• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/arch/powerpc/sysdev/
1/*
2 * General Purpose functions for the global management of the
3 * Communication Processor Module.
4 * Copyright (c) 1997 Dan error_act (dmalek@jlc.net)
5 *
6 * In addition to the individual control of the communication
7 * channels, there are a few functions that globally affect the
8 * communication processor.
9 *
10 * Buffer descriptors must be allocated from the dual ported memory
11 * space.  The allocator for that is here.  When the communication
12 * process is reset, we reclaim the memory available.  There is
13 * currently no deallocator for this memory.
14 * The amount of space available is platform dependent.  On the
15 * MBX, the EPPC software loads additional microcode into the
16 * communication processor, and uses some of the DP ram for this
17 * purpose.  Current, the first 512 bytes and the last 256 bytes of
18 * memory are used.  Right now I am conservative and only use the
19 * memory that can never be used for microcode.  If there are
20 * applications that require more DP ram, we can expand the boundaries
21 * but then we have to be careful of any downloaded microcode.
22 */
23#include <linux/errno.h>
24#include <linux/sched.h>
25#include <linux/kernel.h>
26#include <linux/dma-mapping.h>
27#include <linux/param.h>
28#include <linux/string.h>
29#include <linux/mm.h>
30#include <linux/interrupt.h>
31#include <linux/irq.h>
32#include <linux/module.h>
33#include <linux/spinlock.h>
34#include <linux/slab.h>
35#include <asm/page.h>
36#include <asm/pgtable.h>
37#include <asm/8xx_immap.h>
38#include <asm/cpm1.h>
39#include <asm/io.h>
40#include <asm/tlbflush.h>
41#include <asm/rheap.h>
42#include <asm/prom.h>
43#include <asm/cpm.h>
44
45#include <asm/fs_pd.h>
46
47#ifdef CONFIG_8xx_GPIO
48#include <linux/of_gpio.h>
49#endif
50
51#define CPM_MAP_SIZE    (0x4000)
52
53cpm8xx_t __iomem *cpmp;  /* Pointer to comm processor space */
54immap_t __iomem *mpc8xx_immr;
55static cpic8xx_t __iomem *cpic_reg;
56
57static struct irq_host *cpm_pic_host;
58
59static void cpm_mask_irq(unsigned int irq)
60{
61	unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq;
62
63	clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
64}
65
66static void cpm_unmask_irq(unsigned int irq)
67{
68	unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq;
69
70	setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
71}
72
73static void cpm_end_irq(unsigned int irq)
74{
75	unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq;
76
77	out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec));
78}
79
80static struct irq_chip cpm_pic = {
81	.name = "CPM PIC",
82	.mask = cpm_mask_irq,
83	.unmask = cpm_unmask_irq,
84	.eoi = cpm_end_irq,
85};
86
87int cpm_get_irq(void)
88{
89	int cpm_vec;
90
91	/* Get the vector by setting the ACK bit and then reading
92	 * the register.
93	 */
94	out_be16(&cpic_reg->cpic_civr, 1);
95	cpm_vec = in_be16(&cpic_reg->cpic_civr);
96	cpm_vec >>= 11;
97
98	return irq_linear_revmap(cpm_pic_host, cpm_vec);
99}
100
101static int cpm_pic_host_map(struct irq_host *h, unsigned int virq,
102			  irq_hw_number_t hw)
103{
104	pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw);
105
106	irq_to_desc(virq)->status |= IRQ_LEVEL;
107	set_irq_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq);
108	return 0;
109}
110
111/* The CPM can generate the error interrupt when there is a race condition
112 * between generating and masking interrupts.  All we have to do is ACK it
113 * and return.  This is a no-op function so we don't need any special
114 * tests in the interrupt handler.
