• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/arch/parisc/mm/
1/*
2 *  linux/arch/parisc/mm/init.c
3 *
4 *  Copyright (C) 1995	Linus Torvalds
5 *  Copyright 1999 SuSE GmbH
6 *    changed by Philipp Rumpf
7 *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8 *  Copyright 2004 Randolph Chung (tausq@debian.org)
9 *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
10 *
11 */
12
13
14#include <linux/module.h>
15#include <linux/mm.h>
16#include <linux/bootmem.h>
17#include <linux/gfp.h>
18#include <linux/delay.h>
19#include <linux/init.h>
20#include <linux/pci.h>		/* for hppa_dma_ops and pcxl_dma_ops */
21#include <linux/initrd.h>
22#include <linux/swap.h>
23#include <linux/unistd.h>
24#include <linux/nodemask.h>	/* for node_online_map */
25#include <linux/pagemap.h>	/* for release_pages and page_cache_release */
26
27#include <asm/pgalloc.h>
28#include <asm/pgtable.h>
29#include <asm/tlb.h>
30#include <asm/pdc_chassis.h>
31#include <asm/mmzone.h>
32#include <asm/sections.h>
33
34DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
35
36extern int  data_start;
37
38#ifdef CONFIG_DISCONTIGMEM
39struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
40unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
41#endif
42
43static struct resource data_resource = {
44	.name	= "Kernel data",
45	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
46};
47
48static struct resource code_resource = {
49	.name	= "Kernel code",
50	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
51};
52
53static struct resource pdcdata_resource = {
54	.name	= "PDC data (Page Zero)",
55	.start	= 0,
56	.end	= 0x9ff,
57	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
58};
59
60static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
61
62/* The following array is initialized from the firmware specific
63 * information retrieved in kernel/inventory.c.
64 */
65
66physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
67int npmem_ranges __read_mostly;
68
69#ifdef CONFIG_64BIT
70#define MAX_MEM         (~0UL)
71#else /* !CONFIG_64BIT */
72#define MAX_MEM         (3584U*1024U*1024U)
73#endif /* !CONFIG_64BIT */
74
75static unsigned long mem_limit __read_mostly = MAX_MEM;
76
77static void __init mem_limit_func(void)
78{
79	char *cp, *end;
80	unsigned long limit;
81
82	/* We need this before __setup() functions are called */
83
84	limit = MAX_MEM;
85	for (cp = boot_command_line; *cp; ) {
86		if (memcmp(cp, "mem=", 4) == 0) {
87			cp += 4;
88			limit = memparse(cp, &end);
89			if (end != cp)
90				break;
91			cp = end;
92		} else {
93			while (*cp != ' ' && *cp)
94				++cp;
95			while (*cp == ' ')
96				++cp;
97		}
98	}
99
100	if (limit < mem_limit)
101		mem_limit = limit;
102}
103
104#define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
105
106static void __init setup_bootmem(void)
107{
108	unsigned long bootmap_size;
109	unsigned long mem_max;
110	unsigned long bootmap_pages;
111	unsigned long bootmap_start_pfn;
112	unsigned long bootmap_pfn;
113#ifndef CONFIG_DISCONTIGMEM
114	physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
115	int npmem_holes;
116#endif
117	int i, sysram_resource_count;
118
119	disable_sr_hashing(); /* Turn off space register hashing */
120
121	/*
122	 * Sort the ranges. Since the number of ranges is typically
123	 * small, and performance is not an issue here, just do
124	 * a simple insertion sort.
125	 */
126
127	for (i = 1; i < npmem_ranges; i++) {
128		int j;
129
130		for (j = i; j > 0; j--) {
131			unsigned long tmp;
132
133			if (pmem_ranges[j-1].start_pfn <
134			    pmem_ranges[j].start_pfn) {
135
136				break;
137			}
138			tmp = pmem_ranges[j-1].start_pfn;
139			pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
140			pmem_ranges[j].start_pfn = tmp;
141			tmp = pmem_ranges[j-1].pages;
142			pmem_ranges[j-1].pages = pmem_ranges[j].pages;
143			pmem_ranges[j].pages = tmp;
144		}
145	}
146
147#ifndef CONFIG_DISCONTIGMEM
148	/*
149	 * Throw out ranges that are too far apart (controlled by
150	 * MAX_GAP).
