• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/arch/x86/kernel/
1#include <linux/clocksource.h>
2#include <linux/clockchips.h>
3#include <linux/interrupt.h>
4#include <linux/sysdev.h>
5#include <linux/delay.h>
6#include <linux/errno.h>
7#include <linux/slab.h>
8#include <linux/hpet.h>
9#include <linux/init.h>
10#include <linux/cpu.h>
11#include <linux/pm.h>
12#include <linux/io.h>
13
14#include <asm/fixmap.h>
15#include <asm/i8253.h>
16#include <asm/hpet.h>
17
18#define HPET_MASK			CLOCKSOURCE_MASK(32)
19
20/* FSEC = 10^-15
21   NSEC = 10^-9 */
22#define FSEC_PER_NSEC			1000000L
23
24#define HPET_DEV_USED_BIT		2
25#define HPET_DEV_USED			(1 << HPET_DEV_USED_BIT)
26#define HPET_DEV_VALID			0x8
27#define HPET_DEV_FSB_CAP		0x1000
28#define HPET_DEV_PERI_CAP		0x2000
29
30#define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
31
32/*
33 * HPET address is set in acpi/boot.c, when an ACPI entry exists
34 */
35unsigned long				hpet_address;
36u8					hpet_blockid; /* OS timer block num */
37u8					hpet_msi_disable;
38
39#ifdef CONFIG_PCI_MSI
40static unsigned long			hpet_num_timers;
41#endif
42static void __iomem			*hpet_virt_address;
43
44struct hpet_dev {
45	struct clock_event_device	evt;
46	unsigned int			num;
47	int				cpu;
48	unsigned int			irq;
49	unsigned int			flags;
50	char				name[10];
51};
52
53inline unsigned int hpet_readl(unsigned int a)
54{
55	return readl(hpet_virt_address + a);
56}
57
58static inline void hpet_writel(unsigned int d, unsigned int a)
59{
60	writel(d, hpet_virt_address + a);
61}
62
63#ifdef CONFIG_X86_64
64#include <asm/pgtable.h>
65#endif
66
67static inline void hpet_set_mapping(void)
68{
69	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
70#ifdef CONFIG_X86_64
71	__set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
72#endif
73}
74
75static inline void hpet_clear_mapping(void)
76{
77	iounmap(hpet_virt_address);
78	hpet_virt_address = NULL;
79}
80
81/*
82 * HPET command line enable / disable
83 */
84static int boot_hpet_disable;
85int hpet_force_user;
86static int hpet_verbose;
87
88static int __init hpet_setup(char *str)
89{
90	if (str) {
91		if (!strncmp("disable", str, 7))
92			boot_hpet_disable = 1;
93		if (!strncmp("force", str, 5))
94			hpet_force_user = 1;
95		if (!strncmp("verbose", str, 7))
96			hpet_verbose = 1;
97	}
98	return 1;
99}
100__setup("hpet=", hpet_setup);
101
102static int __init disable_hpet(char *str)
103{
104	boot_hpet_disable = 1;
105	return 1;
106}
107__setup("nohpet", disable_hpet);
108
109static inline int is_hpet_capable(void)
110{
111	return !boot_hpet_disable && hpet_address;
112}
113
114/*
115 * HPET timer interrupt enable / disable
116 */
117static int hpet_legacy_int_enabled;
118
119/**
120 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
121 */
122int is_hpet_enabled(void)
123{
124	return is_hpet_capable() && hpet_legacy_int_enabled;
125}
126EXPORT_SYMBOL_GPL(is_hpet_enabled);
127
128static void _hpet_print_config(const char *function, int line)
129{
130	u32 i, timers, l, h;
131	printk(KERN_INFO "hpet: %s(%d):\n", function, line);
132	l = hpet_readl(HPET_ID);
133	h = hpet_readl(HPET_PERIOD);
134	timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
135	printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
136	l = hpet_readl(HPET_CFG);
137	h = hpet_readl(HPET_STATUS);
138	printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
139	l = hpet_readl(HPET_COUNTER);
140	h = hpet_readl(HPET_COUNTER+4);
141	printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
142
143	for (i = 0; i < timers; i++) {
144		l = hpet_readl(HPET_Tn_CFG(i));
145		h = hpet_readl(HPET_Tn_CFG(i)+4);
146		printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
147		       i, l, h);
148		l = hpet_readl(HPET_Tn_CMP(i));
149		h = hpet_readl(HPET_Tn_CMP(i)+4);
150		printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
151		       i, l, h);
152		l = hpet_readl(HPET_Tn_ROUTE(i));
153		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
154		printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
155		       i, l, h);
156	}
157}
158
159#define hpet_print_config()					\
160do {								\
161	if (hpet_verbose)					\
162		_hpet_print_config(__FUNCTION__, __LINE__);	\
163} while (0)
164
165/*
166 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
167 * timer 0 and timer 1 in case of RTC emulation.
