• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/arch/s390/mm/
1/*
2 *  arch/s390/mm/vmem.c
3 *
4 *    Copyright IBM Corp. 2006
5 *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
6 */
7
8#include <linux/bootmem.h>
9#include <linux/pfn.h>
10#include <linux/mm.h>
11#include <linux/module.h>
12#include <linux/list.h>
13#include <linux/hugetlb.h>
14#include <linux/slab.h>
15#include <asm/pgalloc.h>
16#include <asm/pgtable.h>
17#include <asm/setup.h>
18#include <asm/tlbflush.h>
19#include <asm/sections.h>
20
21static DEFINE_MUTEX(vmem_mutex);
22
23struct memory_segment {
24	struct list_head list;
25	unsigned long start;
26	unsigned long size;
27};
28
29static LIST_HEAD(mem_segs);
30
31static void __ref *vmem_alloc_pages(unsigned int order)
32{
33	if (slab_is_available())
34		return (void *)__get_free_pages(GFP_KERNEL, order);
35	return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
36}
37
38static inline pud_t *vmem_pud_alloc(void)
39{
40	pud_t *pud = NULL;
41
42#ifdef CONFIG_64BIT
43	pud = vmem_alloc_pages(2);
44	if (!pud)
45		return NULL;
46	clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
47#endif
48	return pud;
49}
50
51static inline pmd_t *vmem_pmd_alloc(void)
52{
53	pmd_t *pmd = NULL;
54
55#ifdef CONFIG_64BIT
56	pmd = vmem_alloc_pages(2);
57	if (!pmd)
58		return NULL;
59	clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
60#endif
61	return pmd;
62}
63
64static pte_t __ref *vmem_pte_alloc(void)
65{
66	pte_t *pte;
67
68	if (slab_is_available())
69		pte = (pte_t *) page_table_alloc(&init_mm);
70	else
71		pte = alloc_bootmem(PTRS_PER_PTE * sizeof(pte_t));
72	if (!pte)
73		return NULL;
74	clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY,
75		    PTRS_PER_PTE * sizeof(pte_t));
76	return pte;
77}
78
79/*
80 * Add a physical memory range to the 1:1 mapping.
81 */
82static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
83{
84	unsigned long address;
85	pgd_t *pg_dir;
86	pud_t *pu_dir;
87	pmd_t *pm_dir;
88	pte_t *pt_dir;
89	pte_t  pte;
90	int ret = -ENOMEM;
91
92	for (address = start; address < start + size; address += PAGE_SIZE) {
93		pg_dir = pgd_offset_k(address);
94		if (pgd_none(*pg_dir)) {
95			pu_dir = vmem_pud_alloc();
96			if (!pu_dir)
97				goto out;
98			pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
99		}
100
101		pu_dir = pud_offset(pg_dir, address);
102		if (pud_none(*pu_dir)) {
103			pm_dir = vmem_pmd_alloc();
104			if (!pm_dir)
105				goto out;
106			pud_populate_kernel(&init_mm, pu_dir, pm_dir);
107		}
108
109		pte = mk_pte_phys(address, __pgprot(ro ? _PAGE_RO : 0));
110		pm_dir = pmd_offset(pu_dir, address);
111
112#ifdef __s390x__
113		if (MACHINE_HAS_HPAGE && !(address & ~HPAGE_MASK) &&
114		    (address + HPAGE_SIZE <= start + size) &&
115		    (address >= HPAGE_SIZE)) {
116			pte_val(pte) |= _SEGMENT_ENTRY_LARGE;
117			pmd_val(*pm_dir) = pte_val(pte);
118			address += HPAGE_SIZE - PAGE_SIZE;
119			continue;
120		}
121#endif
122		if (pmd_none(*pm_dir)) {
123			pt_dir = vmem_pte_alloc();
124			if (!pt_dir)
125				goto out;
126			pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
127		}
128
129		pt_dir = pte_offset_kernel(pm_dir, address);
130		*pt_dir = pte;
131	}
132	ret = 0;
133out:
134	flush_tlb_kernel_range(start, start + size);
135	return ret;
136}
137
138/*
139 * Remove a physical memory range from the 1:1 mapping.