151	 */
152
153	for (i = 1; i < npmem_ranges; i++) {
154		if (pmem_ranges[i].start_pfn -
155			(pmem_ranges[i-1].start_pfn +
156			 pmem_ranges[i-1].pages) > MAX_GAP) {
157			npmem_ranges = i;
158			printk("Large gap in memory detected (%ld pages). "
159			       "Consider turning on CONFIG_DISCONTIGMEM\n",
160			       pmem_ranges[i].start_pfn -
161			       (pmem_ranges[i-1].start_pfn +
162			        pmem_ranges[i-1].pages));
163			break;
164		}
165	}
166#endif
167
168	if (npmem_ranges > 1) {
169
170		/* Print the memory ranges */
171
172		printk(KERN_INFO "Memory Ranges:\n");
173
174		for (i = 0; i < npmem_ranges; i++) {
175			unsigned long start;
176			unsigned long size;
177
178			size = (pmem_ranges[i].pages << PAGE_SHIFT);
179			start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
180			printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
181				i,start, start + (size - 1), size >> 20);
182		}
183	}
184
185	sysram_resource_count = npmem_ranges;
186	for (i = 0; i < sysram_resource_count; i++) {
187		struct resource *res = &sysram_resources[i];
188		res->name = "System RAM";
189		res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
190		res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
191		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
192		request_resource(&iomem_resource, res);
193	}
194
195	/*
196	 * For 32 bit kernels we limit the amount of memory we can
197	 * support, in order to preserve enough kernel address space
198	 * for other purposes. For 64 bit kernels we don't normally
199	 * limit the memory, but this mechanism can be used to
200	 * artificially limit the amount of memory (and it is written
201	 * to work with multiple memory ranges).
202	 */
203
204	mem_limit_func();       /* check for "mem=" argument */
205
206	mem_max = 0;
207	num_physpages = 0;
208	for (i = 0; i < npmem_ranges; i++) {
209		unsigned long rsize;
210
211		rsize = pmem_ranges[i].pages << PAGE_SHIFT;
212		if ((mem_max + rsize) > mem_limit) {
213			printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
214			if (mem_max == mem_limit)
215				npmem_ranges = i;
216			else {
217				pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
218						       - (mem_max >> PAGE_SHIFT);
219				npmem_ranges = i + 1;
220				mem_max = mem_limit;
221			}
222	        num_physpages += pmem_ranges[i].pages;
223			break;
224		}
225	    num_physpages += pmem_ranges[i].pages;
226		mem_max += rsize;
227	}
228
229	printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
230
231#ifndef CONFIG_DISCONTIGMEM
232	/* Merge the ranges, keeping track of the holes */
233
234	{
235		unsigned long end_pfn;
236		unsigned long hole_pages;
237
238		npmem_holes = 0;
239		end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
240		for (i = 1; i < npmem_ranges; i++) {
241
242			hole_pages = pmem_ranges[i].start_pfn - end_pfn;
243			if (hole_pages) {
244				pmem_holes[npmem_holes].start_pfn = end_pfn;
245				pmem_holes[npmem_holes++].pages = hole_pages;
246				end_pfn += hole_pages;
247			}
248			end_pfn += pmem_ranges[i].pages;
249		}
250
251		pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
252		npmem_ranges = 1;
253	}
254#endif
255
256	bootmap_pages = 0;
257	for (i = 0; i < npmem_ranges; i++)
258		bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
259
260	bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
261
262#ifdef CONFIG_DISCONTIGMEM
263	for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
264		memset(NODE_DATA(i), 0, sizeof(pg_data_t));
265		NODE_DATA(i)->bdata = &bootmem_node_data[i];
266	}
267	memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
268
269	for (i = 0; i < npmem_ranges; i++)
270		node_set_online(i);
271#endif
272
273	/*
274	 * Initialize and free the full range of memory in each range.