168 */
169#ifdef CONFIG_HPET
170
171static void hpet_reserve_msi_timers(struct hpet_data *hd);
172
173static void hpet_reserve_platform_timers(unsigned int id)
174{
175	struct hpet __iomem *hpet = hpet_virt_address;
176	struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
177	unsigned int nrtimers, i;
178	struct hpet_data hd;
179
180	nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
181
182	memset(&hd, 0, sizeof(hd));
183	hd.hd_phys_address	= hpet_address;
184	hd.hd_address		= hpet;
185	hd.hd_nirqs		= nrtimers;
186	hpet_reserve_timer(&hd, 0);
187
188#ifdef CONFIG_HPET_EMULATE_RTC
189	hpet_reserve_timer(&hd, 1);
190#endif
191
192	/*
193	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
194	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
195	 * don't bother configuring *any* comparator interrupts.
196	 */
197	hd.hd_irq[0] = HPET_LEGACY_8254;
198	hd.hd_irq[1] = HPET_LEGACY_RTC;
199
200	for (i = 2; i < nrtimers; timer++, i++) {
201		hd.hd_irq[i] = (readl(&timer->hpet_config) &
202			Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
203	}
204
205	hpet_reserve_msi_timers(&hd);
206
207	hpet_alloc(&hd);
208
209}
210#else
211static void hpet_reserve_platform_timers(unsigned int id) { }
212#endif
213
214/*
215 * Common hpet info
216 */
217static unsigned long hpet_period;
218
219static void hpet_legacy_set_mode(enum clock_event_mode mode,
220			  struct clock_event_device *evt);
221static int hpet_legacy_next_event(unsigned long delta,
222			   struct clock_event_device *evt);
223
224/*
225 * The hpet clock event device
226 */
227static struct clock_event_device hpet_clockevent = {
228	.name		= "hpet",
229	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
230	.set_mode	= hpet_legacy_set_mode,
231	.set_next_event = hpet_legacy_next_event,
232	.shift		= 32,
233	.irq		= 0,
234	.rating		= 50,
235};
236
237static void hpet_stop_counter(void)
238{
239	unsigned long cfg = hpet_readl(HPET_CFG);
240	cfg &= ~HPET_CFG_ENABLE;
241	hpet_writel(cfg, HPET_CFG);
242}
243
244static void hpet_reset_counter(void)
245{
246	hpet_writel(0, HPET_COUNTER);
247	hpet_writel(0, HPET_COUNTER + 4);
248}
249
250static void hpet_start_counter(void)
251{
252	unsigned int cfg = hpet_readl(HPET_CFG);
253	cfg |= HPET_CFG_ENABLE;
254	hpet_writel(cfg, HPET_CFG);
255}
256
257static void hpet_restart_counter(void)
258{
259	hpet_stop_counter();
260	hpet_reset_counter();
261	hpet_start_counter();
262}
263
264static void hpet_resume_device(void)
265{
266	force_hpet_resume();
267}
268
269static void hpet_resume_counter(struct clocksource *cs)
270{
271	hpet_resume_device();
272	hpet_restart_counter();
273}
274
275static void hpet_enable_legacy_int(void)
276{
277	unsigned int cfg = hpet_readl(HPET_CFG);
278
279	cfg |= HPET_CFG_LEGACY;
280	hpet_writel(cfg, HPET_CFG);
281	hpet_legacy_int_enabled = 1;
282}
283
284static void hpet_legacy_clockevent_register(void)
285{
286	/* Start HPET legacy interrupts */
287	hpet_enable_legacy_int();
288
289	/*
290	 * The mult factor is defined as (include/linux/clockchips.h)
291	 *  mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
292	 * hpet_period is in units of femtoseconds (per cycle), so
293	 *  mult/2^shift = cyc/ns = 10^6/hpet_period
294	 *  mult = (10^6 * 2^shift)/hpet_period
295	 *  mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
296	 */
297	hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
298				      hpet_period, hpet_clockevent.shift);
299	/* Calculate the min / max delta */
300	hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
301							   &hpet_clockevent);
302	/* 5 usec minimum reprogramming delta. */
303	hpet_clockevent.min_delta_ns = 5000;
304
305	/*
306	 * Start hpet with the boot cpu mask and make it
307	 * global after the IO_APIC has been initialized.