115 */
116static irqreturn_t cpm_error_interrupt(int irq, void *dev)
117{
118	return IRQ_HANDLED;
119}
120
121static struct irqaction cpm_error_irqaction = {
122	.handler = cpm_error_interrupt,
123	.name = "error",
124};
125
126static struct irq_host_ops cpm_pic_host_ops = {
127	.map = cpm_pic_host_map,
128};
129
130unsigned int cpm_pic_init(void)
131{
132	struct device_node *np = NULL;
133	struct resource res;
134	unsigned int sirq = NO_IRQ, hwirq, eirq;
135	int ret;
136
137	pr_debug("cpm_pic_init\n");
138
139	np = of_find_compatible_node(NULL, NULL, "fsl,cpm1-pic");
140	if (np == NULL)
141		np = of_find_compatible_node(NULL, "cpm-pic", "CPM");
142	if (np == NULL) {
143		printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n");
144		return sirq;
145	}
146
147	ret = of_address_to_resource(np, 0, &res);
148	if (ret)
149		goto end;
150
151	cpic_reg = ioremap(res.start, res.end - res.start + 1);
152	if (cpic_reg == NULL)
153		goto end;
154
155	sirq = irq_of_parse_and_map(np, 0);
156	if (sirq == NO_IRQ)
157		goto end;
158
159	/* Initialize the CPM interrupt controller. */
160	hwirq = (unsigned int)irq_map[sirq].hwirq;
161	out_be32(&cpic_reg->cpic_cicr,
162	    (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
163		((hwirq/2) << 13) | CICR_HP_MASK);
164
165	out_be32(&cpic_reg->cpic_cimr, 0);
166
167	cpm_pic_host = irq_alloc_host(np, IRQ_HOST_MAP_LINEAR,
168				      64, &cpm_pic_host_ops, 64);
169	if (cpm_pic_host == NULL) {
170		printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n");
171		sirq = NO_IRQ;
172		goto end;
173	}
174
175	/* Install our own error handler. */
176	np = of_find_compatible_node(NULL, NULL, "fsl,cpm1");
177	if (np == NULL)
178		np = of_find_node_by_type(NULL, "cpm");
179	if (np == NULL) {
180		printk(KERN_ERR "CPM PIC init: can not find cpm node\n");
181		goto end;
182	}
183
184	eirq = irq_of_parse_and_map(np, 0);
185	if (eirq == NO_IRQ)
186		goto end;
187
188	if (setup_irq(eirq, &cpm_error_irqaction))
189		printk(KERN_ERR "Could not allocate CPM error IRQ!");
190
191	setbits32(&cpic_reg->cpic_cicr, CICR_IEN);
192
193end:
194	of_node_put(np);
195	return sirq;
196}
197
198void __init cpm_reset(void)
199{
200	sysconf8xx_t __iomem *siu_conf;
201
202	mpc8xx_immr = ioremap(get_immrbase(), 0x4000);
203	if (!mpc8xx_immr) {
204		printk(KERN_CRIT "Could not map IMMR\n");
205		return;
206	}
207
208	cpmp = &mpc8xx_immr->im_cpm;
209
210#ifndef CONFIG_PPC_EARLY_DEBUG_CPM
211	/* Perform a reset.
212	*/
213	out_be16(&cpmp->cp_cpcr, CPM_CR_RST | CPM_CR_FLG);
214
215	/* Wait for it.
216	*/
217	while (in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG);
218#endif
219
220#ifdef CONFIG_UCODE_PATCH
221	cpm_load_patch(cpmp);
222#endif
223
224	/* Set SDMA Bus Request priority 5.
225	 * On 860T, this also enables FEC priority 6.  I am not sure
226	 * this is what we realy want for some applications, but the
227	 * manual recommends it.
228	 * Bit 25, FAM can also be set to use FEC aggressive mode (860T).
229	 */
230	siu_conf = immr_map(im_siu_conf);
231	out_be32(&siu_conf->sc_sdcr, 1);
232	immr_unmap(siu_conf);
233
234	cpm_muram_init();
235}
236
237static DEFINE_SPINLOCK(cmd_lock);
238
239#define MAX_CR_CMD_LOOPS        10000
240
241int cpm_command(u32 command, u8 opcode)
242{
243	int i, ret;
244	unsigned long flags;
245
246	if (command & 0xffffff0f)
247		return -EINVAL;
248
249	spin_lock_irqsave(&cmd_lock, flags);
250
251	ret = 0;
252	out_be16(&cpmp->cp_cpcr, command | CPM_CR_FLG | (opcode << 8));
253	for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
254		if ((in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
255			goto out;
256
257	printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__);
258	ret = -EIO;
259out:
260	spin_unlock_irqrestore(&cmd_lock, flags);
261	return ret;
262}
263EXPORT_SYMBOL(cpm_command);
264
265/* Set a baud rate generator.  This needs lots of work.  There are
266 * four BRGs, any of which can be wired to any channel.
267 * The internal baud rate clock is the system clock divided by 16.