275	 * Note that the only writing these routines do are to the bootmap,
276	 * and we've made sure to locate the bootmap properly so that they
277	 * won't be writing over anything important.
278	 */
279
280	bootmap_pfn = bootmap_start_pfn;
281	max_pfn = 0;
282	for (i = 0; i < npmem_ranges; i++) {
283		unsigned long start_pfn;
284		unsigned long npages;
285
286		start_pfn = pmem_ranges[i].start_pfn;
287		npages = pmem_ranges[i].pages;
288
289		bootmap_size = init_bootmem_node(NODE_DATA(i),
290						bootmap_pfn,
291						start_pfn,
292						(start_pfn + npages) );
293		free_bootmem_node(NODE_DATA(i),
294				  (start_pfn << PAGE_SHIFT),
295				  (npages << PAGE_SHIFT) );
296		bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
297		if ((start_pfn + npages) > max_pfn)
298			max_pfn = start_pfn + npages;
299	}
300
301	/* IOMMU is always used to access "high mem" on those boxes
302	 * that can support enough mem that a PCI device couldn't
303	 * directly DMA to any physical addresses.
304	 * ISA DMA support will need to revisit this.
305	 */
306	max_low_pfn = max_pfn;
307
308	/* bootmap sizing messed up? */
309	BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages);
310
311	/* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
312
313#define PDC_CONSOLE_IO_IODC_SIZE 32768
314
315	reserve_bootmem_node(NODE_DATA(0), 0UL,
316			(unsigned long)(PAGE0->mem_free +
317				PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT);
318	reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text),
319			(unsigned long)(_end - _text), BOOTMEM_DEFAULT);
320	reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
321			((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT),
322			BOOTMEM_DEFAULT);
323
324#ifndef CONFIG_DISCONTIGMEM
325
326	/* reserve the holes */
327
328	for (i = 0; i < npmem_holes; i++) {
329		reserve_bootmem_node(NODE_DATA(0),
330				(pmem_holes[i].start_pfn << PAGE_SHIFT),
331				(pmem_holes[i].pages << PAGE_SHIFT),
332				BOOTMEM_DEFAULT);
333	}
334#endif
335
336#ifdef CONFIG_BLK_DEV_INITRD
337	if (initrd_start) {
338		printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
339		if (__pa(initrd_start) < mem_max) {
340			unsigned long initrd_reserve;
341
342			if (__pa(initrd_end) > mem_max) {
343				initrd_reserve = mem_max - __pa(initrd_start);
344			} else {
345				initrd_reserve = initrd_end - initrd_start;
346			}
347			initrd_below_start_ok = 1;
348			printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
349
350			reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start),
351					initrd_reserve, BOOTMEM_DEFAULT);
352		}
353	}
354#endif
355
356	data_resource.start =  virt_to_phys(&data_start);
357	data_resource.end = virt_to_phys(_end) - 1;
358	code_resource.start = virt_to_phys(_text);
359	code_resource.end = virt_to_phys(&data_start)-1;
360
361	/* We don't know which region the kernel will be in, so try
362	 * all of them.
363	 */
364	for (i = 0; i < sysram_resource_count; i++) {
365		struct resource *res = &sysram_resources[i];
366		request_resource(res, &code_resource);
367		request_resource(res, &data_resource);
368	}
369	request_resource(&sysram_resources[0], &pdcdata_resource);
370}
371
372void free_initmem(void)
373{
374	unsigned long addr;
375	unsigned long init_begin = (unsigned long)__init_begin;
376	unsigned long init_end = (unsigned long)__init_end;
377
378#ifdef CONFIG_DEBUG_KERNEL
379	/* Attempt to catch anyone trying to execute code here
380	 * by filling the page with BRK insns.
