• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/arch/ia64/kernel/
1/*
2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
4 *
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
7 *
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
10 *
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
13 *
14 * Copyright (C) 1999-2005  Hewlett Packard Co
15 *               Stephane Eranian <eranian@hpl.hp.com>
16 *               David Mosberger-Tang <davidm@hpl.hp.com>
17 *
18 * More information about perfmon available at:
19 * 	http://www.hpl.hp.com/research/linux/perfmon
20 */
21
22#include <linux/module.h>
23#include <linux/kernel.h>
24#include <linux/sched.h>
25#include <linux/interrupt.h>
26#include <linux/proc_fs.h>
27#include <linux/seq_file.h>
28#include <linux/init.h>
29#include <linux/vmalloc.h>
30#include <linux/mm.h>
31#include <linux/sysctl.h>
32#include <linux/list.h>
33#include <linux/file.h>
34#include <linux/poll.h>
35#include <linux/vfs.h>
36#include <linux/smp.h>
37#include <linux/pagemap.h>
38#include <linux/mount.h>
39#include <linux/bitops.h>
40#include <linux/capability.h>
41#include <linux/rcupdate.h>
42#include <linux/completion.h>
43#include <linux/tracehook.h>
44#include <linux/slab.h>
45
46#include <asm/errno.h>
47#include <asm/intrinsics.h>
48#include <asm/page.h>
49#include <asm/perfmon.h>
50#include <asm/processor.h>
51#include <asm/signal.h>
52#include <asm/system.h>
53#include <asm/uaccess.h>
54#include <asm/delay.h>
55
56#ifdef CONFIG_PERFMON
57/*
58 * perfmon context state
59 */
60#define PFM_CTX_UNLOADED	1	/* context is not loaded onto any task */
61#define PFM_CTX_LOADED		2	/* context is loaded onto a task */
62#define PFM_CTX_MASKED		3	/* context is loaded but monitoring is masked due to overflow */
63#define PFM_CTX_ZOMBIE		4	/* owner of the context is closing it */
64
65#define PFM_INVALID_ACTIVATION	(~0UL)
66
67#define PFM_NUM_PMC_REGS	64	/* PMC save area for ctxsw */
68#define PFM_NUM_PMD_REGS	64	/* PMD save area for ctxsw */
69
70/*
71 * depth of message queue
72 */
73#define PFM_MAX_MSGS		32
74#define PFM_CTXQ_EMPTY(g)	((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
75
76/*
77 * type of a PMU register (bitmask).
78 * bitmask structure:
79 * 	bit0   : register implemented
80 * 	bit1   : end marker
81 * 	bit2-3 : reserved
82 * 	bit4   : pmc has pmc.pm
83 * 	bit5   : pmc controls a counter (has pmc.oi), pmd is used as counter
84 * 	bit6-7 : register type
85 * 	bit8-31: reserved
86 */
87#define PFM_REG_NOTIMPL		0x0 /* not implemented at all */
88#define PFM_REG_IMPL		0x1 /* register implemented */
89#define PFM_REG_END		0x2 /* end marker */
90#define PFM_REG_MONITOR		(0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
91#define PFM_REG_COUNTING	(0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
92#define PFM_REG_CONTROL		(0x4<<4|PFM_REG_IMPL) /* PMU control register */
93#define	PFM_REG_CONFIG		(0x8<<4|PFM_REG_IMPL) /* configuration register */
94#define PFM_REG_BUFFER	 	(0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
95
96#define PMC_IS_LAST(i)	(pmu_conf->pmc_desc[i].type & PFM_REG_END)
97#define PMD_IS_LAST(i)	(pmu_conf->pmd_desc[i].type & PFM_REG_END)
98
99#define PMC_OVFL_NOTIFY(ctx, i)	((ctx)->ctx_pmds[i].flags &  PFM_REGFL_OVFL_NOTIFY)
100
101/* i assumed unsigned */
102#define PMC_IS_IMPL(i)	  (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
103#define PMD_IS_IMPL(i)	  (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
104
105#define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
106#define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
107#define PMC_IS_MONITOR(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR)  == PFM_REG_MONITOR)
108#define PMC_IS_CONTROL(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL)  == PFM_REG_CONTROL)
