• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/arch/sparc/mm/
1/*
2 * SPARC64 Huge TLB page support.
3 *
4 * Copyright (C) 2002, 2003, 2006 David S. Miller (davem@davemloft.net)
5 */
6
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/fs.h>
10#include <linux/mm.h>
11#include <linux/hugetlb.h>
12#include <linux/pagemap.h>
13#include <linux/sysctl.h>
14
15#include <asm/mman.h>
16#include <asm/pgalloc.h>
17#include <asm/tlb.h>
18#include <asm/tlbflush.h>
19#include <asm/cacheflush.h>
20#include <asm/mmu_context.h>
21
22/* Slightly simplified from the non-hugepage variant because by
23 * definition we don't have to worry about any page coloring stuff
24 */
25#define VA_EXCLUDE_START (0x0000080000000000UL - (1UL << 32UL))
26#define VA_EXCLUDE_END   (0xfffff80000000000UL + (1UL << 32UL))
27
28static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *filp,
29							unsigned long addr,
30							unsigned long len,
31							unsigned long pgoff,
32							unsigned long flags)
33{
34	struct mm_struct *mm = current->mm;
35	struct vm_area_struct * vma;
36	unsigned long task_size = TASK_SIZE;
37	unsigned long start_addr;
38
39	if (test_thread_flag(TIF_32BIT))
40		task_size = STACK_TOP32;
41	if (unlikely(len >= VA_EXCLUDE_START))
42		return -ENOMEM;
43
44	if (len > mm->cached_hole_size) {
45	        start_addr = addr = mm->free_area_cache;
46	} else {
47	        start_addr = addr = TASK_UNMAPPED_BASE;
48	        mm->cached_hole_size = 0;
49	}
50
51	task_size -= len;
52
53full_search:
54	addr = ALIGN(addr, HPAGE_SIZE);
55
56	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
57		/* At this point:  (!vma || addr < vma->vm_end). */
58		if (addr < VA_EXCLUDE_START &&
59		    (addr + len) >= VA_EXCLUDE_START) {
60			addr = VA_EXCLUDE_END;
61			vma = find_vma(mm, VA_EXCLUDE_END);
62		}
63		if (unlikely(task_size < addr)) {
64			if (start_addr != TASK_UNMAPPED_BASE) {
65				start_addr = addr = TASK_UNMAPPED_BASE;
66				mm->cached_hole_size = 0;
67				goto full_search;
68			}
69			return -ENOMEM;
70		}
71		if (likely(!vma || addr + len <= vma->vm_start)) {
72			/*
73			 * Remember the place where we stopped the search:
74			 */
75			mm->free_area_cache = addr + len;
76			return addr;
77		}
78		if (addr + mm->cached_hole_size < vma->vm_start)
79		        mm->cached_hole_size = vma->vm_start - addr;
80
81		addr = ALIGN(vma->vm_end, HPAGE_SIZE);
82	}
83}
84
85static unsigned long
86hugetlb_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
87				  const unsigned long len,
88				  const unsigned long pgoff,
89				  const unsigned long flags)
90{
91	struct vm_area_struct *vma;
92	struct mm_struct *mm = current->mm;
93	unsigned long addr = addr0;
94
95	/* This should only ever run for 32-bit processes.  */
96	BUG_ON(!test_thread_flag(TIF_32BIT));
97
98	/* check if free_area_cache is useful for us */
99	if (len <= mm->cached_hole_size) {
100 	        mm->cached_hole_size = 0;
101 		mm->free_area_cache = mm->mmap_base;
102 	}
103
104	/* either no address requested or can't fit in requested address hole */
105	addr = mm->free_area_cache & HPAGE_MASK;
106
107	/* make sure it can fit in the remaining address space */
108	if (likely(addr > len)) {
109		vma = find_vma(mm, addr-len);
110		if (!vma || addr <= vma->vm_start) {
111			/* remember the address as a hint for next time */
112			return (mm->free_area_cache = addr-len);
113		}
114	}
115
116	if (unlikely(mm->mmap_base < len))
117		goto bottomup;
118
119	addr = (mm->mmap_base-len) & HPAGE_MASK;
120
121	do {
122		/*
123		 * Lookup failure means no vma is above this address,
124		 * else if new region fits below vma->vm_start,
125		 * return with success:
126		 */
127		vma = find_vma(mm, addr);
128		if (likely(!vma || addr+len <= vma->vm_start)) {
129			/* remember the address as a hint for next time */
130			return (mm->free_area_cache = addr);
131		}
132
133 		/* remember the largest hole we saw so far */
134 		if (addr + mm->cached_hole_size < vma->vm_start)
135 		        mm->cached_hole_size = vma->vm_start - addr;
136
137		/* try just below the current vma->vm_start */
138		addr = (vma->vm_start-len) & HPAGE_MASK;
139	} while (likely(len < vma->vm_start));
140
141bottomup:
142	/*
143	 * A failed mmap() very likely causes application failure,
144	 * so fall back to the bottom-up function here. This scenario
145	 * can happen with large stack limits and large mmap()
146	 * allocations.
