• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/arch/mips/kernel/
1/*
2 * i8253.c  8253/PIT functions
3 *
4 */
5#include <linux/clockchips.h>
6#include <linux/init.h>
7#include <linux/interrupt.h>
8#include <linux/jiffies.h>
9#include <linux/module.h>
10#include <linux/smp.h>
11#include <linux/spinlock.h>
12
13#include <asm/delay.h>
14#include <asm/i8253.h>
15#include <asm/io.h>
16#include <asm/time.h>
17
18DEFINE_RAW_SPINLOCK(i8253_lock);
19EXPORT_SYMBOL(i8253_lock);
20
21/*
22 * Initialize the PIT timer.
23 *
24 * This is also called after resume to bring the PIT into operation again.
25 */
26static void init_pit_timer(enum clock_event_mode mode,
27			   struct clock_event_device *evt)
28{
29	raw_spin_lock(&i8253_lock);
30
31	switch(mode) {
32	case CLOCK_EVT_MODE_PERIODIC:
33		/* binary, mode 2, LSB/MSB, ch 0 */
34		outb_p(0x34, PIT_MODE);
35		outb_p(LATCH & 0xff , PIT_CH0);	/* LSB */
36		outb(LATCH >> 8 , PIT_CH0);	/* MSB */
37		break;
38
39	case CLOCK_EVT_MODE_SHUTDOWN:
40	case CLOCK_EVT_MODE_UNUSED:
41		if (evt->mode == CLOCK_EVT_MODE_PERIODIC ||
42		    evt->mode == CLOCK_EVT_MODE_ONESHOT) {
43			outb_p(0x30, PIT_MODE);
44			outb_p(0, PIT_CH0);
45			outb_p(0, PIT_CH0);
46		}
47		break;
48
49	case CLOCK_EVT_MODE_ONESHOT:
50		/* One shot setup */
51		outb_p(0x38, PIT_MODE);
52		break;
53
54	case CLOCK_EVT_MODE_RESUME:
55		/* Nothing to do here */
56		break;
57	}
58	raw_spin_unlock(&i8253_lock);
59}
60
61/*
62 * Program the next event in oneshot mode
63 *
64 * Delta is given in PIT ticks
65 */
66static int pit_next_event(unsigned long delta, struct clock_event_device *evt)
67{
68	raw_spin_lock(&i8253_lock);
69	outb_p(delta & 0xff , PIT_CH0);	/* LSB */
70	outb(delta >> 8 , PIT_CH0);	/* MSB */
71	raw_spin_unlock(&i8253_lock);
72
73	return 0;
74}
75
76/*
77 * On UP the PIT can serve all of the possible timer functions. On SMP systems
78 * it can be solely used for the global tick.
79 *
80 * The profiling and update capabilites are switched off once the local apic is
81 * registered. This mechanism replaces the previous #ifdef LOCAL_APIC -
82 * !using_apic_timer decisions in do_timer_interrupt_hook()
83 */
84static struct clock_event_device pit_clockevent = {
85	.name		= "pit",
86	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
87	.set_mode	= init_pit_timer,
88	.set_next_event = pit_next_event,
89	.irq		= 0,
90};
91
92static irqreturn_t timer_interrupt(int irq, void *dev_id)
93{
94	pit_clockevent.event_handler(&pit_clockevent);
95
96	return IRQ_HANDLED;
97}
98
99static struct irqaction irq0  = {
100	.handler = timer_interrupt,
101	.flags = IRQF_DISABLED | IRQF_NOBALANCING | IRQF_TIMER,
102	.name = "timer"
103};
104
105/*
106 * Initialize the conversion factor and the min/max deltas of the clock event
107 * structure and register the clock event source with the framework.
108 */
109void __init setup_pit_timer(void)
110{
111	struct clock_event_device *cd = &pit_clockevent;
112	unsigned int cpu = smp_processor_id();
113
114	/*
115	 * Start pit with the boot cpu mask and make it global after the
116	 * IO_APIC has been initialized.
117	 */
118	cd->cpumask = cpumask_of(cpu);
119	clockevent_set_clock(cd, CLOCK_TICK_RATE);
120	cd->max_delta_ns = clockevent_delta2ns(0x7FFF, cd);
121	cd->min_delta_ns = clockevent_delta2ns(0xF, cd);
122	clockevents_register_device(cd);
123
124	setup_irq(0, &irq0);
125}
126
127/*
128 * Since the PIT overflows every tick, its not very useful
129 * to just read by itself. So use jiffies to emulate a free
130 * running counter:
131 */
132static cycle_t pit_read(struct clocksource *cs)
133{
134	unsigned long flags;
135	int count;
136	u32 jifs;
137	static int old_count;
138	static u32 old_jifs;
139
140	raw_spin_lock_irqsave(&i8253_lock, flags);
141	/*
142	 * Although our caller may have the read side of xtime_lock,
143	 * this is now a seqlock, and we are cheating in this routine
144	 * by having side effects on state that we cannot undo if
145	 * there is a collision on the seqlock and our caller has to
146	 * retry.  (Namely, old_jifs and old_count.)  So we must treat
147	 * jiffies as volatile despite the lock.  We read jiffies
148	 * before latching the timer count to guarantee that although
149	 * the jiffies value might be older than the count (that is,
150	 * the counter may underflow between the last point where
151	 * jiffies was incremented and the point where we latch the
152	 * count), it cannot be newer.
153	 */
154	jifs = jiffies;
155	outb_p(0x00, PIT_MODE);	/* latch the count ASAP */
156	count = inb_p(PIT_CH0);	/* read the latched count */
157	count |= inb_p(PIT_CH0) << 8;
158
159	/* VIA686a test code... reset the latch if count > max + 1 */
160	if (count > LATCH) {
161		outb_p(0x34, PIT_MODE);
162		outb_p(LATCH & 0xff, PIT_CH0);
163		outb(LATCH >> 8, PIT_CH0);
164		count = LATCH - 1;
165	}
166
167	/*
168	 * It's possible for count to appear to go the wrong way for a
169	 * couple of reasons:
170	 *
171	 *  1. The timer counter underflows, but we haven't handled the
172	 *     resulting interrupt and incremented jiffies yet.
173	 *  2. Hardware problem with the timer, not giving us continuous time,
174	 *     the counter does small "jumps" upwards on some Pentium systems,
175	 *     (see c't 95/10 page 335 for Neptun bug.)
176	 *
177	 * Previous attempts to handle these cases intelligently were
178	 * buggy, so we just do the simple thing now.
179	 */
180	if (count > old_count && jifs == old_jifs) {
181		count = old_count;
182	}
183	old_count = count;
184	old_jifs = jifs;
185
186	raw_spin_unlock_irqrestore(&i8253_lock, flags);
187
188	count = (LATCH - 1) - count;
189
190	return (cycle_t)(jifs * LATCH) + count;
191}
192
193static struct clocksource clocksource_pit = {
194	.name	= "pit",
195	.rating = 110,
196	.read	= pit_read,
197	.mask	= CLOCKSOURCE_MASK(32),
198	.mult	= 0,
199	.shift	= 20,
200};
201
202static int __init init_pit_clocksource(void)
203{
204	if (num_possible_cpus() > 1) /* PIT does not scale! */
205		return 0;
206
207	clocksource_pit.mult = clocksource_hz2mult(CLOCK_TICK_RATE, 20);
208	return clocksource_register(&clocksource_pit);
209}
210arch_initcall(init_pit_clocksource);
211