381	 */
382	memset((void *)init_begin, 0x00, init_end - init_begin);
383	flush_icache_range(init_begin, init_end);
384#endif
385
386	/* align __init_begin and __init_end to page size,
387	   ignoring linker script where we might have tried to save RAM */
388	init_begin = PAGE_ALIGN(init_begin);
389	init_end = PAGE_ALIGN(init_end);
390	for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) {
391		ClearPageReserved(virt_to_page(addr));
392		init_page_count(virt_to_page(addr));
393		free_page(addr);
394		num_physpages++;
395		totalram_pages++;
396	}
397
398	/* set up a new led state on systems shipped LED State panel */
399	pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
400
401	printk(KERN_INFO "Freeing unused kernel memory: %luk freed\n",
402		(init_end - init_begin) >> 10);
403}
404
405
406#ifdef CONFIG_DEBUG_RODATA
407void mark_rodata_ro(void)
408{
409	/* rodata memory was already mapped with KERNEL_RO access rights by
410           pagetable_init() and map_pages(). No need to do additional stuff here */
411	printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
412		(unsigned long)(__end_rodata - __start_rodata) >> 10);
413}
414#endif
415
416
417/*
418 * Just an arbitrary offset to serve as a "hole" between mapping areas
419 * (between top of physical memory and a potential pcxl dma mapping
420 * area, and below the vmalloc mapping area).
421 *
422 * The current 32K value just means that there will be a 32K "hole"
423 * between mapping areas. That means that  any out-of-bounds memory
424 * accesses will hopefully be caught. The vmalloc() routines leaves
425 * a hole of 4kB between each vmalloced area for the same reason.
426 */
427
428 /* Leave room for gateway page expansion */
429#if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
430#error KERNEL_MAP_START is in gateway reserved region
431#endif
432#define MAP_START (KERNEL_MAP_START)
433
434#define VM_MAP_OFFSET  (32*1024)
435#define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
436				     & ~(VM_MAP_OFFSET-1)))
437
438void *parisc_vmalloc_start __read_mostly;
439EXPORT_SYMBOL(parisc_vmalloc_start);
440
441#ifdef CONFIG_PA11
442unsigned long pcxl_dma_start __read_mostly;
443#endif
444
445void __init mem_init(void)
446{
447	int codesize, reservedpages, datasize, initsize;
448
449	/* Do sanity checks on page table constants */
450	BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
451	BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
452	BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
453	BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
454			> BITS_PER_LONG);
455
456	high_memory = __va((max_pfn << PAGE_SHIFT));
457
458#ifndef CONFIG_DISCONTIGMEM
459	max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1;
460	totalram_pages += free_all_bootmem();
461#else
462	{
463		int i;
464
465		for (i = 0; i < npmem_ranges; i++)
466			totalram_pages += free_all_bootmem_node(NODE_DATA(i));
467	}
468#endif
469
470	codesize = (unsigned long)_etext - (unsigned long)_text;
471	datasize = (unsigned long)_edata - (unsigned long)_etext;
472	initsize = (unsigned long)__init_end - (unsigned long)__init_begin;
473
474	reservedpages = 0;
475{
476	unsigned long pfn;
477#ifdef CONFIG_DISCONTIGMEM
478	int i;
479
480	for (i = 0; i < npmem_ranges; i++) {
481		for (pfn = node_start_pfn(i); pfn < node_end_pfn(i); pfn++) {
482			if (PageReserved(pfn_to_page(pfn)))
483				reservedpages++;
484		}
485	}
486#else /* !CONFIG_DISCONTIGMEM */
487	for (pfn = 0; pfn < max_pfn; pfn++) {
488		/*
489		 * Only count reserved RAM pages
490		 */
491		if (PageReserved(pfn_to_page(pfn)))
492			reservedpages++;
493	}
494#endif
495}
496
497#ifdef CONFIG_PA11
498	if (hppa_dma_ops == &pcxl_dma_ops) {
499		pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
500		parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