147	 */
148	mm->cached_hole_size = ~0UL;
149  	mm->free_area_cache = TASK_UNMAPPED_BASE;
150	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
151	/*
152	 * Restore the topdown base:
153	 */
154	mm->free_area_cache = mm->mmap_base;
155	mm->cached_hole_size = ~0UL;
156
157	return addr;
158}
159
160unsigned long
161hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
162		unsigned long len, unsigned long pgoff, unsigned long flags)
163{
164	struct mm_struct *mm = current->mm;
165	struct vm_area_struct *vma;
166	unsigned long task_size = TASK_SIZE;
167
168	if (test_thread_flag(TIF_32BIT))
169		task_size = STACK_TOP32;
170
171	if (len & ~HPAGE_MASK)
172		return -EINVAL;
173	if (len > task_size)
174		return -ENOMEM;
175
176	if (flags & MAP_FIXED) {
177		if (prepare_hugepage_range(file, addr, len))
178			return -EINVAL;
179		return addr;
180	}
181
182	if (addr) {
183		addr = ALIGN(addr, HPAGE_SIZE);
184		vma = find_vma(mm, addr);
185		if (task_size - len >= addr &&
186		    (!vma || addr + len <= vma->vm_start))
187			return addr;
188	}
189	if (mm->get_unmapped_area == arch_get_unmapped_area)
190		return hugetlb_get_unmapped_area_bottomup(file, addr, len,
191				pgoff, flags);
192	else
193		return hugetlb_get_unmapped_area_topdown(file, addr, len,
194				pgoff, flags);
195}
196
197pte_t *huge_pte_alloc(struct mm_struct *mm,
198			unsigned long addr, unsigned long sz)
199{
200	pgd_t *pgd;
201	pud_t *pud;
202	pmd_t *pmd;
203	pte_t *pte = NULL;
204
205	/* We must align the address, because our caller will run
206	 * set_huge_pte_at() on whatever we return, which writes out
207	 * all of the sub-ptes for the hugepage range.  So we have
208	 * to give it the first such sub-pte.
209	 */
210	addr &= HPAGE_MASK;
211
212	pgd = pgd_offset(mm, addr);
213	pud = pud_alloc(mm, pgd, addr);
214	if (pud) {
215		pmd = pmd_alloc(mm, pud, addr);
216		if (pmd)
217			pte = pte_alloc_map(mm, pmd, addr);
218	}
219	return pte;
220}
221
222pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
223{
224	pgd_t *pgd;
225	pud_t *pud;
226	pmd_t *pmd;
227	pte_t *pte = NULL;
228
229	addr &= HPAGE_MASK;
230
231	pgd = pgd_offset(mm, addr);
232	if (!pgd_none(*pgd)) {
233		pud = pud_offset(pgd, addr);
234		if (!pud_none(*pud)) {
235			pmd = pmd_offset(pud, addr);
236			if (!pmd_none(*pmd))
237				pte = pte_offset_map(pmd, addr);
238		}
239	}
240	return pte;
241}
242
243int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
244{
245	return 0;
246}
247
248void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
249		     pte_t *ptep, pte_t entry)
250{
251	int i;
252
253	if (!pte_present(*ptep) && pte_present(entry))
254		mm->context.huge_pte_count++;
255
256	addr &= HPAGE_MASK;
257	for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
258		set_pte_at(mm, addr, ptep, entry);
259		ptep++;
260		addr += PAGE_SIZE;
261		pte_val(entry) += PAGE_SIZE;
262	}
263}
264
265pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
266			      pte_t *ptep)
267{
268	pte_t entry;
269	int i;
270
271	entry = *ptep;
272	if (pte_present(entry))
273		mm->context.huge_pte_count--;
274
275	addr &= HPAGE_MASK;
276
277	for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
278		pte_clear(mm, addr, ptep);
279		addr += PAGE_SIZE;
280		ptep++;
281	}
282
283	return entry;
284}
285
286struct page *follow_huge_addr(struct mm_struct *mm,
287			      unsigned long address, int write)
288{
289	return ERR_PTR(-EINVAL);
290}
291
292int pmd_huge(pmd_t pmd)
293{
294	return 0;
295}
296
297int pud_huge(pud_t pud)
298{
299	return 0;
300}
301
302struct page *follow_huge_pmd(struct mm_struct *mm, unsigned long address,
303			     pmd_t *pmd, int write)
304{
305	return NULL;
306}
307
308static void context_reload(void *__data)
309{
310	struct mm_struct *mm = __data;
311
312	if (mm == current->mm)
313		load_secondary_context(mm);
314}
315
316void hugetlb_prefault_arch_hook(struct mm_struct *mm)
317{
318	struct tsb_config *tp = &mm->context.tsb_block[MM_TSB_HUGE];
319
320	if (likely(tp->tsb != NULL))
321		return;
322
323	tsb_grow(mm, MM_TSB_HUGE, 0);
324	tsb_context_switch(mm);
325	smp_tsb_sync(mm);
326
327	/* On UltraSPARC-III+ and later, configure the second half of
328	 * the Data-TLB for huge pages.
329	 */
330	if (tlb_type == cheetah_plus) {
331		unsigned long ctx;
332
333		spin_lock(&ctx_alloc_lock);
334		ctx = mm->context.sparc64_ctx_val;
335		ctx &= ~CTX_PGSZ_MASK;
336		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
337		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
338
339		if (ctx != mm->context.sparc64_ctx_val) {
340			/* When changing the page size fields, we
341			 * must perform a context flush so that no
342			 * stale entries match.  This flush must
343			 * occur with the original context register
344			 * settings.
345			 */
346			do_flush_tlb_mm(mm);
347
348			/* Reload the context register of all processors
349			 * also executing in this address space.
350			 */
351			mm->context.sparc64_ctx_val = ctx;
352			on_each_cpu(context_reload, mm, 0);
353		}
354		spin_unlock(&ctx_alloc_lock);
355	}
356}
357