• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/arch/mips/powertv/
1/*
2 * Carsten Langgaard, carstenl@mips.com
3 * Copyright (C) 2000 MIPS Technologies, Inc.  All rights reserved.
4 * Portions copyright (C) 2009 Cisco Systems, Inc.
5 *
6 *  This program is free software; you can distribute it and/or modify it
7 *  under the terms of the GNU General Public License (Version 2) as
8 *  published by the Free Software Foundation.
9 *
10 *  This program is distributed in the hope it will be useful, but WITHOUT
11 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 *  for more details.
14 *
15 *  You should have received a copy of the GNU General Public License along
16 *  with this program; if not, write to the Free Software Foundation, Inc.,
17 *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
18 */
19#include <linux/init.h>
20#include <linux/sched.h>
21#include <linux/ioport.h>
22#include <linux/pci.h>
23#include <linux/screen_info.h>
24#include <linux/notifier.h>
25#include <linux/etherdevice.h>
26#include <linux/if_ether.h>
27#include <linux/ctype.h>
28#include <linux/cpu.h>
29#include <linux/time.h>
30
31#include <asm/bootinfo.h>
32#include <asm/irq.h>
33#include <asm/mips-boards/generic.h>
34#include <asm/mips-boards/prom.h>
35#include <asm/dma.h>
36#include <asm/asm.h>
37#include <asm/traps.h>
38#include <asm/asm-offsets.h>
39#include "reset.h"
40
41#define VAL(n)		STR(n)
42
43/*
44 * Macros for loading addresses and storing registers:
45 * LONG_L_	Stringified version of LONG_L for use in asm() statement
46 * LONG_S_	Stringified version of LONG_S for use in asm() statement
47 * PTR_LA_	Stringified version of PTR_LA for use in asm() statement
48 * REG_SIZE	Number of 8-bit bytes in a full width register
49 */
50#define LONG_L_		VAL(LONG_L) " "
51#define LONG_S_		VAL(LONG_S) " "
52#define PTR_LA_		VAL(PTR_LA) " "
53
54#ifdef CONFIG_64BIT
55#warning TODO: 64-bit code needs to be verified
56#define REG_SIZE	"8"		/* In bytes */
57#endif
58
59#ifdef CONFIG_32BIT
60#define REG_SIZE	"4"		/* In bytes */
61#endif
62
63static void register_panic_notifier(void);
64static int panic_handler(struct notifier_block *notifier_block,
65	unsigned long event, void *cause_string);
66
67const char *get_system_type(void)
68{
69	return "PowerTV";
70}
71
72void __init plat_mem_setup(void)
73{
74	panic_on_oops = 1;
75	register_panic_notifier();
76
77	mips_reboot_setup();
78}
79
80/*
81 * Install a panic notifier for platform-specific diagnostics
82 */
83static void register_panic_notifier()
84{
85	static struct notifier_block panic_notifier = {
86		.notifier_call = panic_handler,
87		.next = NULL,
88		.priority	= INT_MAX
89	};
90	atomic_notifier_chain_register(&panic_notifier_list, &panic_notifier);
91}
92
93static int panic_handler(struct notifier_block *notifier_block,
94	unsigned long event, void *cause_string)
95{
96	struct pt_regs	my_regs;
97
98	/* Save all of the registers */
99	{
100		unsigned long	at, v0, v1; /* Must be on the stack */
101
102		/* Start by saving $at and v0 on the stack. We use $at
103		 * ourselves, but it looks like the compiler may use v0 or v1
104		 * to load the address of the pt_regs structure. We'll come
105		 * back later to store the registers in the pt_regs
106		 * structure. */
107		__asm__ __volatile__ (
108			".set	noat\n"
109			LONG_S_		"$at, %[at]\n"
110			LONG_S_		"$2, %[v0]\n"
111			LONG_S_		"$3, %[v1]\n"
112		:
113			[at] "=m" (at),
114			[v0] "=m" (v0),
115			[v1] "=m" (v1)
116		:
117		:	"at"
118		);
119
120		__asm__ __volatile__ (
121			".set	noat\n"
122			"move		$at, %[pt_regs]\n"