109
110#define PMC_DFL_VAL(i)     pmu_conf->pmc_desc[i].default_value
111#define PMC_RSVD_MASK(i)   pmu_conf->pmc_desc[i].reserved_mask
112#define PMD_PMD_DEP(i)	   pmu_conf->pmd_desc[i].dep_pmd[0]
113#define PMC_PMD_DEP(i)	   pmu_conf->pmc_desc[i].dep_pmd[0]
114
115#define PFM_NUM_IBRS	  IA64_NUM_DBG_REGS
116#define PFM_NUM_DBRS	  IA64_NUM_DBG_REGS
117
118#define CTX_OVFL_NOBLOCK(c)	((c)->ctx_fl_block == 0)
119#define CTX_HAS_SMPL(c)		((c)->ctx_fl_is_sampling)
120#define PFM_CTX_TASK(h)		(h)->ctx_task
121
122#define PMU_PMC_OI		5 /* position of pmc.oi bit */
123
124#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
125#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
126
127#define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
128
129#define CTX_USED_IBR(ctx,n) 	(ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
130#define CTX_USED_DBR(ctx,n) 	(ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
131#define CTX_USES_DBREGS(ctx)	(((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
132#define PFM_CODE_RR	0	/* requesting code range restriction */
133#define PFM_DATA_RR	1	/* requestion data range restriction */
134
135#define PFM_CPUINFO_CLEAR(v)	pfm_get_cpu_var(pfm_syst_info) &= ~(v)
136#define PFM_CPUINFO_SET(v)	pfm_get_cpu_var(pfm_syst_info) |= (v)
137#define PFM_CPUINFO_GET()	pfm_get_cpu_var(pfm_syst_info)
138
139#define RDEP(x)	(1UL<<(x))
140
141/*
142 * context protection macros
143 * in SMP:
144 * 	- we need to protect against CPU concurrency (spin_lock)
145 * 	- we need to protect against PMU overflow interrupts (local_irq_disable)
146 * in UP:
147 * 	- we need to protect against PMU overflow interrupts (local_irq_disable)
148 *
149 * spin_lock_irqsave()/spin_unlock_irqrestore():
150 * 	in SMP: local_irq_disable + spin_lock
151 * 	in UP : local_irq_disable
152 *
153 * spin_lock()/spin_lock():
154 * 	in UP : removed automatically
155 * 	in SMP: protect against context accesses from other CPU. interrupts
156 * 	        are not masked. This is useful for the PMU interrupt handler
157 * 	        because we know we will not get PMU concurrency in that code.
158 */
159#define PROTECT_CTX(c, f) \
160	do {  \
161		DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
162		spin_lock_irqsave(&(c)->ctx_lock, f); \
163		DPRINT(("spinlocked ctx %p  by [%d]\n", c, task_pid_nr(current))); \
164	} while(0)
165
166#define UNPROTECT_CTX(c, f) \
167	do { \
168		DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
169		spin_unlock_irqrestore(&(c)->ctx_lock, f); \
170	} while(0)
171
172#define PROTECT_CTX_NOPRINT(c, f) \
173	do {  \
174		spin_lock_irqsave(&(c)->ctx_lock, f); \
175	} while(0)
176
177
178#define UNPROTECT_CTX_NOPRINT(c, f) \
179	do { \
180		spin_unlock_irqrestore(&(c)->ctx_lock, f); \
181	} while(0)
182
183
184#define PROTECT_CTX_NOIRQ(c) \
185	do {  \
186		spin_lock(&(c)->ctx_lock); \
187	} while(0)
188
189#define UNPROTECT_CTX_NOIRQ(c) \
190	do { \
191		spin_unlock(&(c)->ctx_lock); \
192	} while(0)
193
194
195#ifdef CONFIG_SMP
196
197#define GET_ACTIVATION()	pfm_get_cpu_var(pmu_activation_number)
198#define INC_ACTIVATION()	pfm_get_cpu_var(pmu_activation_number)++
199#define SET_ACTIVATION(c)	(c)->ctx_last_activation = GET_ACTIVATION()
200
201#else /* !CONFIG_SMP */
202#define SET_ACTIVATION(t) 	do {} while(0)
203#define GET_ACTIVATION(t) 	do {} while(0)
204#define INC_ACTIVATION(t) 	do {} while(0)
205#endif /* CONFIG_SMP */
206
207#define SET_PMU_OWNER(t, c)	do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
208#define GET_PMU_OWNER()		pfm_get_cpu_var(pmu_owner)
209#define GET_PMU_CTX()		pfm_get_cpu_var(pmu_ctx)
210
211#define LOCK_PFS(g)	    	spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
212#define UNLOCK_PFS(g)	    	spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