308	 */
309	hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
310	clockevents_register_device(&hpet_clockevent);
311	global_clock_event = &hpet_clockevent;
312	printk(KERN_DEBUG "hpet clockevent registered\n");
313}
314
315static int hpet_setup_msi_irq(unsigned int irq);
316
317static void hpet_set_mode(enum clock_event_mode mode,
318			  struct clock_event_device *evt, int timer)
319{
320	unsigned int cfg, cmp, now;
321	uint64_t delta;
322
323	switch (mode) {
324	case CLOCK_EVT_MODE_PERIODIC:
325		hpet_stop_counter();
326		delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
327		delta >>= evt->shift;
328		now = hpet_readl(HPET_COUNTER);
329		cmp = now + (unsigned int) delta;
330		cfg = hpet_readl(HPET_Tn_CFG(timer));
331		/* Make sure we use edge triggered interrupts */
332		cfg &= ~HPET_TN_LEVEL;
333		cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
334		       HPET_TN_SETVAL | HPET_TN_32BIT;
335		hpet_writel(cfg, HPET_Tn_CFG(timer));
336		hpet_writel(cmp, HPET_Tn_CMP(timer));
337		udelay(1);
338		/*
339		 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
340		 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
341		 * bit is automatically cleared after the first write.
342		 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
343		 * Publication # 24674)
344		 */
345		hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
346		hpet_start_counter();
347		hpet_print_config();
348		break;
349
350	case CLOCK_EVT_MODE_ONESHOT:
351		cfg = hpet_readl(HPET_Tn_CFG(timer));
352		cfg &= ~HPET_TN_PERIODIC;
353		cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
354		hpet_writel(cfg, HPET_Tn_CFG(timer));
355		break;
356
357	case CLOCK_EVT_MODE_UNUSED:
358	case CLOCK_EVT_MODE_SHUTDOWN:
359		cfg = hpet_readl(HPET_Tn_CFG(timer));
360		cfg &= ~HPET_TN_ENABLE;
361		hpet_writel(cfg, HPET_Tn_CFG(timer));
362		break;
363
364	case CLOCK_EVT_MODE_RESUME:
365		if (timer == 0) {
366			hpet_enable_legacy_int();
367		} else {
368			struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
369			hpet_setup_msi_irq(hdev->irq);
370			disable_irq(hdev->irq);
371			irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
372			enable_irq(hdev->irq);
373		}
374		hpet_print_config();
375		break;
376	}
377}
378
379static int hpet_next_event(unsigned long delta,
380			   struct clock_event_device *evt, int timer)
381{
382	u32 cnt;
383
384	cnt = hpet_readl(HPET_COUNTER);
385	cnt += (u32) delta;
386	hpet_writel(cnt, HPET_Tn_CMP(timer));
387
388	if (unlikely((u32)hpet_readl(HPET_Tn_CMP(timer)) != cnt)) {
389		if (hpet_readl(HPET_Tn_CMP(timer)) != cnt)
390			printk_once(KERN_WARNING
391				"hpet: compare register read back failed.\n");
392	}
393
394	return (s32)(hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0;
395}
396
397static void hpet_legacy_set_mode(enum clock_event_mode mode,
398			struct clock_event_device *evt)
399{
400	hpet_set_mode(mode, evt, 0);
401}
402
403static int hpet_legacy_next_event(unsigned long delta,
404			struct clock_event_device *evt)
405{
406	return hpet_next_event(delta, evt, 0);
407}
408
409/*
410 * HPET MSI Support
411 */
412#ifdef CONFIG_PCI_MSI
413
414static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
415static struct hpet_dev	*hpet_devs;
416
417void hpet_msi_unmask(unsigned int irq)
418{
419	struct hpet_dev *hdev = get_irq_data(irq);
420	unsigned int cfg;
421
422	/* unmask it */
423	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
424	cfg |= HPET_TN_FSB;
425	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
