
479
480	pte = pte_offset_kernel(pmd, address);
481	if (bad_address(pte))
482		goto bad;
483
484	printk("PTE %lx", pte_val(*pte));
485out:
486	printk("\n");
487	return;
488bad:
489	printk("BAD\n");
490}
491
492#endif /* CONFIG_X86_64 */
493
494static int is_errata93(struct pt_regs *regs, unsigned long address)
495{
496#ifdef CONFIG_X86_64
497	if (address != regs->ip)
498		return 0;
499
500	if ((address >> 32) != 0)
501		return 0;
502
503	address |= 0xffffffffUL << 32;
504	if ((address >= (u64)_stext && address <= (u64)_etext) ||
505	    (address >= MODULES_VADDR && address <= MODULES_END)) {
506		printk_once(errata93_warning);
507		regs->ip = address;
508		return 1;
509	}
510#endif
511	return 0;
512}
513
514static int is_errata100(struct pt_regs *regs, unsigned long address)
515{
516#ifdef CONFIG_X86_64
517	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
518		return 1;
519#endif
520	return 0;
521}
522
523static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
524{
525#ifdef CONFIG_X86_F00F_BUG
526	unsigned long nr;
527
528	if (boot_cpu_data.f00f_bug) {
529		nr = (address - idt_descr.address) >> 3;
530
531		if (nr == 6) {
532			do_invalid_op(regs, 0);
533			return 1;
534		}
535	}
536#endif
537	return 0;
538}
539
540static const char nx_warning[] = KERN_CRIT
541"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
542
543static void
544show_fault_oops(struct pt_regs *regs, unsigned long error_code,
545		unsigned long address)
546{
547	if (!oops_may_print())
548		return;
549
550	if (error_code & PF_INSTR) {
551		unsigned int level;
552
553		pte_t *pte = lookup_address(address, &level);
554
555		if (pte && pte_present(*pte) && !pte_exec(*pte))
556			printk(nx_warning, current_uid());
557	}
558
559	printk(KERN_ALERT "BUG: unable to handle kernel ");
560	if (address < PAGE_SIZE)
561		printk(KERN_CONT "NULL pointer dereference");
562	else
563		printk(KERN_CONT "paging request");
564
565	printk(KERN_CONT " at %p\n", (void *) address);
566	printk(KERN_ALERT "IP:");
567	printk_address(regs->ip, 1);
568
569	dump_pagetable(address);
570}
571
572static noinline void
573pgtable_bad(struct pt_regs *regs, unsigned long error_code,
574	    unsigned long address)
575{
576	struct task_struct *tsk;
577	unsigned long flags;
578	int sig;
579
580	flags = oops_begin();
581	tsk = current;
582	sig = SIGKILL;
583
584	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
585	       tsk->comm, address);
586	dump_pagetable(address);
587
588	tsk->thread.cr2		= address;
589	tsk->thread.trap_no	= 14;
590	tsk->thread.error_code	= error_code;
591
592	if (__die("Bad pagetable", regs, error_code))
593		sig = 0;
594
595	oops_end(flags, regs, sig);
596}
597
598static noinline void
599no_context(struct pt_regs *regs, unsigned long error_code,
600	   unsigned long address)
601{
602	struct task_struct *tsk = current;
603	unsigned long *stackend;
604	unsigned long flags;
605	int sig;
606
607	/* Are we prepared to handle this kernel fault? */
608	if (fixup_exception(regs))
609		return;
610
611	/*
612	 * 32-bit:
613	 *
614	 *   Valid to do another page fault here, because if this fault
615	 *   had been triggered by is_prefetch fixup_exception would have
616	 *   handled it.
617	 *
618	 * 64-bit:
619	 *
620	 *   Hall of shame of CPU/BIOS bugs.
