• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/arch/sparc/mm/
1/* arch/sparc64/mm/tsb.c
2 *
3 * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
4 */
5
6#include <linux/kernel.h>
7#include <linux/preempt.h>
8#include <linux/slab.h>
9#include <asm/system.h>
10#include <asm/page.h>
11#include <asm/tlbflush.h>
12#include <asm/tlb.h>
13#include <asm/mmu_context.h>
14#include <asm/pgtable.h>
15#include <asm/tsb.h>
16#include <asm/oplib.h>
17
18extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
19
20static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
21{
22	vaddr >>= hash_shift;
23	return vaddr & (nentries - 1);
24}
25
26static inline int tag_compare(unsigned long tag, unsigned long vaddr)
27{
28	return (tag == (vaddr >> 22));
29}
30
31/* TSB flushes need only occur on the processor initiating the address
32 * space modification, not on each cpu the address space has run on.
33 * Only the TLB flush needs that treatment.
34 */
35
36void flush_tsb_kernel_range(unsigned long start, unsigned long end)
37{
38	unsigned long v;
39
40	for (v = start; v < end; v += PAGE_SIZE) {
41		unsigned long hash = tsb_hash(v, PAGE_SHIFT,
42					      KERNEL_TSB_NENTRIES);
43		struct tsb *ent = &swapper_tsb[hash];
44
45		if (tag_compare(ent->tag, v))
46			ent->tag = (1UL << TSB_TAG_INVALID_BIT);
47	}
48}
49
50static void __flush_tsb_one(struct mmu_gather *mp, unsigned long hash_shift, unsigned long tsb, unsigned long nentries)
51{
52	unsigned long i;
53
54	for (i = 0; i < mp->tlb_nr; i++) {
55		unsigned long v = mp->vaddrs[i];
56		unsigned long tag, ent, hash;
57
58		v &= ~0x1UL;
59
60		hash = tsb_hash(v, hash_shift, nentries);
61		ent = tsb + (hash * sizeof(struct tsb));
62		tag = (v >> 22UL);
63
64		tsb_flush(ent, tag);
65	}
66}
67
68void flush_tsb_user(struct mmu_gather *mp)
69{
70	struct mm_struct *mm = mp->mm;
71	unsigned long nentries, base, flags;
72
73	spin_lock_irqsave(&mm->context.lock, flags);
74
75	base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
76	nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
77	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
78		base = __pa(base);
79	__flush_tsb_one(mp, PAGE_SHIFT, base, nentries);
80
81#ifdef CONFIG_HUGETLB_PAGE
82	if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
83		base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
84		nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
85		if (tlb_type == cheetah_plus || tlb_type == hypervisor)
86			base = __pa(base);
87		__flush_tsb_one(mp, HPAGE_SHIFT, base, nentries);
88	}
89#endif
90	spin_unlock_irqrestore(&mm->context.lock, flags);
91}
92
93#if defined(CONFIG_SPARC64_PAGE_SIZE_8KB)
94#define HV_PGSZ_IDX_BASE	HV_PGSZ_IDX_8K
95#define HV_PGSZ_MASK_BASE	HV_PGSZ_MASK_8K
96#elif defined(CONFIG_SPARC64_PAGE_SIZE_64KB)
97#define HV_PGSZ_IDX_BASE	HV_PGSZ_IDX_64K
98#define HV_PGSZ_MASK_BASE	HV_PGSZ_MASK_64K
99#else
100#error Broken base page size setting...
101#endif
102
103#ifdef CONFIG_HUGETLB_PAGE
104#if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
105#define HV_PGSZ_IDX_HUGE	HV_PGSZ_IDX_64K
106#define HV_PGSZ_MASK_HUGE	HV_PGSZ_MASK_64K
107#elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
108#define HV_PGSZ_IDX_HUGE	HV_PGSZ_IDX_512K
109#define HV_PGSZ_MASK_HUGE	HV_PGSZ_MASK_512K
110#elif defined(CONFIG_HUGETLB_PAGE_SIZE_4MB)
111#define HV_PGSZ_IDX_HUGE	HV_PGSZ_IDX_4MB
112#define HV_PGSZ_MASK_HUGE	HV_PGSZ_MASK_4MB
113#else
114#error Broken huge page size setting...