426}
427
428void hpet_msi_mask(unsigned int irq)
429{
430	unsigned int cfg;
431	struct hpet_dev *hdev = get_irq_data(irq);
432
433	/* mask it */
434	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
435	cfg &= ~HPET_TN_FSB;
436	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
437}
438
439void hpet_msi_write(unsigned int irq, struct msi_msg *msg)
440{
441	struct hpet_dev *hdev = get_irq_data(irq);
442
443	hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
444	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
445}
446
447void hpet_msi_read(unsigned int irq, struct msi_msg *msg)
448{
449	struct hpet_dev *hdev = get_irq_data(irq);
450
451	msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
452	msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
453	msg->address_hi = 0;
454}
455
456static void hpet_msi_set_mode(enum clock_event_mode mode,
457				struct clock_event_device *evt)
458{
459	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
460	hpet_set_mode(mode, evt, hdev->num);
461}
462
463static int hpet_msi_next_event(unsigned long delta,
464				struct clock_event_device *evt)
465{
466	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
467	return hpet_next_event(delta, evt, hdev->num);
468}
469
470static int hpet_setup_msi_irq(unsigned int irq)
471{
472	if (arch_setup_hpet_msi(irq, hpet_blockid)) {
473		destroy_irq(irq);
474		return -EINVAL;
475	}
476	return 0;
477}
478
479static int hpet_assign_irq(struct hpet_dev *dev)
480{
481	unsigned int irq;
482
483	irq = create_irq_nr(0, -1);
484	if (!irq)
485		return -EINVAL;
486
487	set_irq_data(irq, dev);
488
489	if (hpet_setup_msi_irq(irq))
490		return -EINVAL;
491
492	dev->irq = irq;
493	return 0;
494}
495
496static irqreturn_t hpet_interrupt_handler(int irq, void *data)
497{
498	struct hpet_dev *dev = (struct hpet_dev *)data;
499	struct clock_event_device *hevt = &dev->evt;
500
501	if (!hevt->event_handler) {
502		printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
503				dev->num);
504		return IRQ_HANDLED;
505	}
506
507	hevt->event_handler(hevt);
508	return IRQ_HANDLED;
509}
510
511static int hpet_setup_irq(struct hpet_dev *dev)
512{
513
514	if (request_irq(dev->irq, hpet_interrupt_handler,
515			IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
516			dev->name, dev))
517		return -1;
518
519	disable_irq(dev->irq);
520	irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
521	enable_irq(dev->irq);
522
523	printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
524			 dev->name, dev->irq);
525
526	return 0;
527}
528
529/* This should be called in specific @cpu */
530static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
531{
532	struct clock_event_device *evt = &hdev->evt;
533	uint64_t hpet_freq;
534
535	WARN_ON(cpu != smp_processor_id());
536	if (!(hdev->flags & HPET_DEV_VALID))
537		return;
538
539	if (hpet_setup_msi_irq(hdev->irq))
540		return;
541
542	hdev->cpu = cpu;
543	per_cpu(cpu_hpet_dev, cpu) = hdev;
544	evt->name = hdev->name;
545	hpet_setup_irq(hdev);
546	evt->irq = hdev->irq;
547
548	evt->rating = 110;
549	evt->features = CLOCK_EVT_FEAT_ONESHOT;
550	if (hdev->flags & HPET_DEV_PERI_CAP)
551		evt->features |= CLOCK_EVT_FEAT_PERIODIC;
552
553	evt->set_mode = hpet_msi_set_mode;
554	evt->set_next_event = hpet_msi_next_event;
555	evt->shift = 32;
556
557	/*
558	 * The period is a femto seconds value. We need to calculate the
559	 * scaled math multiplication factor for nanosecond to hpet tick
560	 * conversion.