501						+ PCXL_DMA_MAP_SIZE);
502	} else {
503		pcxl_dma_start = 0;
504		parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
505	}
506#else
507	parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
508#endif
509
510	printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init)\n",
511		nr_free_pages() << (PAGE_SHIFT-10),
512		num_physpages << (PAGE_SHIFT-10),
513		codesize >> 10,
514		reservedpages << (PAGE_SHIFT-10),
515		datasize >> 10,
516		initsize >> 10
517	);
518
519#ifdef CONFIG_DEBUG_KERNEL     /* double-sanity-check paranoia */
520	printk("virtual kernel memory layout:\n"
521	       "    vmalloc : 0x%p - 0x%p   (%4ld MB)\n"
522	       "    memory  : 0x%p - 0x%p   (%4ld MB)\n"
523	       "      .init : 0x%p - 0x%p   (%4ld kB)\n"
524	       "      .data : 0x%p - 0x%p   (%4ld kB)\n"
525	       "      .text : 0x%p - 0x%p   (%4ld kB)\n",
526
527	       (void*)VMALLOC_START, (void*)VMALLOC_END,
528	       (VMALLOC_END - VMALLOC_START) >> 20,
529
530	       __va(0), high_memory,
531	       ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
532
533	       __init_begin, __init_end,
534	       ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
535
536	       _etext, _edata,
537	       ((unsigned long)_edata - (unsigned long)_etext) >> 10,
538
539	       _text, _etext,
540	       ((unsigned long)_etext - (unsigned long)_text) >> 10);
541#endif
542}
543
544unsigned long *empty_zero_page __read_mostly;
545EXPORT_SYMBOL(empty_zero_page);
546
547void show_mem(void)
548{
549	int i,free = 0,total = 0,reserved = 0;
550	int shared = 0, cached = 0;
551
552	printk(KERN_INFO "Mem-info:\n");
553	show_free_areas();
554#ifndef CONFIG_DISCONTIGMEM
555	i = max_mapnr;
556	while (i-- > 0) {
557		total++;
558		if (PageReserved(mem_map+i))
559			reserved++;
560		else if (PageSwapCache(mem_map+i))
561			cached++;
562		else if (!page_count(&mem_map[i]))
563			free++;
564		else
565			shared += page_count(&mem_map[i]) - 1;
566	}
567#else
568	for (i = 0; i < npmem_ranges; i++) {
569		int j;
570
571		for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
572			struct page *p;
573			unsigned long flags;
574
575			pgdat_resize_lock(NODE_DATA(i), &flags);
576			p = nid_page_nr(i, j) - node_start_pfn(i);
577
578			total++;
579			if (PageReserved(p))
580				reserved++;
581			else if (PageSwapCache(p))
582				cached++;
583			else if (!page_count(p))
584				free++;
585			else
586				shared += page_count(p) - 1;
587			pgdat_resize_unlock(NODE_DATA(i), &flags);
588        	}
589	}
590#endif
591	printk(KERN_INFO "%d pages of RAM\n", total);
592	printk(KERN_INFO "%d reserved pages\n", reserved);
593	printk(KERN_INFO "%d pages shared\n", shared);
594	printk(KERN_INFO "%d pages swap cached\n", cached);
595
596
597#ifdef CONFIG_DISCONTIGMEM
598	{
599		struct zonelist *zl;
600		int i, j;
601
602		for (i = 0; i < npmem_ranges; i++) {
603			zl = node_zonelist(i, 0);
604			for (j = 0; j < MAX_NR_ZONES; j++) {
605				struct zoneref *z;
606				struct zone *zone;
607
608				printk("Zone list for zone %d on node %d: ", j, i);
609				for_each_zone_zonelist(zone, z, zl, j)
610					printk("[%d/%s] ", zone_to_nid(zone),
611								zone->name);
612				printk("\n");
613			}
614		}
615	}
616#endif
617}
618
619
620static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot)
621{
622	pgd_t *pg_dir;
623	pmd_t *pmd;
624	pte_t *pg_table;
625	unsigned long end_paddr;
626	unsigned long start_pmd;
627	unsigned long start_pte;
628	unsigned long tmp1;
629	unsigned long tmp2;
630	unsigned long address;
631	unsigned long ro_start;
632	unsigned long ro_end;
633	unsigned long fv_addr;
634	unsigned long gw_addr;
635	extern const unsigned long fault_vector_20;
636	extern void * const linux_gateway_page;
637
638	ro_start = __pa((unsigned long)_text);
639	ro_end   = __pa((unsigned long)&data_start);