140 * Currently only invalidates page table entries.
141 */
142static void vmem_remove_range(unsigned long start, unsigned long size)
143{
144	unsigned long address;
145	pgd_t *pg_dir;
146	pud_t *pu_dir;
147	pmd_t *pm_dir;
148	pte_t *pt_dir;
149	pte_t  pte;
150
151	pte_val(pte) = _PAGE_TYPE_EMPTY;
152	for (address = start; address < start + size; address += PAGE_SIZE) {
153		pg_dir = pgd_offset_k(address);
154		pu_dir = pud_offset(pg_dir, address);
155		if (pud_none(*pu_dir))
156			continue;
157		pm_dir = pmd_offset(pu_dir, address);
158		if (pmd_none(*pm_dir))
159			continue;
160
161		if (pmd_huge(*pm_dir)) {
162			pmd_clear_kernel(pm_dir);
163			address += HPAGE_SIZE - PAGE_SIZE;
164			continue;
165		}
166
167		pt_dir = pte_offset_kernel(pm_dir, address);
168		*pt_dir = pte;
169	}
170	flush_tlb_kernel_range(start, start + size);
171}
172
173/*
174 * Add a backed mem_map array to the virtual mem_map array.
175 */
176int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
177{
178	unsigned long address, start_addr, end_addr;
179	pgd_t *pg_dir;
180	pud_t *pu_dir;
181	pmd_t *pm_dir;
182	pte_t *pt_dir;
183	pte_t  pte;
184	int ret = -ENOMEM;
185
186	start_addr = (unsigned long) start;
187	end_addr = (unsigned long) (start + nr);
188
189	for (address = start_addr; address < end_addr; address += PAGE_SIZE) {
190		pg_dir = pgd_offset_k(address);
191		if (pgd_none(*pg_dir)) {
192			pu_dir = vmem_pud_alloc();
193			if (!pu_dir)
194				goto out;
195			pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
196		}
197
198		pu_dir = pud_offset(pg_dir, address);
199		if (pud_none(*pu_dir)) {
200			pm_dir = vmem_pmd_alloc();
201			if (!pm_dir)
202				goto out;
203			pud_populate_kernel(&init_mm, pu_dir, pm_dir);
204		}
205
206		pm_dir = pmd_offset(pu_dir, address);
207		if (pmd_none(*pm_dir)) {
208			pt_dir = vmem_pte_alloc();
209			if (!pt_dir)
210				goto out;
211			pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
212		}
213
214		pt_dir = pte_offset_kernel(pm_dir, address);
215		if (pte_none(*pt_dir)) {
216			unsigned long new_page;
217
218			new_page =__pa(vmem_alloc_pages(0));
219			if (!new_page)
220				goto out;
221			pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
222			*pt_dir = pte;
223		}
224	}
225	memset(start, 0, nr * sizeof(struct page));
226	ret = 0;
227out:
228	flush_tlb_kernel_range(start_addr, end_addr);
229	return ret;
230}
231
232/*
233 * Add memory segment to the segment list if it doesn't overlap with
234 * an already present segment.
235 */
236static int insert_memory_segment(struct memory_segment *seg)
237{
238	struct memory_segment *tmp;
239
240	if (seg->start + seg->size > VMEM_MAX_PHYS ||
241	    seg->start + seg->size < seg->start)
242		return -ERANGE;
243
244	list_for_each_entry(tmp, &mem_segs, list) {
245		if (seg->start >= tmp->start + tmp->size)
246			continue;
247		if (seg->start + seg->size <= tmp->start)
248			continue;
249		return -ENOSPC;
250	}
251	list_add(&seg->list, &mem_segs);
252	return 0;
253}
254
255/*
256 * Remove memory segment from the segment list.