561	 */
562	hpet_freq = FSEC_PER_SEC;
563	do_div(hpet_freq, hpet_period);
564	evt->mult = div_sc((unsigned long) hpet_freq,
565				      NSEC_PER_SEC, evt->shift);
566	/* Calculate the max delta */
567	evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
568	/* 5 usec minimum reprogramming delta. */
569	evt->min_delta_ns = 5000;
570
571	evt->cpumask = cpumask_of(hdev->cpu);
572	clockevents_register_device(evt);
573}
574
575#ifdef CONFIG_HPET
576/* Reserve at least one timer for userspace (/dev/hpet) */
577#define RESERVE_TIMERS 1
578#else
579#define RESERVE_TIMERS 0
580#endif
581
582static void hpet_msi_capability_lookup(unsigned int start_timer)
583{
584	unsigned int id;
585	unsigned int num_timers;
586	unsigned int num_timers_used = 0;
587	int i;
588
589	if (hpet_msi_disable)
590		return;
591
592	if (boot_cpu_has(X86_FEATURE_ARAT))
593		return;
594	id = hpet_readl(HPET_ID);
595
596	num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
597	num_timers++; /* Value read out starts from 0 */
598	hpet_print_config();
599
600	hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
601	if (!hpet_devs)
602		return;
603
604	hpet_num_timers = num_timers;
605
606	for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
607		struct hpet_dev *hdev = &hpet_devs[num_timers_used];
608		unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
609
610		/* Only consider HPET timer with MSI support */
611		if (!(cfg & HPET_TN_FSB_CAP))
612			continue;
613
614		hdev->flags = 0;
615		if (cfg & HPET_TN_PERIODIC_CAP)
616			hdev->flags |= HPET_DEV_PERI_CAP;
617		hdev->num = i;
618
619		sprintf(hdev->name, "hpet%d", i);
620		if (hpet_assign_irq(hdev))
621			continue;
622
623		hdev->flags |= HPET_DEV_FSB_CAP;
624		hdev->flags |= HPET_DEV_VALID;
625		num_timers_used++;
626		if (num_timers_used == num_possible_cpus())
627			break;
628	}
629
630	printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
631		num_timers, num_timers_used);
632}
633
634#ifdef CONFIG_HPET
635static void hpet_reserve_msi_timers(struct hpet_data *hd)
636{
637	int i;
638
639	if (!hpet_devs)
640		return;
641
642	for (i = 0; i < hpet_num_timers; i++) {
643		struct hpet_dev *hdev = &hpet_devs[i];
644
645		if (!(hdev->flags & HPET_DEV_VALID))
646			continue;
647
648		hd->hd_irq[hdev->num] = hdev->irq;
649		hpet_reserve_timer(hd, hdev->num);
650	}
651}
652#endif
653
654static struct hpet_dev *hpet_get_unused_timer(void)
655{
656	int i;
657
658	if (!hpet_devs)
659		return NULL;
660
661	for (i = 0; i < hpet_num_timers; i++) {
662		struct hpet_dev *hdev = &hpet_devs[i];
663
664		if (!(hdev->flags & HPET_DEV_VALID))
665			continue;
666		if (test_and_set_bit(HPET_DEV_USED_BIT,
667			(unsigned long *)&hdev->flags))
668			continue;
669		return hdev;
670	}
671	return NULL;
672}
673
674struct hpet_work_struct {
675	struct delayed_work work;
676	struct completion complete;
677};
678
679static void hpet_work(struct work_struct *w)
680{
681	struct hpet_dev *hdev;
682	int cpu = smp_processor_id();
683	struct hpet_work_struct *hpet_work;
684
685	hpet_work = container_of(w, struct hpet_work_struct, work.work);
686
687	hdev = hpet_get_unused_timer();
688	if (hdev)
689		init_one_hpet_msi_clockevent(hdev, cpu);
690
691	complete(&hpet_work->complete);
692}
693
694static int hpet_cpuhp_notify(struct notifier_block *n,
695		unsigned long action, void *hcpu)
696{
697	unsigned long cpu = (unsigned long)hcpu;
698	struct hpet_work_struct work;
699	struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
700
701	switch (action & 0xf) {
702	case CPU_ONLINE:
703		INIT_DELAYED_WORK_ON_STACK(&work.work, hpet_work);
704		init_completion(&work.complete);
705		schedule_delayed_work_on(cpu, &work.work, 0);
706		wait_for_completion(&work.complete);
707		destroy_timer_on_stack(&work.work.timer);
708		break;
709	case CPU_DEAD:
710		if (hdev) {
711			free_irq(hdev->irq, hdev);
712			hdev->flags &= ~HPET_DEV_USED;
713			per_cpu(cpu_hpet_dev, cpu) = NULL;
714		}
715		break;
716	}
717	return NOTIFY_OK;
718}
719#else
720
721static int hpet_setup_msi_irq(unsigned int irq)
722{
723	return 0;
724}
725static void hpet_msi_capability_lookup(unsigned int start_timer)
726{
727	return;
728}
729
730#ifdef CONFIG_HPET
731static void hpet_reserve_msi_timers(struct hpet_data *hd)
732{
733	return;
734}
735#endif
736