640	fv_addr  = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
641	gw_addr  = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
642
643	end_paddr = start_paddr + size;
644
645	pg_dir = pgd_offset_k(start_vaddr);
646
647#if PTRS_PER_PMD == 1
648	start_pmd = 0;
649#else
650	start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
651#endif
652	start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
653
654	address = start_paddr;
655	while (address < end_paddr) {
656#if PTRS_PER_PMD == 1
657		pmd = (pmd_t *)__pa(pg_dir);
658#else
659		pmd = (pmd_t *)pgd_address(*pg_dir);
660
661		/*
662		 * pmd is physical at this point
663		 */
664
665		if (!pmd) {
666			pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE << PMD_ORDER);
667			pmd = (pmd_t *) __pa(pmd);
668		}
669
670		pgd_populate(NULL, pg_dir, __va(pmd));
671#endif
672		pg_dir++;
673
674		/* now change pmd to kernel virtual addresses */
675
676		pmd = (pmd_t *)__va(pmd) + start_pmd;
677		for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) {
678
679			/*
680			 * pg_table is physical at this point
681			 */
682
683			pg_table = (pte_t *)pmd_address(*pmd);
684			if (!pg_table) {
685				pg_table = (pte_t *)
686					alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE);
687				pg_table = (pte_t *) __pa(pg_table);
688			}
689
690			pmd_populate_kernel(NULL, pmd, __va(pg_table));
691
692			/* now change pg_table to kernel virtual addresses */
693
694			pg_table = (pte_t *) __va(pg_table) + start_pte;
695			for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) {
696				pte_t pte;
697
698				/*
699				 * Map the fault vector writable so we can
700				 * write the HPMC checksum.
701				 */
702#if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
703				if (address >= ro_start && address < ro_end
704							&& address != fv_addr
705							&& address != gw_addr)
706				    pte = __mk_pte(address, PAGE_KERNEL_RO);
707				else
708#endif
709				    pte = __mk_pte(address, pgprot);
710
711				if (address >= end_paddr)
712					pte_val(pte) = 0;
713
714				set_pte(pg_table, pte);
715
716				address += PAGE_SIZE;
717			}
718			start_pte = 0;
719
720			if (address >= end_paddr)
721			    break;
722		}
723		start_pmd = 0;
724	}
725}
726
727/*
728 * pagetable_init() sets up the page tables
729 *
730 * Note that gateway_init() places the Linux gateway page at page 0.
731 * Since gateway pages cannot be dereferenced this has the desirable
732 * side effect of trapping those pesky NULL-reference errors in the
733 * kernel.
734 */
735static void __init pagetable_init(void)
736{
737	int range;
738
739	/* Map each physical memory range to its kernel vaddr */
740
741	for (range = 0; range < npmem_ranges; range++) {
742		unsigned long start_paddr;
743		unsigned long end_paddr;
744		unsigned long size;
745
746		start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
747		end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
748		size = pmem_ranges[range].pages << PAGE_SHIFT;
749
750		map_pages((unsigned long)__va(start_paddr), start_paddr,
751			size, PAGE_KERNEL);
752	}
753
754#ifdef CONFIG_BLK_DEV_INITRD
755	if (initrd_end && initrd_end > mem_limit) {
756		printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
757		map_pages(initrd_start, __pa(initrd_start),
758			initrd_end - initrd_start, PAGE_KERNEL);
759	}
760#endif
761
762	empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
763	memset(empty_zero_page, 0, PAGE_SIZE);
764}
765
766static void __init gateway_init(void)
767{
768	unsigned long linux_gateway_page_addr;
769	extern void * const linux_gateway_page;
770
771	linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
772
773	/*
774	 * Setup Linux Gateway page.
775	 *
776	 * The Linux gateway page will reside in kernel space (on virtual
777	 * page 0), so it doesn't need to be aliased into user space.