268 * This assumes the baudrate is 16x oversampled by the uart.
269 */
270#define BRG_INT_CLK		(get_brgfreq())
271#define BRG_UART_CLK		(BRG_INT_CLK/16)
272#define BRG_UART_CLK_DIV16	(BRG_UART_CLK/16)
273
274void
275cpm_setbrg(uint brg, uint rate)
276{
277	u32 __iomem *bp;
278
279	/* This is good enough to get SMCs running.....
280	*/
281	bp = &cpmp->cp_brgc1;
282	bp += brg;
283	/* The BRG has a 12-bit counter.  For really slow baud rates (or
284	 * really fast processors), we may have to further divide by 16.
285	 */
286	if (((BRG_UART_CLK / rate) - 1) < 4096)
287		out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN);
288	else
289		out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
290			      CPM_BRG_EN | CPM_BRG_DIV16);
291}
292
293struct cpm_ioport16 {
294	__be16 dir, par, odr_sor, dat, intr;
295	__be16 res[3];
296};
297
298struct cpm_ioport32b {
299	__be32 dir, par, odr, dat;
300};
301
302struct cpm_ioport32e {
303	__be32 dir, par, sor, odr, dat;
304};
305
306static void cpm1_set_pin32(int port, int pin, int flags)
307{
308	struct cpm_ioport32e __iomem *iop;
309	pin = 1 << (31 - pin);
310
311	if (port == CPM_PORTB)
312		iop = (struct cpm_ioport32e __iomem *)
313		      &mpc8xx_immr->im_cpm.cp_pbdir;
314	else
315		iop = (struct cpm_ioport32e __iomem *)
316		      &mpc8xx_immr->im_cpm.cp_pedir;
317
318	if (flags & CPM_PIN_OUTPUT)
319		setbits32(&iop->dir, pin);
320	else
321		clrbits32(&iop->dir, pin);
322
323	if (!(flags & CPM_PIN_GPIO))
324		setbits32(&iop->par, pin);
325	else
326		clrbits32(&iop->par, pin);
327
328	if (port == CPM_PORTB) {
329		if (flags & CPM_PIN_OPENDRAIN)
330			setbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
331		else
332			clrbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
333	}
334
335	if (port == CPM_PORTE) {
336		if (flags & CPM_PIN_SECONDARY)
337			setbits32(&iop->sor, pin);
338		else
339			clrbits32(&iop->sor, pin);
340
341		if (flags & CPM_PIN_OPENDRAIN)
342			setbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
343		else
344			clrbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
345	}
346}
347
348static void cpm1_set_pin16(int port, int pin, int flags)
349{
350	struct cpm_ioport16 __iomem *iop =
351		(struct cpm_ioport16 __iomem *)&mpc8xx_immr->im_ioport;
352
353	pin = 1 << (15 - pin);
354
355	if (port != 0)
356		iop += port - 1;
357
358	if (flags & CPM_PIN_OUTPUT)
359		setbits16(&iop->dir, pin);
360	else
361		clrbits16(&iop->dir, pin);
362
363	if (!(flags & CPM_PIN_GPIO))
364		setbits16(&iop->par, pin);
365	else
366		clrbits16(&iop->par, pin);
367
368	if (port == CPM_PORTA) {
369		if (flags & CPM_PIN_OPENDRAIN)
370			setbits16(&iop->odr_sor, pin);
371		else
372			clrbits16(&iop->odr_sor, pin);
373	}
374	if (port == CPM_PORTC) {
375		if (flags & CPM_PIN_SECONDARY)
376			setbits16(&iop->odr_sor, pin);
377		else
378			clrbits16(&iop->odr_sor, pin);
379	}
380}
381
382void cpm1_set_pin(enum cpm_port port, int pin, int flags)
383{
384	if (port == CPM_PORTB || port == CPM_PORTE)
385		cpm1_set_pin32(port, pin, flags);
386	else
387		cpm1_set_pin16(port, pin, flags);
388}
389
390int cpm1_clk_setup(enum cpm_clk_target target, int clock, int mode)
391{
392	int shift;
393	int i, bits = 0;
394	u32 __iomem *reg;
395	u32 mask = 7;
396
397	u8 clk_map[][3] = {
398		{CPM_CLK_SCC1, CPM_BRG1, 0},
399		{CPM_CLK_SCC1, CPM_BRG2, 1},
400		{CPM_CLK_SCC1, CPM_BRG3, 2},
401		{CPM_CLK_SCC1, CPM_BRG4, 3},
402		{CPM_CLK_SCC1, CPM_CLK1, 4},
403		{CPM_CLK_SCC1, CPM_CLK2, 5},