213
214#define PFM_REG_RETFLAG_SET(flags, val)	do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
215
216/*
217 * cmp0 must be the value of pmc0
218 */
219#define PMC0_HAS_OVFL(cmp0)  (cmp0 & ~0x1UL)
220
221#define PFMFS_MAGIC 0xa0b4d889
222
223/*
224 * debugging
225 */
226#define PFM_DEBUGGING 1
227#ifdef PFM_DEBUGGING
228#define DPRINT(a) \
229	do { \
230		if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
231	} while (0)
232
233#define DPRINT_ovfl(a) \
234	do { \
235		if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
236	} while (0)
237#endif
238
239/*
240 * 64-bit software counter structure
241 *
242 * the next_reset_type is applied to the next call to pfm_reset_regs()
243 */
244typedef struct {
245	unsigned long	val;		/* virtual 64bit counter value */
246	unsigned long	lval;		/* last reset value */
247	unsigned long	long_reset;	/* reset value on sampling overflow */
248	unsigned long	short_reset;    /* reset value on overflow */
249	unsigned long	reset_pmds[4];  /* which other pmds to reset when this counter overflows */
250	unsigned long	smpl_pmds[4];   /* which pmds are accessed when counter overflow */
251	unsigned long	seed;		/* seed for random-number generator */
252	unsigned long	mask;		/* mask for random-number generator */
253	unsigned int 	flags;		/* notify/do not notify */
254	unsigned long	eventid;	/* overflow event identifier */
255} pfm_counter_t;
256
257/*
258 * context flags
259 */
260typedef struct {
261	unsigned int block:1;		/* when 1, task will blocked on user notifications */
262	unsigned int system:1;		/* do system wide monitoring */
263	unsigned int using_dbreg:1;	/* using range restrictions (debug registers) */
264	unsigned int is_sampling:1;	/* true if using a custom format */
265	unsigned int excl_idle:1;	/* exclude idle task in system wide session */
266	unsigned int going_zombie:1;	/* context is zombie (MASKED+blocking) */
267	unsigned int trap_reason:2;	/* reason for going into pfm_handle_work() */
268	unsigned int no_msg:1;		/* no message sent on overflow */
269	unsigned int can_restart:1;	/* allowed to issue a PFM_RESTART */
270	unsigned int reserved:22;
271} pfm_context_flags_t;
272
273#define PFM_TRAP_REASON_NONE		0x0	/* default value */
274#define PFM_TRAP_REASON_BLOCK		0x1	/* we need to block on overflow */
275#define PFM_TRAP_REASON_RESET		0x2	/* we need to reset PMDs */
276
277
278/*
279 * perfmon context: encapsulates all the state of a monitoring session
280 */
281
282typedef struct pfm_context {
283	spinlock_t		ctx_lock;		/* context protection */
284
285	pfm_context_flags_t	ctx_flags;		/* bitmask of flags  (block reason incl.) */
286	unsigned int		ctx_state;		/* state: active/inactive (no bitfield) */
287
288	struct task_struct 	*ctx_task;		/* task to which context is attached */
289
290	unsigned long		ctx_ovfl_regs[4];	/* which registers overflowed (notification) */
291
292	struct completion	ctx_restart_done;  	/* use for blocking notification mode */
293
294	unsigned long		ctx_used_pmds[4];	/* bitmask of PMD used            */
295	unsigned long		ctx_all_pmds[4];	/* bitmask of all accessible PMDs */
296	unsigned long		ctx_reload_pmds[4];	/* bitmask of force reload PMD on ctxsw in */
297
298	unsigned long		ctx_all_pmcs[4];	/* bitmask of all accessible PMCs */
299	unsigned long		ctx_reload_pmcs[4];	/* bitmask of force reload PMC on ctxsw in */
300	unsigned long		ctx_used_monitors[4];	/* bitmask of monitor PMC being used */
301
302	unsigned long		ctx_pmcs[PFM_NUM_PMC_REGS];	/*  saved copies of PMC values */
303
304	unsigned int		ctx_used_ibrs[1];		/* bitmask of used IBR (speedup ctxsw in) */
305	unsigned int		ctx_used_dbrs[1];		/* bitmask of used DBR (speedup ctxsw in) */
306	unsigned long		ctx_dbrs[IA64_NUM_DBG_REGS];	/* DBR values (cache) when not loaded */