115#endif
116#endif
117
118static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
119{
120	unsigned long tsb_reg, base, tsb_paddr;
121	unsigned long page_sz, tte;
122
123	mm->context.tsb_block[tsb_idx].tsb_nentries =
124		tsb_bytes / sizeof(struct tsb);
125
126	base = TSBMAP_BASE;
127	tte = pgprot_val(PAGE_KERNEL_LOCKED);
128	tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
129	BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
130
131	/* Use the smallest page size that can map the whole TSB
132	 * in one TLB entry.
133	 */
134	switch (tsb_bytes) {
135	case 8192 << 0:
136		tsb_reg = 0x0UL;
137#ifdef DCACHE_ALIASING_POSSIBLE
138		base += (tsb_paddr & 8192);
139#endif
140		page_sz = 8192;
141		break;
142
143	case 8192 << 1:
144		tsb_reg = 0x1UL;
145		page_sz = 64 * 1024;
146		break;
147
148	case 8192 << 2:
149		tsb_reg = 0x2UL;
150		page_sz = 64 * 1024;
151		break;
152
153	case 8192 << 3:
154		tsb_reg = 0x3UL;
155		page_sz = 64 * 1024;
156		break;
157
158	case 8192 << 4:
159		tsb_reg = 0x4UL;
160		page_sz = 512 * 1024;
161		break;
162
163	case 8192 << 5:
164		tsb_reg = 0x5UL;
165		page_sz = 512 * 1024;
166		break;
167
168	case 8192 << 6:
169		tsb_reg = 0x6UL;
170		page_sz = 512 * 1024;
171		break;
172
173	case 8192 << 7:
174		tsb_reg = 0x7UL;
175		page_sz = 4 * 1024 * 1024;
176		break;
177
178	default:
179		printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
180		       current->comm, current->pid, tsb_bytes);
181		do_exit(SIGSEGV);
182	};
183	tte |= pte_sz_bits(page_sz);
184
185	if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
186		/* Physical mapping, no locked TLB entry for TSB.  */
187		tsb_reg |= tsb_paddr;
188
189		mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
190		mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
191		mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
192	} else {
193		tsb_reg |= base;
194		tsb_reg |= (tsb_paddr & (page_sz - 1UL));
195		tte |= (tsb_paddr & ~(page_sz - 1UL));
196
197		mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
198		mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
199		mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
200	}
201
202	/* Setup the Hypervisor TSB descriptor.  */
203	if (tlb_type == hypervisor) {
204		struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
205
206		switch (tsb_idx) {
207		case MM_TSB_BASE:
208			hp->pgsz_idx = HV_PGSZ_IDX_BASE;
209			break;
210#ifdef CONFIG_HUGETLB_PAGE
211		case MM_TSB_HUGE:
212			hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
213			break;
214#endif
215		default:
216			BUG();
217		};
218		hp->assoc = 1;
219		hp->num_ttes = tsb_bytes / 16;
220		hp->ctx_idx = 0;
221		switch (tsb_idx) {
222		case MM_TSB_BASE:
223			hp->pgsz_mask = HV_PGSZ_MASK_BASE;
224			break;
225#ifdef CONFIG_HUGETLB_PAGE
226		case MM_TSB_HUGE:
227			hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
228			break;
229#endif
230		default:
231			BUG();
232		};
233		hp->tsb_base = tsb_paddr;
234		hp->resv = 0;
235	}
236}
237
238static struct kmem_cache *tsb_caches[8] __read_mostly;
239
240static const char *tsb_cache_names[8] = {
241	"tsb_8KB",
242	"tsb_16KB",
243	"tsb_32KB",
244	"tsb_64KB",
245	"tsb_128KB",
246	"tsb_256KB",
247	"tsb_512KB",
248	"tsb_1MB",
249};
250
251void __init pgtable_cache_init(void)
252{
253	unsigned long i;
254
255	for (i = 0; i < 8; i++) {
256		unsigned long size = 8192 << i;
257		const char *name = tsb_cache_names[i];
258
259		tsb_caches[i] = kmem_cache_create(name,
260						  size, size,
261						  0, NULL);
262		if (!tsb_caches[i]) {
263			prom_printf("Could not create %s cache\n", name);
264			prom_halt();
265		}
266	}
267}
268
269int sysctl_tsb_ratio = -2;
270
271static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
272{
273	unsigned long num_ents = (new_size / sizeof(struct tsb));
274
275	if (sysctl_tsb_ratio < 0)
276		return num_ents - (num_ents >> -sysctl_tsb_ratio);
277	else
278		return num_ents + (num_ents >> sysctl_tsb_ratio);
279}
280
281/* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
282 * do_sparc64_fault() invokes this routine to try and grow it.