404		{CPM_CLK_SCC1, CPM_CLK3, 6},
405		{CPM_CLK_SCC1, CPM_CLK4, 7},
406
407		{CPM_CLK_SCC2, CPM_BRG1, 0},
408		{CPM_CLK_SCC2, CPM_BRG2, 1},
409		{CPM_CLK_SCC2, CPM_BRG3, 2},
410		{CPM_CLK_SCC2, CPM_BRG4, 3},
411		{CPM_CLK_SCC2, CPM_CLK1, 4},
412		{CPM_CLK_SCC2, CPM_CLK2, 5},
413		{CPM_CLK_SCC2, CPM_CLK3, 6},
414		{CPM_CLK_SCC2, CPM_CLK4, 7},
415
416		{CPM_CLK_SCC3, CPM_BRG1, 0},
417		{CPM_CLK_SCC3, CPM_BRG2, 1},
418		{CPM_CLK_SCC3, CPM_BRG3, 2},
419		{CPM_CLK_SCC3, CPM_BRG4, 3},
420		{CPM_CLK_SCC3, CPM_CLK5, 4},
421		{CPM_CLK_SCC3, CPM_CLK6, 5},
422		{CPM_CLK_SCC3, CPM_CLK7, 6},
423		{CPM_CLK_SCC3, CPM_CLK8, 7},
424
425		{CPM_CLK_SCC4, CPM_BRG1, 0},
426		{CPM_CLK_SCC4, CPM_BRG2, 1},
427		{CPM_CLK_SCC4, CPM_BRG3, 2},
428		{CPM_CLK_SCC4, CPM_BRG4, 3},
429		{CPM_CLK_SCC4, CPM_CLK5, 4},
430		{CPM_CLK_SCC4, CPM_CLK6, 5},
431		{CPM_CLK_SCC4, CPM_CLK7, 6},
432		{CPM_CLK_SCC4, CPM_CLK8, 7},
433
434		{CPM_CLK_SMC1, CPM_BRG1, 0},
435		{CPM_CLK_SMC1, CPM_BRG2, 1},
436		{CPM_CLK_SMC1, CPM_BRG3, 2},
437		{CPM_CLK_SMC1, CPM_BRG4, 3},
438		{CPM_CLK_SMC1, CPM_CLK1, 4},
439		{CPM_CLK_SMC1, CPM_CLK2, 5},
440		{CPM_CLK_SMC1, CPM_CLK3, 6},
441		{CPM_CLK_SMC1, CPM_CLK4, 7},
442
443		{CPM_CLK_SMC2, CPM_BRG1, 0},
444		{CPM_CLK_SMC2, CPM_BRG2, 1},
445		{CPM_CLK_SMC2, CPM_BRG3, 2},
446		{CPM_CLK_SMC2, CPM_BRG4, 3},
447		{CPM_CLK_SMC2, CPM_CLK5, 4},
448		{CPM_CLK_SMC2, CPM_CLK6, 5},
449		{CPM_CLK_SMC2, CPM_CLK7, 6},
450		{CPM_CLK_SMC2, CPM_CLK8, 7},
451	};
452
453	switch (target) {
454	case CPM_CLK_SCC1:
455		reg = &mpc8xx_immr->im_cpm.cp_sicr;
456		shift = 0;
457		break;
458
459	case CPM_CLK_SCC2:
460		reg = &mpc8xx_immr->im_cpm.cp_sicr;
461		shift = 8;
462		break;
463
464	case CPM_CLK_SCC3:
465		reg = &mpc8xx_immr->im_cpm.cp_sicr;
466		shift = 16;
467		break;
468
469	case CPM_CLK_SCC4:
470		reg = &mpc8xx_immr->im_cpm.cp_sicr;
471		shift = 24;
472		break;
473
474	case CPM_CLK_SMC1:
475		reg = &mpc8xx_immr->im_cpm.cp_simode;
476		shift = 12;
477		break;
478
479	case CPM_CLK_SMC2:
480		reg = &mpc8xx_immr->im_cpm.cp_simode;
481		shift = 28;
482		break;
483
484	default:
485		printk(KERN_ERR "cpm1_clock_setup: invalid clock target\n");
486		return -EINVAL;
487	}
488
489	for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
490		if (clk_map[i][0] == target && clk_map[i][1] == clock) {
491			bits = clk_map[i][2];
492			break;
493		}
494	}
495
496	if (i == ARRAY_SIZE(clk_map)) {
497		printk(KERN_ERR "cpm1_clock_setup: invalid clock combination\n");
498		return -EINVAL;
499	}
500
501	bits <<= shift;
502	mask <<= shift;
503
504	if (reg == &mpc8xx_immr->im_cpm.cp_sicr) {
505		if (mode == CPM_CLK_RTX) {
506			bits |= bits << 3;
507			mask |= mask << 3;
508		} else if (mode == CPM_CLK_RX) {
509			bits <<= 3;
510			mask <<= 3;
511		}
512	}
513
514	out_be32(reg, (in_be32(reg) & ~mask) | bits);
515
516	return 0;
517}
518
519/*
520 * GPIO LIB API implementation
521 */
522#ifdef CONFIG_8xx_GPIO
523
524struct cpm1_gpio16_chip {
525	struct of_mm_gpio_chip mm_gc;
526	spinlock_t lock;
527
528	/* shadowed data register to clear/set bits safely */
529	u16 cpdata;
530};
531
532static inline struct cpm1_gpio16_chip *
533to_cpm1_gpio16_chip(struct of_mm_gpio_chip *mm_gc)
534{
535	return container_of(mm_gc, struct cpm1_gpio16_chip, mm_gc);
536}
537
538static void cpm1_gpio16_save_regs(struct of_mm_gpio_chip *mm_gc)
539{
540	struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
541	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
542