737static int hpet_cpuhp_notify(struct notifier_block *n,
738		unsigned long action, void *hcpu)
739{
740	return NOTIFY_OK;
741}
742
743#endif
744
745/*
746 * Clock source related code
747 */
748static cycle_t read_hpet(struct clocksource *cs)
749{
750	return (cycle_t)hpet_readl(HPET_COUNTER);
751}
752
753#ifdef CONFIG_X86_64
754static cycle_t __vsyscall_fn vread_hpet(void)
755{
756	return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
757}
758#endif
759
760static struct clocksource clocksource_hpet = {
761	.name		= "hpet",
762	.rating		= 250,
763	.read		= read_hpet,
764	.mask		= HPET_MASK,
765	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
766	.resume		= hpet_resume_counter,
767#ifdef CONFIG_X86_64
768	.vread		= vread_hpet,
769#endif
770};
771
772static int hpet_clocksource_register(void)
773{
774	u64 start, now;
775	u64 hpet_freq;
776	cycle_t t1;
777
778	/* Start the counter */
779	hpet_restart_counter();
780
781	/* Verify whether hpet counter works */
782	t1 = hpet_readl(HPET_COUNTER);
783	rdtscll(start);
784
785	/*
786	 * We don't know the TSC frequency yet, but waiting for
787	 * 200000 TSC cycles is safe:
788	 * 4 GHz == 50us
789	 * 1 GHz == 200us
790	 */
791	do {
792		rep_nop();
793		rdtscll(now);
794	} while ((now - start) < 200000UL);
795
796	if (t1 == hpet_readl(HPET_COUNTER)) {
797		printk(KERN_WARNING
798		       "HPET counter not counting. HPET disabled\n");
799		return -ENODEV;
800	}
801
802	/*
803	 * The definition of mult is (include/linux/clocksource.h)
804	 * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
805	 * so we first need to convert hpet_period to ns/cyc units:
806	 *  mult/2^shift = ns/cyc = hpet_period/10^6
807	 *  mult = (hpet_period * 2^shift)/10^6
808	 *  mult = (hpet_period << shift)/FSEC_PER_NSEC
809	 */
810
811	/* Need to convert hpet_period (fsec/cyc) to cyc/sec:
812	 *
813	 * cyc/sec = FSEC_PER_SEC/hpet_period(fsec/cyc)
814	 * cyc/sec = (FSEC_PER_NSEC * NSEC_PER_SEC)/hpet_period
815	 */
816	hpet_freq = FSEC_PER_SEC;
817	do_div(hpet_freq, hpet_period);
818	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
819
820	return 0;
821}
822
823/**
824 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
825 */
826int __init hpet_enable(void)
827{
828	unsigned int id;
829	int i;
830
831	if (!is_hpet_capable())
832		return 0;
833
834	hpet_set_mapping();
835
836	/*
837	 * Read the period and check for a sane value:
838	 */
839	hpet_period = hpet_readl(HPET_PERIOD);
840
841	/*
842	 * AMD SB700 based systems with spread spectrum enabled use a
843	 * SMM based HPET emulation to provide proper frequency
844	 * setting. The SMM code is initialized with the first HPET
845	 * register access and takes some time to complete. During
846	 * this time the config register reads 0xffffffff. We check
847	 * for max. 1000 loops whether the config register reads a non
848	 * 0xffffffff value to make sure that HPET is up and running
849	 * before we go further. A counting loop is safe, as the HPET
850	 * access takes thousands of CPU cycles. On non SB700 based
851	 * machines this check is only done once and has no side
852	 * effects.
853	 */
854	for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
855		if (i == 1000) {
856			printk(KERN_WARNING
857			       "HPET config register value = 0xFFFFFFFF. "
858			       "Disabling HPET\n");
859			goto out_nohpet;
860		}
861	}
862
863	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
864		goto out_nohpet;
865
866	/*
867	 * Read the HPET ID register to retrieve the IRQ routing
868	 * information and the number of channels
869	 */
870	id = hpet_readl(HPET_ID);
871	hpet_print_config();
872
873#ifdef CONFIG_HPET_EMULATE_RTC
874	/*
875	 * The legacy routing mode needs at least two channels, tick timer
876	 * and the rtc emulation channel.
877	 */
878	if (!(id & HPET_ID_NUMBER))
879		goto out_nohpet;
880#endif
881
882	if (hpet_clocksource_register())
883		goto out_nohpet;
884
885	if (id & HPET_ID_LEGSUP) {
886		hpet_legacy_clockevent_register();
887		return 1;
888	}
889	return 0;
890
891out_nohpet:
892	hpet_clear_mapping();
893	hpet_address = 0;
894	return 0;
895}
896
897/*
898 * Needs to be late, as the reserve_timer code calls kalloc !
899 *
900 * Not a problem on i386 as hpet_enable is called from late_time_init,
901 * but on x86_64 it is necessary !