283 *
284 * When we reach the maximum TSB size supported, we stick ~0UL into
285 * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
286 * will not trigger any longer.
287 *
288 * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
289 * of two.  The TSB must be aligned to it's size, so f.e. a 512K TSB
290 * must be 512K aligned.  It also must be physically contiguous, so we
291 * cannot use vmalloc().
292 *
293 * The idea here is to grow the TSB when the RSS of the process approaches
294 * the number of entries that the current TSB can hold at once.  Currently,
295 * we trigger when the RSS hits 3/4 of the TSB capacity.
296 */
297void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
298{
299	unsigned long max_tsb_size = 1 * 1024 * 1024;
300	unsigned long new_size, old_size, flags;
301	struct tsb *old_tsb, *new_tsb;
302	unsigned long new_cache_index, old_cache_index;
303	unsigned long new_rss_limit;
304	gfp_t gfp_flags;
305
306	if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
307		max_tsb_size = (PAGE_SIZE << MAX_ORDER);
308
309	new_cache_index = 0;
310	for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
311		new_rss_limit = tsb_size_to_rss_limit(new_size);
312		if (new_rss_limit > rss)
313			break;
314		new_cache_index++;
315	}
316
317	if (new_size == max_tsb_size)
318		new_rss_limit = ~0UL;
319
320retry_tsb_alloc:
321	gfp_flags = GFP_KERNEL;
322	if (new_size > (PAGE_SIZE * 2))
323		gfp_flags = __GFP_NOWARN | __GFP_NORETRY;
324
325	new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
326					gfp_flags, numa_node_id());
327	if (unlikely(!new_tsb)) {
328		/* Not being able to fork due to a high-order TSB
329		 * allocation failure is very bad behavior.  Just back
330		 * down to a 0-order allocation and force no TSB
331		 * growing for this address space.
332		 */
333		if (mm->context.tsb_block[tsb_index].tsb == NULL &&
334		    new_cache_index > 0) {
335			new_cache_index = 0;
336			new_size = 8192;
337			new_rss_limit = ~0UL;
338			goto retry_tsb_alloc;
339		}
340
341		/* If we failed on a TSB grow, we are under serious
342		 * memory pressure so don't try to grow any more.
343		 */
344		if (mm->context.tsb_block[tsb_index].tsb != NULL)
345			mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
346		return;
347	}
348
349	/* Mark all tags as invalid.  */
350	tsb_init(new_tsb, new_size);
351
352	/* Ok, we are about to commit the changes.  If we are
353	 * growing an existing TSB the locking is very tricky,
354	 * so WATCH OUT!
355	 *
356	 * We have to hold mm->context.lock while committing to the
357	 * new TSB, this synchronizes us with processors in
358	 * flush_tsb_user() and switch_mm() for this address space.
359	 *
360	 * But even with that lock held, processors run asynchronously
361	 * accessing the old TSB via TLB miss handling.  This is OK
362	 * because those actions are just propagating state from the
363	 * Linux page tables into the TSB, page table mappings are not
364	 * being changed.  If a real fault occurs, the processor will
365	 * synchronize with us when it hits flush_tsb_user(), this is
366	 * also true for the case where vmscan is modifying the page
367	 * tables.  The only thing we need to be careful with is to
368	 * skip any locked TSB entries during copy_tsb().
369	 *
370	 * When we finish committing to the new TSB, we have to drop
371	 * the lock and ask all other cpus running this address space
372	 * to run tsb_context_switch() to see the new TSB table.