257 */
258static void remove_memory_segment(struct memory_segment *seg)
259{
260	list_del(&seg->list);
261}
262
263static void __remove_shared_memory(struct memory_segment *seg)
264{
265	remove_memory_segment(seg);
266	vmem_remove_range(seg->start, seg->size);
267}
268
269int vmem_remove_mapping(unsigned long start, unsigned long size)
270{
271	struct memory_segment *seg;
272	int ret;
273
274	mutex_lock(&vmem_mutex);
275
276	ret = -ENOENT;
277	list_for_each_entry(seg, &mem_segs, list) {
278		if (seg->start == start && seg->size == size)
279			break;
280	}
281
282	if (seg->start != start || seg->size != size)
283		goto out;
284
285	ret = 0;
286	__remove_shared_memory(seg);
287	kfree(seg);
288out:
289	mutex_unlock(&vmem_mutex);
290	return ret;
291}
292
293int vmem_add_mapping(unsigned long start, unsigned long size)
294{
295	struct memory_segment *seg;
296	int ret;
297
298	mutex_lock(&vmem_mutex);
299	ret = -ENOMEM;
300	seg = kzalloc(sizeof(*seg), GFP_KERNEL);
301	if (!seg)
302		goto out;
303	seg->start = start;
304	seg->size = size;
305
306	ret = insert_memory_segment(seg);
307	if (ret)
308		goto out_free;
309
310	ret = vmem_add_mem(start, size, 0);
311	if (ret)
312		goto out_remove;
313	goto out;
314
315out_remove:
316	__remove_shared_memory(seg);
317out_free:
318	kfree(seg);
319out:
320	mutex_unlock(&vmem_mutex);
321	return ret;
322}
323
324/*
325 * map whole physical memory to virtual memory (identity mapping)
326 * we reserve enough space in the vmalloc area for vmemmap to hotplug
327 * additional memory segments.
328 */
329void __init vmem_map_init(void)
330{
331	unsigned long ro_start, ro_end;
332	unsigned long start, end;
333	int i;
334
335	ro_start = ((unsigned long)&_stext) & PAGE_MASK;
336	ro_end = PFN_ALIGN((unsigned long)&_eshared);
337	for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
338		start = memory_chunk[i].addr;
339		end = memory_chunk[i].addr + memory_chunk[i].size;
340		if (start >= ro_end || end <= ro_start)
341			vmem_add_mem(start, end - start, 0);
342		else if (start >= ro_start && end <= ro_end)
343			vmem_add_mem(start, end - start, 1);
344		else if (start >= ro_start) {
345			vmem_add_mem(start, ro_end - start, 1);
346			vmem_add_mem(ro_end, end - ro_end, 0);
347		} else if (end < ro_end) {
348			vmem_add_mem(start, ro_start - start, 0);
349			vmem_add_mem(ro_start, end - ro_start, 1);
350		} else {
351			vmem_add_mem(start, ro_start - start, 0);
352			vmem_add_mem(ro_start, ro_end - ro_start, 1);
353			vmem_add_mem(ro_end, end - ro_end, 0);
354		}
355	}
356}
357
358/*
359 * Convert memory chunk array to a memory segment list so there is a single
360 * list that contains both r/w memory and shared memory segments.
361 */
362static int __init vmem_convert_memory_chunk(void)
363{
364	struct memory_segment *seg;
365	int i;
366
367	mutex_lock(&vmem_mutex);
368	for (i = 0; i < MEMORY_CHUNKS; i++) {
369		if (!memory_chunk[i].size)
370			continue;
371		seg = kzalloc(sizeof(*seg), GFP_KERNEL);
372		if (!seg)
373			panic("Out of memory...\n");
374		seg->start = memory_chunk[i].addr;
375		seg->size = memory_chunk[i].size;
376		insert_memory_segment(seg);
377	}
378	mutex_unlock(&vmem_mutex);
379	return 0;
380}
381
382core_initcall(vmem_convert_memory_chunk);
383