778	 */
779
780	map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
781		PAGE_SIZE, PAGE_GATEWAY);
782}
783
784#ifdef CONFIG_HPUX
785void
786map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
787{
788	pgd_t *pg_dir;
789	pmd_t *pmd;
790	pte_t *pg_table;
791	unsigned long start_pmd;
792	unsigned long start_pte;
793	unsigned long address;
794	unsigned long hpux_gw_page_addr;
795	extern void * const hpux_gateway_page;
796
797	hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
798
799	/*
800	 * Setup HP-UX Gateway page.
801	 *
802	 * The HP-UX gateway page resides in the user address space,
803	 * so it needs to be aliased into each process.
804	 */
805
806	pg_dir = pgd_offset(mm,hpux_gw_page_addr);
807
808#if PTRS_PER_PMD == 1
809	start_pmd = 0;
810#else
811	start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
812#endif
813	start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
814
815	address = __pa(&hpux_gateway_page);
816#if PTRS_PER_PMD == 1
817	pmd = (pmd_t *)__pa(pg_dir);
818#else
819	pmd = (pmd_t *) pgd_address(*pg_dir);
820
821	/*
822	 * pmd is physical at this point
823	 */
824
825	if (!pmd) {
826		pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
827		pmd = (pmd_t *) __pa(pmd);
828	}
829
830	__pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
831#endif
832	/* now change pmd to kernel virtual addresses */
833
834	pmd = (pmd_t *)__va(pmd) + start_pmd;
835
836	/*
837	 * pg_table is physical at this point
838	 */
839
840	pg_table = (pte_t *) pmd_address(*pmd);
841	if (!pg_table)
842		pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
843
844	__pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
845
846	/* now change pg_table to kernel virtual addresses */
847
848	pg_table = (pte_t *) __va(pg_table) + start_pte;
849	set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
850}
851EXPORT_SYMBOL(map_hpux_gateway_page);
852#endif
853
854void __init paging_init(void)
855{
856	int i;
857
858	setup_bootmem();
859	pagetable_init();
860	gateway_init();
861	flush_cache_all_local(); /* start with known state */
862	flush_tlb_all_local(NULL);
863
864	for (i = 0; i < npmem_ranges; i++) {
865		unsigned long zones_size[MAX_NR_ZONES] = { 0, };
866
867		zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
868
869#ifdef CONFIG_DISCONTIGMEM
870		/* Need to initialize the pfnnid_map before we can initialize
871		   the zone */
872		{
873		    int j;
874		    for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
875			 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
876			 j++) {
877			pfnnid_map[j] = i;
878		    }
879		}
880#endif
881
882		free_area_init_node(i, zones_size,
883				pmem_ranges[i].start_pfn, NULL);
884	}
885}
886
887#ifdef CONFIG_PA20
888
889/*
890 * Currently, all PA20 chips have 18 bit protection IDs, which is the
891 * limiting factor (space ids are 32 bits).
892 */
893
894#define NR_SPACE_IDS 262144
895
896#else
897
898/*
899 * Currently we have a one-to-one relationship between space IDs and
900 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
901 * support 15 bit protection IDs, so that is the limiting factor.
902 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
903 * probably not worth the effort for a special case here.