373	 */
374	spin_lock_irqsave(&mm->context.lock, flags);
375
376	old_tsb = mm->context.tsb_block[tsb_index].tsb;
377	old_cache_index =
378		(mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
379	old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
380		    sizeof(struct tsb));
381
382
383	/* Handle multiple threads trying to grow the TSB at the same time.
384	 * One will get in here first, and bump the size and the RSS limit.
385	 * The others will get in here next and hit this check.
386	 */
387	if (unlikely(old_tsb &&
388		     (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
389		spin_unlock_irqrestore(&mm->context.lock, flags);
390
391		kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
392		return;
393	}
394
395	mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
396
397	if (old_tsb) {
398		extern void copy_tsb(unsigned long old_tsb_base,
399				     unsigned long old_tsb_size,
400				     unsigned long new_tsb_base,
401				     unsigned long new_tsb_size);
402		unsigned long old_tsb_base = (unsigned long) old_tsb;
403		unsigned long new_tsb_base = (unsigned long) new_tsb;
404
405		if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
406			old_tsb_base = __pa(old_tsb_base);
407			new_tsb_base = __pa(new_tsb_base);
408		}
409		copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
410	}
411
412	mm->context.tsb_block[tsb_index].tsb = new_tsb;
413	setup_tsb_params(mm, tsb_index, new_size);
414
415	spin_unlock_irqrestore(&mm->context.lock, flags);
416
417	/* If old_tsb is NULL, we're being invoked for the first time
418	 * from init_new_context().
419	 */
420	if (old_tsb) {
421		/* Reload it on the local cpu.  */
422		tsb_context_switch(mm);
423
424		/* Now force other processors to do the same.  */
425		preempt_disable();
426		smp_tsb_sync(mm);
427		preempt_enable();
428
429		/* Now it is safe to free the old tsb.  */
430		kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
431	}
432}
433
434int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
435{
436#ifdef CONFIG_HUGETLB_PAGE
437	unsigned long huge_pte_count;
438#endif
439	unsigned int i;
440
441	spin_lock_init(&mm->context.lock);
442
443	mm->context.sparc64_ctx_val = 0UL;
444
445#ifdef CONFIG_HUGETLB_PAGE
446	/* We reset it to zero because the fork() page copying
447	 * will re-increment the counters as the parent PTEs are
448	 * copied into the child address space.
449	 */
450	huge_pte_count = mm->context.huge_pte_count;
451	mm->context.huge_pte_count = 0;
452#endif
453
454	/* copy_mm() copies over the parent's mm_struct before calling
455	 * us, so we need to zero out the TSB pointer or else tsb_grow()
456	 * will be confused and think there is an older TSB to free up.
457	 */
458	for (i = 0; i < MM_NUM_TSBS; i++)
459		mm->context.tsb_block[i].tsb = NULL;
460
461	/* If this is fork, inherit the parent's TSB size.  We would
462	 * grow it to that size on the first page fault anyways.
463	 */
464	tsb_grow(mm, MM_TSB_BASE, get_mm_rss(mm));
465
466#ifdef CONFIG_HUGETLB_PAGE
467	if (unlikely(huge_pte_count))
468		tsb_grow(mm, MM_TSB_HUGE, huge_pte_count);
469#endif
470
471	if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
472		return -ENOMEM;
473
474	return 0;
475}
476
477static void tsb_destroy_one(struct tsb_config *tp)
478{
479	unsigned long cache_index;
480
481	if (!tp->tsb)
482		return;
483	cache_index = tp->tsb_reg_val & 0x7UL;
484	kmem_cache_free(tsb_caches[cache_index], tp->tsb);
485	tp->tsb = NULL;
486	tp->tsb_reg_val = 0UL;
487}
488
489void destroy_context(struct mm_struct *mm)
490{
491	unsigned long flags, i;
492
493	for (i = 0; i < MM_NUM_TSBS; i++)
494		tsb_destroy_one(&mm->context.tsb_block[i]);
495
496	spin_lock_irqsave(&ctx_alloc_lock, flags);
497
498	if (CTX_VALID(mm->context)) {
499		unsigned long nr = CTX_NRBITS(mm->context);
500		mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
501	}
502
503	spin_unlock_irqrestore(&ctx_alloc_lock, flags);
504}
505