621	 */
622	if (is_prefetch(regs, error_code, address))
623		return;
624
625	if (is_errata93(regs, address))
626		return;
627
628	/*
629	 * Oops. The kernel tried to access some bad page. We'll have to
630	 * terminate things with extreme prejudice:
631	 */
632	flags = oops_begin();
633
634	show_fault_oops(regs, error_code, address);
635
636	stackend = end_of_stack(tsk);
637	if (tsk != &init_task && *stackend != STACK_END_MAGIC)
638		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
639
640	tsk->thread.cr2		= address;
641	tsk->thread.trap_no	= 14;
642	tsk->thread.error_code	= error_code;
643
644	sig = SIGKILL;
645	if (__die("Oops", regs, error_code))
646		sig = 0;
647
648	/* Executive summary in case the body of the oops scrolled away */
649	printk(KERN_EMERG "CR2: %016lx\n", address);
650
651	oops_end(flags, regs, sig);
652}
653
654/*
655 * Print out info about fatal segfaults, if the show_unhandled_signals
656 * sysctl is set:
657 */
658static inline void
659show_signal_msg(struct pt_regs *regs, unsigned long error_code,
660		unsigned long address, struct task_struct *tsk)
661{
662	if (!unhandled_signal(tsk, SIGSEGV))
663		return;
664
665	if (!printk_ratelimit())
666		return;
667
668	printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
669		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
670		tsk->comm, task_pid_nr(tsk), address,
671		(void *)regs->ip, (void *)regs->sp, error_code);
672
673	print_vma_addr(KERN_CONT " in ", regs->ip);
674
675	printk(KERN_CONT "\n");
676}
677
678static void
679__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
680		       unsigned long address, int si_code)
681{
682	struct task_struct *tsk = current;
683
684	/* User mode accesses just cause a SIGSEGV */
685	if (error_code & PF_USER) {
686		/*
687		 * It's possible to have interrupts off here:
688		 */
689		local_irq_enable();
690
691		/*
692		 * Valid to do another page fault here because this one came
693		 * from user space:
694		 */
695		if (is_prefetch(regs, error_code, address))
696			return;
697
698		if (is_errata100(regs, address))
699			return;
700
701		if (unlikely(show_unhandled_signals))
702			show_signal_msg(regs, error_code, address, tsk);
703
704		/* Kernel addresses are always protection faults: */
705		tsk->thread.cr2		= address;
706		tsk->thread.error_code	= error_code | (address >= TASK_SIZE);
707		tsk->thread.trap_no	= 14;
708
709		force_sig_info_fault(SIGSEGV, si_code, address, tsk);
710
711		return;
712	}
713
714	if (is_f00f_bug(regs, address))
715		return;
716
717	no_context(regs, error_code, address);
718}
719
720static noinline void
721bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
722		     unsigned long address)
723{
724	__bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
725}
726
727static void
728__bad_area(struct pt_regs *regs, unsigned long error_code,
729	   unsigned long address, int si_code)
730{
731	struct mm_struct *mm = current->mm;
732
733	/*
734	 * Something tried to access memory that isn't in our memory map..
735	 * Fix it, but check if it's kernel or user first..
736	 */
737	up_read(&mm->mmap_sem);
738
739	__bad_area_nosemaphore(regs, error_code, address, si_code);
740}
741
742static noinline void
743bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
744{
745	__bad_area(regs, error_code, address, SEGV_MAPERR);
746}
747
748static noinline void
749bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
750		      unsigned long address)
751{
752	__bad_area(regs, error_code, address, SEGV_ACCERR);
753}
754
755/* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
756static void
757out_of_memory(struct pt_regs *regs, unsigned long error_code,
758	      unsigned long address)
759{
760	/*
761	 * We ran out of memory, call the OOM killer, and return the userspace
762	 * (which will retry the fault, or kill us if we got oom-killed):
763	 */
764	up_read(&current->mm->mmap_sem);
765
766	pagefault_out_of_memory();
767}
768
769static void
770do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
771	  unsigned int fault)
772{
773	struct task_struct *tsk = current;
774	struct mm_struct *mm = tsk->mm;
775	int code = BUS_ADRERR;
776
777	up_read(&mm->mmap_sem);
778
779	/* Kernel mode? Handle exceptions or die: */
780	if (!(error_code & PF_USER)) {
781		no_context(regs, error_code, address);
782		return;
783	}
784
785	/* User-space => ok to do another page fault: */
786	if (is_prefetch(regs, error_code, address))
787		return;
788
789	tsk->thread.cr2		= address;
790	tsk->thread.error_code	= error_code;
791	tsk->thread.trap_no	= 14;
792
793#ifdef CONFIG_MEMORY_FAILURE
794	if (fault & VM_FAULT_HWPOISON) {
795		printk(KERN_ERR
796	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
797			tsk->comm, tsk->pid, address);
798		code = BUS_MCEERR_AR;
799	}
800#endif
801	force_sig_info_fault(SIGBUS, code, address, tsk);
802}
803
804static noinline void
805mm_fault_error(struct pt_regs *regs, unsigned long error_code,
806	       unsigned long address, unsigned int fault)
807{
808	if (fault & VM_FAULT_OOM) {
809		out_of_memory(regs, error_code, address);
810	} else {
811		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON))
812			do_sigbus(regs, error_code, address, fault);
813		else
814			BUG();
815	}
816}
817
818static int spurious_fault_check(unsigned long error_code, pte_t *pte)
819{
820	if ((error_code & PF_WRITE) && !pte_write(*pte))
821		return 0;
822
823	if ((error_code & PF_INSTR) && !pte_exec(*pte))
824		return 0;
825
826	return 1;
827}
828
829/*
830 * Handle a spurious fault caused by a stale TLB entry.
