• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/arch/powerpc/mm/
1/*
2 * This file contains common routines for dealing with free of page tables
3 * Along with common page table handling code
4 *
5 *  Derived from arch/powerpc/mm/tlb_64.c:
6 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
7 *
8 *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
9 *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
10 *    Copyright (C) 1996 Paul Mackerras
11 *
12 *  Derived from "arch/i386/mm/init.c"
13 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
14 *
15 *  Dave Engebretsen <engebret@us.ibm.com>
16 *      Rework for PPC64 port.
17 *
18 *  This program is free software; you can redistribute it and/or
19 *  modify it under the terms of the GNU General Public License
20 *  as published by the Free Software Foundation; either version
21 *  2 of the License, or (at your option) any later version.
22 */
23
24#include <linux/kernel.h>
25#include <linux/gfp.h>
26#include <linux/mm.h>
27#include <linux/init.h>
28#include <linux/percpu.h>
29#include <linux/hardirq.h>
30#include <asm/pgalloc.h>
31#include <asm/tlbflush.h>
32#include <asm/tlb.h>
33
34#include "mmu_decl.h"
35
36DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
37
38#ifdef CONFIG_SMP
39
40/*
41 * Handle batching of page table freeing on SMP. Page tables are
42 * queued up and send to be freed later by RCU in order to avoid
43 * freeing a page table page that is being walked without locks
44 */
45
46static DEFINE_PER_CPU(struct pte_freelist_batch *, pte_freelist_cur);
47static unsigned long pte_freelist_forced_free;
48
49struct pte_freelist_batch
50{
51	struct rcu_head	rcu;
52	unsigned int	index;
53	unsigned long	tables[0];
54};
55
56#define PTE_FREELIST_SIZE \
57	((PAGE_SIZE - sizeof(struct pte_freelist_batch)) \
58	  / sizeof(unsigned long))
59
60static void pte_free_smp_sync(void *arg)
61{
62	/* Do nothing, just ensure we sync with all CPUs */
63}
64
65/* This is only called when we are critically out of memory
66 * (and fail to get a page in pte_free_tlb).
67 */
68static void pgtable_free_now(void *table, unsigned shift)
69{
70	pte_freelist_forced_free++;
71
72	smp_call_function(pte_free_smp_sync, NULL, 1);
73
74	pgtable_free(table, shift);
75}
76
77static void pte_free_rcu_callback(struct rcu_head *head)
78{
79	struct pte_freelist_batch *batch =
80		container_of(head, struct pte_freelist_batch, rcu);
81	unsigned int i;
82
83	for (i = 0; i < batch->index; i++) {
84		void *table = (void *)(batch->tables[i] & ~MAX_PGTABLE_INDEX_SIZE);
85		unsigned shift = batch->tables[i] & MAX_PGTABLE_INDEX_SIZE;
86
87		pgtable_free(table, shift);
88	}
89
90	free_page((unsigned long)batch);
91}
92
93static void pte_free_submit(struct pte_freelist_batch *batch)
94{
95	call_rcu(&batch->rcu, pte_free_rcu_callback);
96}
97
98void pgtable_free_tlb(struct mmu_gather *tlb, void *table, unsigned shift)
99{
100	/* This is safe since tlb_gather_mmu has disabled preemption */
101	struct pte_freelist_batch **batchp = &__get_cpu_var(pte_freelist_cur);
102	unsigned long pgf;
103
104	if (atomic_read(&tlb->mm->mm_users) < 2 ||