123
124			/* Argument registers */
125			LONG_S_		"$4, " VAL(PT_R4) "($at)\n"
126			LONG_S_		"$5, " VAL(PT_R5) "($at)\n"
127			LONG_S_		"$6, " VAL(PT_R6) "($at)\n"
128			LONG_S_		"$7, " VAL(PT_R7) "($at)\n"
129
130			/* Temporary regs */
131			LONG_S_		"$8, " VAL(PT_R8) "($at)\n"
132			LONG_S_		"$9, " VAL(PT_R9) "($at)\n"
133			LONG_S_		"$10, " VAL(PT_R10) "($at)\n"
134			LONG_S_		"$11, " VAL(PT_R11) "($at)\n"
135			LONG_S_		"$12, " VAL(PT_R12) "($at)\n"
136			LONG_S_		"$13, " VAL(PT_R13) "($at)\n"
137			LONG_S_		"$14, " VAL(PT_R14) "($at)\n"
138			LONG_S_		"$15, " VAL(PT_R15) "($at)\n"
139
140			/* "Saved" registers */
141			LONG_S_		"$16, " VAL(PT_R16) "($at)\n"
142			LONG_S_		"$17, " VAL(PT_R17) "($at)\n"
143			LONG_S_		"$18, " VAL(PT_R18) "($at)\n"
144			LONG_S_		"$19, " VAL(PT_R19) "($at)\n"
145			LONG_S_		"$20, " VAL(PT_R20) "($at)\n"
146			LONG_S_		"$21, " VAL(PT_R21) "($at)\n"
147			LONG_S_		"$22, " VAL(PT_R22) "($at)\n"
148			LONG_S_		"$23, " VAL(PT_R23) "($at)\n"
149
150			/* Add'l temp regs */
151			LONG_S_		"$24, " VAL(PT_R24) "($at)\n"
152			LONG_S_		"$25, " VAL(PT_R25) "($at)\n"
153
154			/* Kernel temp regs */
155			LONG_S_		"$26, " VAL(PT_R26) "($at)\n"
156			LONG_S_		"$27, " VAL(PT_R27) "($at)\n"
157
158			/* Global pointer, stack pointer, frame pointer and
159			 * return address */
160			LONG_S_		"$gp, " VAL(PT_R28) "($at)\n"
161			LONG_S_		"$sp, " VAL(PT_R29) "($at)\n"
162			LONG_S_		"$fp, " VAL(PT_R30) "($at)\n"
163			LONG_S_		"$ra, " VAL(PT_R31) "($at)\n"
164
165			/* Now we can get the $at and v0 registers back and
166			 * store them */
167			LONG_L_		"$8, %[at]\n"
168			LONG_S_		"$8, " VAL(PT_R1) "($at)\n"
169			LONG_L_		"$8, %[v0]\n"
170			LONG_S_		"$8, " VAL(PT_R2) "($at)\n"
171			LONG_L_		"$8, %[v1]\n"
172			LONG_S_		"$8, " VAL(PT_R3) "($at)\n"
173		:
174		:
175			[at] "m" (at),
176			[v0] "m" (v0),
177			[v1] "m" (v1),
178			[pt_regs] "r" (&my_regs)
179		:	"at", "t0"
180		);
181
182		/* Set the current EPC value to be the current location in this
183		 * function */
184		__asm__ __volatile__ (
185			".set	noat\n"
186		"1:\n"
187			PTR_LA_		"$at, 1b\n"
188			LONG_S_		"$at, %[cp0_epc]\n"
189		:
190			[cp0_epc] "=m" (my_regs.cp0_epc)
191		:
192		:	"at"
193		);
194
195		my_regs.cp0_cause = read_c0_cause();
196		my_regs.cp0_status = read_c0_status();
197	}
198
199	pr_crit("I'm feeling a bit sleepy. hmmmmm... perhaps a nap would... "
200		"zzzz... \n");
201
202	return NOTIFY_DONE;
203}
204
205/* Information about the RF MAC address, if one was supplied on the
206 * command line. */
207static bool have_rfmac;
208static u8 rfmac[ETH_ALEN];
209
210static int rfmac_param(char *p)
211{
212	u8	*q;
213	bool	is_high_nibble;
214	int	c;
215
216	/* Skip a leading "0x", if present */
217	if (*p == '0' && *(p+1) == 'x')
218		p += 2;
219
220	q = rfmac;
221	is_high_nibble = true;
222
223	for (c = (unsigned char) *p++;
224		isxdigit(c) && q - rfmac < ETH_ALEN;
225		c = (unsigned char) *p++) {
226		int	nibble;
227
228		nibble = (isdigit(c) ? (c - '0') :
229			(isupper(c) ? c - 'A' + 10 : c - 'a' + 10));
230
231		if (is_high_nibble)
232			*q = nibble << 4;
233		else
234			*q++ |= nibble;
235
236		is_high_nibble = !is_high_nibble;
237	}
238
239	/* If we parsed all the way to the end of the parameter value and
240	 * parsed all ETH_ALEN bytes, we have a usable RF MAC address */
241	have_rfmac = (c == '\0' && q - rfmac == ETH_ALEN);
242
243	return 0;
244}
245
246early_param("rfmac", rfmac_param);
247
248/*
249 * Generate an Ethernet MAC address that has a good chance of being unique.