831 *
832 * This allows us to lazily refresh the TLB when increasing the
833 * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
834 * eagerly is very expensive since that implies doing a full
835 * cross-processor TLB flush, even if no stale TLB entries exist
836 * on other processors.
837 *
838 * There are no security implications to leaving a stale TLB when
839 * increasing the permissions on a page.
840 */
841static noinline __kprobes int
842spurious_fault(unsigned long error_code, unsigned long address)
843{
844	pgd_t *pgd;
845	pud_t *pud;
846	pmd_t *pmd;
847	pte_t *pte;
848	int ret;
849
850	/* Reserved-bit violation or user access to kernel space? */
851	if (error_code & (PF_USER | PF_RSVD))
852		return 0;
853
854	pgd = init_mm.pgd + pgd_index(address);
855	if (!pgd_present(*pgd))
856		return 0;
857
858	pud = pud_offset(pgd, address);
859	if (!pud_present(*pud))
860		return 0;
861
862	if (pud_large(*pud))
863		return spurious_fault_check(error_code, (pte_t *) pud);
864
865	pmd = pmd_offset(pud, address);
866	if (!pmd_present(*pmd))
867		return 0;
868
869	if (pmd_large(*pmd))
870		return spurious_fault_check(error_code, (pte_t *) pmd);
871
872	pte = pte_offset_kernel(pmd, address);
873	if (!pte_present(*pte))
874		return 0;
875
876	ret = spurious_fault_check(error_code, pte);
877	if (!ret)
878		return 0;
879
880	/*
881	 * Make sure we have permissions in PMD.
882	 * If not, then there's a bug in the page tables:
883	 */
884	ret = spurious_fault_check(error_code, (pte_t *) pmd);
885	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
886
887	return ret;
888}
889
890int show_unhandled_signals = 1;
891
892static inline int
893access_error(unsigned long error_code, int write, struct vm_area_struct *vma)
894{
895	if (write) {
896		/* write, present and write, not present: */
897		if (unlikely(!(vma->vm_flags & VM_WRITE)))
898			return 1;
899		return 0;
900	}
901
902	/* read, present: */
903	if (unlikely(error_code & PF_PROT))
904		return 1;
905
906	/* read, not present: */
907	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
908		return 1;
909
910	return 0;
911}
912
913static int fault_in_kernel_space(unsigned long address)
914{
915	return address >= TASK_SIZE_MAX;
916}
917
918/*
919 * This routine handles page faults.  It determines the address,
920 * and the problem, and then passes it off to one of the appropriate
921 * routines.
922 */
923dotraplinkage void __kprobes
924do_page_fault(struct pt_regs *regs, unsigned long error_code)
925{
926	struct vm_area_struct *vma;
927	struct task_struct *tsk;
928	unsigned long address;
929	struct mm_struct *mm;
930	int write;
931	int fault;
932
933	tsk = current;
934	mm = tsk->mm;
935
936	/* Get the faulting address: */
937	address = read_cr2();
938
939	/*
940	 * Detect and handle instructions that would cause a page fault for
941	 * both a tracked kernel page and a userspace page.
942	 */
943	if (kmemcheck_active(regs))
944		kmemcheck_hide(regs);
945	prefetchw(&mm->mmap_sem);
946
947	if (unlikely(kmmio_fault(regs, address)))
948		return;
949
950	/*
951	 * We fault-in kernel-space virtual memory on-demand. The
952	 * 'reference' page table is init_mm.pgd.
953	 *
954	 * NOTE! We MUST NOT take any locks for this case. We may
955	 * be in an interrupt or a critical region, and should
956	 * only copy the information from the master page table,
957	 * nothing more.
958	 *
959	 * This verifies that the fault happens in kernel space
960	 * (error_code & 4) == 0, and that the fault was not a
961	 * protection error (error_code & 9) == 0.
962	 */
963	if (unlikely(fault_in_kernel_space(address))) {
964		if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
965			if (vmalloc_fault(address) >= 0)
966				return;
967
968			if (kmemcheck_fault(regs, address, error_code))
969				return;
970		}
971
972		/* Can handle a stale RO->RW TLB: */
973		if (spurious_fault(error_code, address))
974			return;
975
976		/* kprobes don't want to hook the spurious faults: */
977		if (notify_page_fault(regs))
978			return;
979		/*
980		 * Don't take the mm semaphore here. If we fixup a prefetch
981		 * fault we could otherwise deadlock:
982		 */
983		bad_area_nosemaphore(regs, error_code, address);
984
985		return;
986	}
987
988	/* kprobes don't want to hook the spurious faults: */
989	if (unlikely(notify_page_fault(regs)))
990		return;
991	/*
992	 * It's safe to allow irq's after cr2 has been saved and the
993	 * vmalloc fault has been handled.