904 */
905
906#define NR_SPACE_IDS 32768
907
908#endif  /* !CONFIG_PA20 */
909
910#define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
911#define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
912
913static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
914static unsigned long dirty_space_id[SID_ARRAY_SIZE];
915static unsigned long space_id_index;
916static unsigned long free_space_ids = NR_SPACE_IDS - 1;
917static unsigned long dirty_space_ids = 0;
918
919static DEFINE_SPINLOCK(sid_lock);
920
921unsigned long alloc_sid(void)
922{
923	unsigned long index;
924
925	spin_lock(&sid_lock);
926
927	if (free_space_ids == 0) {
928		if (dirty_space_ids != 0) {
929			spin_unlock(&sid_lock);
930			flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
931			spin_lock(&sid_lock);
932		}
933		BUG_ON(free_space_ids == 0);
934	}
935
936	free_space_ids--;
937
938	index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
939	space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
940	space_id_index = index;
941
942	spin_unlock(&sid_lock);
943
944	return index << SPACEID_SHIFT;
945}
946
947void free_sid(unsigned long spaceid)
948{
949	unsigned long index = spaceid >> SPACEID_SHIFT;
950	unsigned long *dirty_space_offset;
951
952	dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
953	index &= (BITS_PER_LONG - 1);
954
955	spin_lock(&sid_lock);
956
957	BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
958
959	*dirty_space_offset |= (1L << index);
960	dirty_space_ids++;
961
962	spin_unlock(&sid_lock);
963}
964
965
966#ifdef CONFIG_SMP
967static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
968{
969	int i;
970
971	/* NOTE: sid_lock must be held upon entry */
972
973	*ndirtyptr = dirty_space_ids;
974	if (dirty_space_ids != 0) {
975	    for (i = 0; i < SID_ARRAY_SIZE; i++) {
976		dirty_array[i] = dirty_space_id[i];
977		dirty_space_id[i] = 0;
978	    }
979	    dirty_space_ids = 0;
980	}
981
982	return;
983}
984
985static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
986{
987	int i;
988
989	/* NOTE: sid_lock must be held upon entry */
990
991	if (ndirty != 0) {
992		for (i = 0; i < SID_ARRAY_SIZE; i++) {
993			space_id[i] ^= dirty_array[i];
994		}
995
996		free_space_ids += ndirty;
997		space_id_index = 0;
998	}
999}
1000
1001#else /* CONFIG_SMP */
1002
1003static void recycle_sids(void)
1004{
1005	int i;
1006
1007	/* NOTE: sid_lock must be held upon entry */
1008
1009	if (dirty_space_ids != 0) {
1010		for (i = 0; i < SID_ARRAY_SIZE; i++) {
1011			space_id[i] ^= dirty_space_id[i];
1012			dirty_space_id[i] = 0;
1013		}
1014
1015		free_space_ids += dirty_space_ids;
1016		dirty_space_ids = 0;
1017		space_id_index = 0;
1018	}
1019}
1020#endif
1021
1022/*
1023 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
1024 * purged, we can safely reuse the space ids that were released but
1025 * not flushed from the tlb.
1026 */
1027
1028#ifdef CONFIG_SMP
1029
1030static unsigned long recycle_ndirty;
1031static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
1032static unsigned int recycle_inuse;
1033
1034void flush_tlb_all(void)
1035{
1036	int do_recycle;
1037
1038	do_recycle = 0;
1039	spin_lock(&sid_lock);
1040	if (dirty_space_ids > RECYCLE_THRESHOLD) {
1041	    BUG_ON(recycle_inuse);
1042	    get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
1043	    recycle_inuse++;
1044	    do_recycle++;
1045	}
1046	spin_unlock(&sid_lock);
1047	on_each_cpu(flush_tlb_all_local, NULL, 1);
1048	if (do_recycle) {
1049	    spin_lock(&sid_lock);
1050	    recycle_sids(recycle_ndirty,recycle_dirty_array);
1051	    recycle_inuse = 0;
1052	    spin_unlock(&sid_lock);
1053	}
1054}
1055#else
1056void flush_tlb_all(void)
1057{
1058	spin_lock(&sid_lock);
1059	flush_tlb_all_local(NULL);
1060	recycle_sids();
1061	spin_unlock(&sid_lock);
1062}
1063#endif
1064
1065#ifdef CONFIG_BLK_DEV_INITRD
1066void free_initrd_mem(unsigned long start, unsigned long end)
1067{
1068	if (start >= end)
1069		return;
1070	printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1071	for (; start < end; start += PAGE_SIZE) {
1072		ClearPageReserved(virt_to_page(start));
1073		init_page_count(virt_to_page(start));
1074		free_page(start);
1075		num_physpages++;
1076		totalram_pages++;
1077	}
1078}
1079#endif
1080