902 */
903static __init int hpet_late_init(void)
904{
905	int cpu;
906
907	if (boot_hpet_disable)
908		return -ENODEV;
909
910	if (!hpet_address) {
911		if (!force_hpet_address)
912			return -ENODEV;
913
914		hpet_address = force_hpet_address;
915		hpet_enable();
916	}
917
918	if (!hpet_virt_address)
919		return -ENODEV;
920
921	if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
922		hpet_msi_capability_lookup(2);
923	else
924		hpet_msi_capability_lookup(0);
925
926	hpet_reserve_platform_timers(hpet_readl(HPET_ID));
927	hpet_print_config();
928
929	if (hpet_msi_disable)
930		return 0;
931
932	if (boot_cpu_has(X86_FEATURE_ARAT))
933		return 0;
934
935	for_each_online_cpu(cpu) {
936		hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
937	}
938
939	/* This notifier should be called after workqueue is ready */
940	hotcpu_notifier(hpet_cpuhp_notify, -20);
941
942	return 0;
943}
944fs_initcall(hpet_late_init);
945
946void hpet_disable(void)
947{
948	if (is_hpet_capable() && hpet_virt_address) {
949		unsigned int cfg = hpet_readl(HPET_CFG);
950
951		if (hpet_legacy_int_enabled) {
952			cfg &= ~HPET_CFG_LEGACY;
953			hpet_legacy_int_enabled = 0;
954		}
955		cfg &= ~HPET_CFG_ENABLE;
956		hpet_writel(cfg, HPET_CFG);
957	}
958}
959
960#ifdef CONFIG_HPET_EMULATE_RTC
961
962/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
963 * is enabled, we support RTC interrupt functionality in software.
964 * RTC has 3 kinds of interrupts:
965 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
966 *    is updated
967 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
968 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
969 *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
970 * (1) and (2) above are implemented using polling at a frequency of
971 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
972 * overhead. (DEFAULT_RTC_INT_FREQ)
973 * For (3), we use interrupts at 64Hz or user specified periodic
974 * frequency, whichever is higher.
975 */
976#include <linux/mc146818rtc.h>
977#include <linux/rtc.h>
978#include <asm/rtc.h>
979
980#define DEFAULT_RTC_INT_FREQ	64
981#define DEFAULT_RTC_SHIFT	6
982#define RTC_NUM_INTS		1
983
984static unsigned long hpet_rtc_flags;
985static int hpet_prev_update_sec;
986static struct rtc_time hpet_alarm_time;
987static unsigned long hpet_pie_count;
988static u32 hpet_t1_cmp;
989static u32 hpet_default_delta;
990static u32 hpet_pie_delta;
991static unsigned long hpet_pie_limit;
992
993static rtc_irq_handler irq_handler;
994
995/*
996 * Check that the hpet counter c1 is ahead of the c2
997 */
998static inline int hpet_cnt_ahead(u32 c1, u32 c2)
999{
1000	return (s32)(c2 - c1) < 0;
1001}
1002
1003/*
1004 * Registers a IRQ handler.
1005 */
1006int hpet_register_irq_handler(rtc_irq_handler handler)
1007{
1008	if (!is_hpet_enabled())
1009		return -ENODEV;
1010	if (irq_handler)
1011		return -EBUSY;
1012
1013	irq_handler = handler;
1014
1015	return 0;
1016}
1017EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1018
1019/*
1020 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1021 * and does cleanup.
1022 */
1023void hpet_unregister_irq_handler(rtc_irq_handler handler)
1024{
1025	if (!is_hpet_enabled())
1026		return;
1027
1028	irq_handler = NULL;
1029	hpet_rtc_flags = 0;
1030}
1031EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1032
1033/*
1034 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1035 * is not supported by all HPET implementations for timer 1.
1036 *
1037 * hpet_rtc_timer_init() is called when the rtc is initialized.
1038 */
1039int hpet_rtc_timer_init(void)
1040{
1041	unsigned int cfg, cnt, delta;
1042	unsigned long flags;
1043
1044	if (!is_hpet_enabled())
1045		return 0;
1046
1047	if (!hpet_default_delta) {
1048		uint64_t clc;
1049
1050		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1051		clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1052		hpet_default_delta = clc;
1053	}
1054
1055	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1056		delta = hpet_default_delta;
1057	else
1058		delta = hpet_pie_delta;
1059
1060	local_irq_save(flags);
1061
1062	cnt = delta + hpet_readl(HPET_COUNTER);
1063	hpet_writel(cnt, HPET_T1_CMP);
1064	hpet_t1_cmp = cnt;
1065
1066	cfg = hpet_readl(HPET_T1_CFG);
1067	cfg &= ~HPET_TN_PERIODIC;
1068	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1069	hpet_writel(cfg, HPET_T1_CFG);
1070
1071	local_irq_restore(flags);
1072
1073	return 1;
1074}
1075EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1076
1077/*
1078 * The functions below are called from rtc driver.