250 * @addr:	Pointer to six-byte array containing the Ethernet address
251 * Generates an Ethernet MAC address that is highly likely to be unique for
252 * this particular system on a network with other systems of the same type.
253 *
254 * The problem we are solving is that, when random_ether_addr() is used to
255 * generate MAC addresses at startup, there isn't much entropy for the random
256 * number generator to use and the addresses it produces are fairly likely to
257 * be the same as those of other identical systems on the same local network.
258 * This is true even for relatively small numbers of systems (for the reason
259 * why, see the Wikipedia entry for "Birthday problem" at:
260 *	http://en.wikipedia.org/wiki/Birthday_problem
261 *
262 * The good news is that we already have a MAC address known to be unique, the
263 * RF MAC address. The bad news is that this address is already in use on the
264 * RF interface. Worse, the obvious trick, taking the RF MAC address and
265 * turning on the locally managed bit, has already been used for other devices.
266 * Still, this does give us something to work with.
267 *
268 * The approach we take is:
269 * 1.	If we can't get the RF MAC Address, just call random_ether_addr.
270 * 2.	Use the 24-bit NIC-specific bits of the RF MAC address as the last 24
271 *	bits of the new address. This is very likely to be unique, except for
272 *	the current box.
273 * 3.	To avoid using addresses already on the current box, we set the top
274 *	six bits of the address with a value different from any currently
275 *	registered Scientific Atlanta organizationally unique identifyer
276 *	(OUI). This avoids duplication with any addresses on the system that
277 *	were generated from valid Scientific Atlanta-registered address by
278 *	simply flipping the locally managed bit.
279 * 4.	We aren't generating a multicast address, so we leave the multicast
280 *	bit off. Since we aren't using a registered address, we have to set
281 *	the locally managed bit.
282 * 5.	We then randomly generate the remaining 16-bits. This does two
283 *	things:
284 *	a.	It allows us to call this function for more than one device
285 *		in this system
286 *	b.	It ensures that things will probably still work even if
287 *		some device on the device network has a locally managed
288 *		address that matches the top six bits from step 2.
289 */
290void platform_random_ether_addr(u8 addr[ETH_ALEN])
291{
292	const int num_random_bytes = 2;
293	const unsigned char non_sciatl_oui_bits = 0xc0u;
294	const unsigned char mac_addr_locally_managed = (1 << 1);
295
296	if (!have_rfmac) {
297		pr_warning("rfmac not available on command line; "
298			"generating random MAC address\n");
299		random_ether_addr(addr);
300	}
301
302	else {
303		int	i;
304
305		/* Set the first byte to something that won't match a Scientific
306		 * Atlanta OUI, is locally managed, and isn't a multicast
307		 * address */
308		addr[0] = non_sciatl_oui_bits | mac_addr_locally_managed;
309
310		/* Get some bytes of random address information */
311		get_random_bytes(&addr[1], num_random_bytes);
312
313		/* Copy over the NIC-specific bits of the RF MAC address */
314		for (i = 1 + num_random_bytes; i < ETH_ALEN; i++)
315			addr[i] = rfmac[i];
316	}
317}
318