543	cpm1_gc->cpdata = in_be16(&iop->dat);
544}
545
546static int cpm1_gpio16_get(struct gpio_chip *gc, unsigned int gpio)
547{
548	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
549	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
550	u16 pin_mask;
551
552	pin_mask = 1 << (15 - gpio);
553
554	return !!(in_be16(&iop->dat) & pin_mask);
555}
556
557static void __cpm1_gpio16_set(struct of_mm_gpio_chip *mm_gc, u16 pin_mask,
558	int value)
559{
560	struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
561	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
562
563	if (value)
564		cpm1_gc->cpdata |= pin_mask;
565	else
566		cpm1_gc->cpdata &= ~pin_mask;
567
568	out_be16(&iop->dat, cpm1_gc->cpdata);
569}
570
571static void cpm1_gpio16_set(struct gpio_chip *gc, unsigned int gpio, int value)
572{
573	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
574	struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
575	unsigned long flags;
576	u16 pin_mask = 1 << (15 - gpio);
577
578	spin_lock_irqsave(&cpm1_gc->lock, flags);
579
580	__cpm1_gpio16_set(mm_gc, pin_mask, value);
581
582	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
583}
584
585static int cpm1_gpio16_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
586{
587	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
588	struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
589	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
590	unsigned long flags;
591	u16 pin_mask = 1 << (15 - gpio);
592
593	spin_lock_irqsave(&cpm1_gc->lock, flags);
594
595	setbits16(&iop->dir, pin_mask);
596	__cpm1_gpio16_set(mm_gc, pin_mask, val);
597
598	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
599
600	return 0;
601}
602
603static int cpm1_gpio16_dir_in(struct gpio_chip *gc, unsigned int gpio)
604{
605	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
606	struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
607	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
608	unsigned long flags;
609	u16 pin_mask = 1 << (15 - gpio);
610
611	spin_lock_irqsave(&cpm1_gc->lock, flags);
612
613	clrbits16(&iop->dir, pin_mask);
614
615	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
616
617	return 0;
618}
619
620int cpm1_gpiochip_add16(struct device_node *np)
621{
622	struct cpm1_gpio16_chip *cpm1_gc;
623	struct of_mm_gpio_chip *mm_gc;
624	struct gpio_chip *gc;
625
626	cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
627	if (!cpm1_gc)
628		return -ENOMEM;
629
630	spin_lock_init(&cpm1_gc->lock);
631
632	mm_gc = &cpm1_gc->mm_gc;
633	gc = &mm_gc->gc;
634
635	mm_gc->save_regs = cpm1_gpio16_save_regs;
636	gc->ngpio = 16;
637	gc->direction_input = cpm1_gpio16_dir_in;
638	gc->direction_output = cpm1_gpio16_dir_out;
639	gc->get = cpm1_gpio16_get;
640	gc->set = cpm1_gpio16_set;
641
642	return of_mm_gpiochip_add(np, mm_gc);
643}
644
645struct cpm1_gpio32_chip {
646	struct of_mm_gpio_chip mm_gc;
647	spinlock_t lock;
648
649	/* shadowed data register to clear/set bits safely */
650	u32 cpdata;
651};
652
653static inline struct cpm1_gpio32_chip *
654to_cpm1_gpio32_chip(struct of_mm_gpio_chip *mm_gc)
655{
656	return container_of(mm_gc, struct cpm1_gpio32_chip, mm_gc);
657}
658
659static void cpm1_gpio32_save_regs(struct of_mm_gpio_chip *mm_gc)
660{
661	struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
662	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
663
664	cpm1_gc->cpdata = in_be32(&iop->dat);
665}
666