1079 * Return 0 if HPET is not being used.
1080 * Otherwise do the necessary changes and return 1.
1081 */
1082int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1083{
1084	if (!is_hpet_enabled())
1085		return 0;
1086
1087	hpet_rtc_flags &= ~bit_mask;
1088	return 1;
1089}
1090EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1091
1092int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1093{
1094	unsigned long oldbits = hpet_rtc_flags;
1095
1096	if (!is_hpet_enabled())
1097		return 0;
1098
1099	hpet_rtc_flags |= bit_mask;
1100
1101	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1102		hpet_prev_update_sec = -1;
1103
1104	if (!oldbits)
1105		hpet_rtc_timer_init();
1106
1107	return 1;
1108}
1109EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1110
1111int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1112			unsigned char sec)
1113{
1114	if (!is_hpet_enabled())
1115		return 0;
1116
1117	hpet_alarm_time.tm_hour = hrs;
1118	hpet_alarm_time.tm_min = min;
1119	hpet_alarm_time.tm_sec = sec;
1120
1121	return 1;
1122}
1123EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1124
1125int hpet_set_periodic_freq(unsigned long freq)
1126{
1127	uint64_t clc;
1128
1129	if (!is_hpet_enabled())
1130		return 0;
1131
1132	if (freq <= DEFAULT_RTC_INT_FREQ)
1133		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1134	else {
1135		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1136		do_div(clc, freq);
1137		clc >>= hpet_clockevent.shift;
1138		hpet_pie_delta = clc;
1139		hpet_pie_limit = 0;
1140	}
1141	return 1;
1142}
1143EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1144
1145int hpet_rtc_dropped_irq(void)
1146{
1147	return is_hpet_enabled();
1148}
1149EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1150
1151static void hpet_rtc_timer_reinit(void)
1152{
1153	unsigned int cfg, delta;
1154	int lost_ints = -1;
1155
1156	if (unlikely(!hpet_rtc_flags)) {
1157		cfg = hpet_readl(HPET_T1_CFG);
1158		cfg &= ~HPET_TN_ENABLE;
1159		hpet_writel(cfg, HPET_T1_CFG);
1160		return;
1161	}
1162
1163	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1164		delta = hpet_default_delta;
1165	else
1166		delta = hpet_pie_delta;
1167
1168	/*
1169	 * Increment the comparator value until we are ahead of the
1170	 * current count.
1171	 */
1172	do {
1173		hpet_t1_cmp += delta;
1174		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1175		lost_ints++;
1176	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1177
1178	if (lost_ints) {
1179		if (hpet_rtc_flags & RTC_PIE)
1180			hpet_pie_count += lost_ints;
1181		if (printk_ratelimit())
1182			printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1183				lost_ints);
1184	}
1185}
1186
1187irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1188{
1189	struct rtc_time curr_time;
1190	unsigned long rtc_int_flag = 0;
1191
1192	hpet_rtc_timer_reinit();
1193	memset(&curr_time, 0, sizeof(struct rtc_time));
1194
1195	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1196		get_rtc_time(&curr_time);
1197
1198	if (hpet_rtc_flags & RTC_UIE &&
1199	    curr_time.tm_sec != hpet_prev_update_sec) {
1200		if (hpet_prev_update_sec >= 0)
1201			rtc_int_flag = RTC_UF;
1202		hpet_prev_update_sec = curr_time.tm_sec;
1203	}
1204
1205	if (hpet_rtc_flags & RTC_PIE &&
1206	    ++hpet_pie_count >= hpet_pie_limit) {
1207		rtc_int_flag |= RTC_PF;
1208		hpet_pie_count = 0;
1209	}
1210
1211	if (hpet_rtc_flags & RTC_AIE &&
1212	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1213	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1214	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1215			rtc_int_flag |= RTC_AF;
1216
1217	if (rtc_int_flag) {
1218		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1219		if (irq_handler)
1220			irq_handler(rtc_int_flag, dev_id);
1221	}
1222	return IRQ_HANDLED;
1223}
1224EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1225#endif
1226