105	    cpumask_equal(mm_cpumask(tlb->mm), cpumask_of(smp_processor_id()))){
106		pgtable_free(table, shift);
107		return;
108	}
109
110	if (*batchp == NULL) {
111		*batchp = (struct pte_freelist_batch *)__get_free_page(GFP_ATOMIC);
112		if (*batchp == NULL) {
113			pgtable_free_now(table, shift);
114			return;
115		}
116		(*batchp)->index = 0;
117	}
118	BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
119	pgf = (unsigned long)table | shift;
120	(*batchp)->tables[(*batchp)->index++] = pgf;
121	if ((*batchp)->index == PTE_FREELIST_SIZE) {
122		pte_free_submit(*batchp);
123		*batchp = NULL;
124	}
125}
126
127void pte_free_finish(void)
128{
129	/* This is safe since tlb_gather_mmu has disabled preemption */
130	struct pte_freelist_batch **batchp = &__get_cpu_var(pte_freelist_cur);
131
132	if (*batchp == NULL)
133		return;
134	pte_free_submit(*batchp);
135	*batchp = NULL;
136}
137
138#endif /* CONFIG_SMP */
139
140static inline int is_exec_fault(void)
141{
142	return current->thread.regs && TRAP(current->thread.regs) == 0x400;
143}
144
145/* We only try to do i/d cache coherency on stuff that looks like
146 * reasonably "normal" PTEs. We currently require a PTE to be present
147 * and we avoid _PAGE_SPECIAL and _PAGE_NO_CACHE. We also only do that
148 * on userspace PTEs
149 */
150static inline int pte_looks_normal(pte_t pte)
151{
152	return (pte_val(pte) &
153	    (_PAGE_PRESENT | _PAGE_SPECIAL | _PAGE_NO_CACHE | _PAGE_USER)) ==
154	    (_PAGE_PRESENT | _PAGE_USER);
155}
156
157struct page * maybe_pte_to_page(pte_t pte)
158{
159	unsigned long pfn = pte_pfn(pte);
160	struct page *page;
161
162	if (unlikely(!pfn_valid(pfn)))
163		return NULL;
164	page = pfn_to_page(pfn);
165	if (PageReserved(page))
166		return NULL;
167	return page;
168}
169
170#if defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0
171
172/* Server-style MMU handles coherency when hashing if HW exec permission
173 * is supposed per page (currently 64-bit only). If not, then, we always
174 * flush the cache for valid PTEs in set_pte. Embedded CPU without HW exec
175 * support falls into the same category.
176 */
177
178static pte_t set_pte_filter(pte_t pte, unsigned long addr)
179{
180	pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
181	if (pte_looks_normal(pte) && !(cpu_has_feature(CPU_FTR_COHERENT_ICACHE) ||
182				       cpu_has_feature(CPU_FTR_NOEXECUTE))) {
183		struct page *pg = maybe_pte_to_page(pte);
184		if (!pg)
185			return pte;
186		if (!test_bit(PG_arch_1, &pg->flags)) {
187#ifdef CONFIG_8xx
188			/* 8xx doesn't care about PID, size or ind args */
189			_tlbil_va(addr, 0, 0, 0);
190#endif /* CONFIG_8xx */
191			flush_dcache_icache_page(pg);
192			set_bit(PG_arch_1, &pg->flags);
193		}
194	}
195	return pte;
196}
197
198static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma,
199				     int dirty)
200{
201	return pte;
202}
203
204#else /* defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0 */
205
206/* Embedded type MMU with HW exec support. This is a bit more complicated
207 * as we don't have two bits to spare for _PAGE_EXEC and _PAGE_HWEXEC so
208 * instead we "filter out" the exec permission for non clean pages.