994	 *
995	 * User-mode registers count as a user access even for any
996	 * potential system fault or CPU buglet:
997	 */
998	if (user_mode_vm(regs)) {
999		local_irq_enable();
1000		error_code |= PF_USER;
1001	} else {
1002		if (regs->flags & X86_EFLAGS_IF)
1003			local_irq_enable();
1004	}
1005
1006	if (unlikely(error_code & PF_RSVD))
1007		pgtable_bad(regs, error_code, address);
1008
1009	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address);
1010
1011	/*
1012	 * If we're in an interrupt, have no user context or are running
1013	 * in an atomic region then we must not take the fault:
1014	 */
1015	if (unlikely(in_atomic() || !mm)) {
1016		bad_area_nosemaphore(regs, error_code, address);
1017		return;
1018	}
1019
1020	/*
1021	 * When running in the kernel we expect faults to occur only to
1022	 * addresses in user space.  All other faults represent errors in
1023	 * the kernel and should generate an OOPS.  Unfortunately, in the
1024	 * case of an erroneous fault occurring in a code path which already
1025	 * holds mmap_sem we will deadlock attempting to validate the fault
1026	 * against the address space.  Luckily the kernel only validly
1027	 * references user space from well defined areas of code, which are
1028	 * listed in the exceptions table.
1029	 *
1030	 * As the vast majority of faults will be valid we will only perform
1031	 * the source reference check when there is a possibility of a
1032	 * deadlock. Attempt to lock the address space, if we cannot we then
1033	 * validate the source. If this is invalid we can skip the address
1034	 * space check, thus avoiding the deadlock:
1035	 */
1036	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1037		if ((error_code & PF_USER) == 0 &&
1038		    !search_exception_tables(regs->ip)) {
1039			bad_area_nosemaphore(regs, error_code, address);
1040			return;
1041		}
1042		down_read(&mm->mmap_sem);
1043	} else {
1044		/*
1045		 * The above down_read_trylock() might have succeeded in
1046		 * which case we'll have missed the might_sleep() from
1047		 * down_read():
1048		 */
1049		might_sleep();
1050	}
1051
1052	vma = find_vma(mm, address);
1053	if (unlikely(!vma)) {
1054		bad_area(regs, error_code, address);
1055		return;
1056	}
1057	if (likely(vma->vm_start <= address))
1058		goto good_area;
1059	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1060		bad_area(regs, error_code, address);
1061		return;
1062	}
1063	if (error_code & PF_USER) {
1064		/*
1065		 * Accessing the stack below %sp is always a bug.
1066		 * The large cushion allows instructions like enter
1067		 * and pusha to work. ("enter $65535, $31" pushes
1068		 * 32 pointers and then decrements %sp by 65535.)
1069		 */
1070		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1071			bad_area(regs, error_code, address);
1072			return;
1073		}
1074	}
1075	if (unlikely(expand_stack(vma, address))) {
1076		bad_area(regs, error_code, address);
1077		return;
1078	}
1079
1080	/*
1081	 * Ok, we have a good vm_area for this memory access, so
1082	 * we can handle it..
1083	 */
1084good_area:
1085	write = error_code & PF_WRITE;
1086
1087	if (unlikely(access_error(error_code, write, vma))) {
1088		bad_area_access_error(regs, error_code, address);
1089		return;
1090	}
1091
1092	/*
1093	 * If for any reason at all we couldn't handle the fault,
1094	 * make sure we exit gracefully rather than endlessly redo
1095	 * the fault:
1096	 */
1097	fault = handle_mm_fault(mm, vma, address, write ? FAULT_FLAG_WRITE : 0);
1098
1099	if (unlikely(fault & VM_FAULT_ERROR)) {
1100		mm_fault_error(regs, error_code, address, fault);
1101		return;
1102	}
1103
1104	if (fault & VM_FAULT_MAJOR) {
1105		tsk->maj_flt++;
1106		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0,
1107				     regs, address);
1108	} else {
1109		tsk->min_flt++;
1110		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0,
1111				     regs, address);
1112	}
1113
1114	check_v8086_mode(regs, address, tsk);
1115
1116	up_read(&mm->mmap_sem);
1117}
1118