667static int cpm1_gpio32_get(struct gpio_chip *gc, unsigned int gpio)
668{
669	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
670	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
671	u32 pin_mask;
672
673	pin_mask = 1 << (31 - gpio);
674
675	return !!(in_be32(&iop->dat) & pin_mask);
676}
677
678static void __cpm1_gpio32_set(struct of_mm_gpio_chip *mm_gc, u32 pin_mask,
679	int value)
680{
681	struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
682	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
683
684	if (value)
685		cpm1_gc->cpdata |= pin_mask;
686	else
687		cpm1_gc->cpdata &= ~pin_mask;
688
689	out_be32(&iop->dat, cpm1_gc->cpdata);
690}
691
692static void cpm1_gpio32_set(struct gpio_chip *gc, unsigned int gpio, int value)
693{
694	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
695	struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
696	unsigned long flags;
697	u32 pin_mask = 1 << (31 - gpio);
698
699	spin_lock_irqsave(&cpm1_gc->lock, flags);
700
701	__cpm1_gpio32_set(mm_gc, pin_mask, value);
702
703	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
704}
705
706static int cpm1_gpio32_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
707{
708	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
709	struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
710	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
711	unsigned long flags;
712	u32 pin_mask = 1 << (31 - gpio);
713
714	spin_lock_irqsave(&cpm1_gc->lock, flags);
715
716	setbits32(&iop->dir, pin_mask);
717	__cpm1_gpio32_set(mm_gc, pin_mask, val);
718
719	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
720
721	return 0;
722}
723
724static int cpm1_gpio32_dir_in(struct gpio_chip *gc, unsigned int gpio)
725{
726	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
727	struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
728	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
729	unsigned long flags;
730	u32 pin_mask = 1 << (31 - gpio);
731
732	spin_lock_irqsave(&cpm1_gc->lock, flags);
733
734	clrbits32(&iop->dir, pin_mask);
735
736	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
737
738	return 0;
739}
740
741int cpm1_gpiochip_add32(struct device_node *np)
742{
743	struct cpm1_gpio32_chip *cpm1_gc;
744	struct of_mm_gpio_chip *mm_gc;
745	struct gpio_chip *gc;
746
747	cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
748	if (!cpm1_gc)
749		return -ENOMEM;
750
751	spin_lock_init(&cpm1_gc->lock);
752
753	mm_gc = &cpm1_gc->mm_gc;
754	gc = &mm_gc->gc;
755
756	mm_gc->save_regs = cpm1_gpio32_save_regs;
757	gc->ngpio = 32;
758	gc->direction_input = cpm1_gpio32_dir_in;
759	gc->direction_output = cpm1_gpio32_dir_out;
760	gc->get = cpm1_gpio32_get;
761	gc->set = cpm1_gpio32_set;
762
763	return of_mm_gpiochip_add(np, mm_gc);
764}
765
766static int cpm_init_par_io(void)
767{
768	struct device_node *np;
769
770	for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-a")
771		cpm1_gpiochip_add16(np);
772
773	for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-b")
774		cpm1_gpiochip_add32(np);
775
776	for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-c")
777		cpm1_gpiochip_add16(np);
778
779	for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-d")
780		cpm1_gpiochip_add16(np);
781
782	/* Port E uses CPM2 layout */
783	for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-e")
784		cpm2_gpiochip_add32(np);
785	return 0;
786}
787arch_initcall(cpm_init_par_io);
788
789#endif /* CONFIG_8xx_GPIO */
790