209 */
210static pte_t set_pte_filter(pte_t pte, unsigned long addr)
211{
212	struct page *pg;
213
214	/* No exec permission in the first place, move on */
215	if (!(pte_val(pte) & _PAGE_EXEC) || !pte_looks_normal(pte))
216		return pte;
217
218	/* If you set _PAGE_EXEC on weird pages you're on your own */
219	pg = maybe_pte_to_page(pte);
220	if (unlikely(!pg))
221		return pte;
222
223	/* If the page clean, we move on */
224	if (test_bit(PG_arch_1, &pg->flags))
225		return pte;
226
227	/* If it's an exec fault, we flush the cache and make it clean */
228	if (is_exec_fault()) {
229		flush_dcache_icache_page(pg);
230		set_bit(PG_arch_1, &pg->flags);
231		return pte;
232	}
233
234	/* Else, we filter out _PAGE_EXEC */
235	return __pte(pte_val(pte) & ~_PAGE_EXEC);
236}
237
238static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma,
239				     int dirty)
240{
241	struct page *pg;
242
243	/* So here, we only care about exec faults, as we use them
244	 * to recover lost _PAGE_EXEC and perform I$/D$ coherency
245	 * if necessary. Also if _PAGE_EXEC is already set, same deal,
246	 * we just bail out
247	 */
248	if (dirty || (pte_val(pte) & _PAGE_EXEC) || !is_exec_fault())
249		return pte;
250
251#ifdef CONFIG_DEBUG_VM
252	/* So this is an exec fault, _PAGE_EXEC is not set. If it was
253	 * an error we would have bailed out earlier in do_page_fault()
254	 * but let's make sure of it
255	 */
256	if (WARN_ON(!(vma->vm_flags & VM_EXEC)))
257		return pte;
258#endif /* CONFIG_DEBUG_VM */
259
260	/* If you set _PAGE_EXEC on weird pages you're on your own */
261	pg = maybe_pte_to_page(pte);
262	if (unlikely(!pg))
263		goto bail;
264
265	/* If the page is already clean, we move on */
266	if (test_bit(PG_arch_1, &pg->flags))
267		goto bail;
268
269	/* Clean the page and set PG_arch_1 */
270	flush_dcache_icache_page(pg);
271	set_bit(PG_arch_1, &pg->flags);
272
273 bail:
274	return __pte(pte_val(pte) | _PAGE_EXEC);
275}
276
277#endif /* !(defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0) */
278
279/*
280 * set_pte stores a linux PTE into the linux page table.
281 */
282void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
283		pte_t pte)
284{
285#ifdef CONFIG_DEBUG_VM
286	WARN_ON(pte_present(*ptep));
287#endif
288	/* Note: mm->context.id might not yet have been assigned as
289	 * this context might not have been activated yet when this
290	 * is called.
291	 */
292	pte = set_pte_filter(pte, addr);
293
294	/* Perform the setting of the PTE */
295	__set_pte_at(mm, addr, ptep, pte, 0);
296}
297
298/*
299 * This is called when relaxing access to a PTE. It's also called in the page
300 * fault path when we don't hit any of the major fault cases, ie, a minor
301 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
302 * handled those two for us, we additionally deal with missing execute
303 * permission here on some processors
304 */
305int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
306			  pte_t *ptep, pte_t entry, int dirty)
307{
308	int changed;
309	entry = set_access_flags_filter(entry, vma, dirty);
310	changed = !pte_same(*(ptep), entry);
311	if (changed) {
312		if (!(vma->vm_flags & VM_HUGETLB))
313			assert_pte_locked(vma->vm_mm, address);
314		__ptep_set_access_flags(ptep, entry);
315		flush_tlb_page_nohash(vma, address);
316	}
317	return changed;
318}
319
320#ifdef CONFIG_DEBUG_VM
321void assert_pte_locked(struct mm_struct *mm, unsigned long addr)
322{
323	pgd_t *pgd;
324	pud_t *pud;
325	pmd_t *pmd;
326
327	if (mm == &init_mm)
328		return;
329	pgd = mm->pgd + pgd_index(addr);
330	BUG_ON(pgd_none(*pgd));
331	pud = pud_offset(pgd, addr);
332	BUG_ON(pud_none(*pud));
333	pmd = pmd_offset(pud, addr);
334	BUG_ON(!pmd_present(*pmd));
335	assert_spin_locked(pte_lockptr(mm, pmd));
336}
337#endif /* CONFIG_DEBUG_VM */
338