307	unsigned long		ctx_ibrs[IA64_NUM_DBG_REGS];	/* IBR values (cache) when not loaded */
308
309	pfm_counter_t		ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
310
311	unsigned long		th_pmcs[PFM_NUM_PMC_REGS];	/* PMC thread save state */
312	unsigned long		th_pmds[PFM_NUM_PMD_REGS];	/* PMD thread save state */
313
314	unsigned long		ctx_saved_psr_up;	/* only contains psr.up value */
315
316	unsigned long		ctx_last_activation;	/* context last activation number for last_cpu */
317	unsigned int		ctx_last_cpu;		/* CPU id of current or last CPU used (SMP only) */
318	unsigned int		ctx_cpu;		/* cpu to which perfmon is applied (system wide) */
319
320	int			ctx_fd;			/* file descriptor used my this context */
321	pfm_ovfl_arg_t		ctx_ovfl_arg;		/* argument to custom buffer format handler */
322
323	pfm_buffer_fmt_t	*ctx_buf_fmt;		/* buffer format callbacks */
324	void			*ctx_smpl_hdr;		/* points to sampling buffer header kernel vaddr */
325	unsigned long		ctx_smpl_size;		/* size of sampling buffer */
326	void			*ctx_smpl_vaddr;	/* user level virtual address of smpl buffer */
327
328	wait_queue_head_t 	ctx_msgq_wait;
329	pfm_msg_t		ctx_msgq[PFM_MAX_MSGS];
330	int			ctx_msgq_head;
331	int			ctx_msgq_tail;
332	struct fasync_struct	*ctx_async_queue;
333
334	wait_queue_head_t 	ctx_zombieq;		/* termination cleanup wait queue */
335} pfm_context_t;
336
337/*
338 * magic number used to verify that structure is really
339 * a perfmon context
340 */
341#define PFM_IS_FILE(f)		((f)->f_op == &pfm_file_ops)
342
343#define PFM_GET_CTX(t)	 	((pfm_context_t *)(t)->thread.pfm_context)
344
345#ifdef CONFIG_SMP
346#define SET_LAST_CPU(ctx, v)	(ctx)->ctx_last_cpu = (v)
347#define GET_LAST_CPU(ctx)	(ctx)->ctx_last_cpu
348#else
349#define SET_LAST_CPU(ctx, v)	do {} while(0)
350#define GET_LAST_CPU(ctx)	do {} while(0)
351#endif
352
353
354#define ctx_fl_block		ctx_flags.block
355#define ctx_fl_system		ctx_flags.system
356#define ctx_fl_using_dbreg	ctx_flags.using_dbreg
357#define ctx_fl_is_sampling	ctx_flags.is_sampling
358#define ctx_fl_excl_idle	ctx_flags.excl_idle
359#define ctx_fl_going_zombie	ctx_flags.going_zombie
360#define ctx_fl_trap_reason	ctx_flags.trap_reason
361#define ctx_fl_no_msg		ctx_flags.no_msg
362#define ctx_fl_can_restart	ctx_flags.can_restart
363
364#define PFM_SET_WORK_PENDING(t, v)	do { (t)->thread.pfm_needs_checking = v; } while(0);
365#define PFM_GET_WORK_PENDING(t)		(t)->thread.pfm_needs_checking
366
367/*
368 * global information about all sessions
369 * mostly used to synchronize between system wide and per-process
370 */
371typedef struct {
372	spinlock_t		pfs_lock;		   /* lock the structure */
373
374	unsigned int		pfs_task_sessions;	   /* number of per task sessions */
375	unsigned int		pfs_sys_sessions;	   /* number of per system wide sessions */
376	unsigned int		pfs_sys_use_dbregs;	   /* incremented when a system wide session uses debug regs */
377	unsigned int		pfs_ptrace_use_dbregs;	   /* incremented when a process uses debug regs */
378	struct task_struct	*pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
379} pfm_session_t;
380
381/*
382 * information about a PMC or PMD.
383 * dep_pmd[]: a bitmask of dependent PMD registers
384 * dep_pmc[]: a bitmask of dependent PMC registers
385 */
386typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
387typedef struct {
388	unsigned int		type;
389	int			pm_pos;
390	unsigned long		default_value;	/* power-on default value */
391	unsigned long		reserved_mask;	/* bitmask of reserved bits */
392	pfm_reg_check_t		read_check;
393	pfm_reg_check_t		write_check;
394	unsigned long		dep_pmd[4];
395	unsigned long		dep_pmc[4];
396} pfm_reg_desc_t;
397
398/* assume cnum is a valid monitor */
399#define PMC_PM(cnum, val)	(((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
400
401/*
402 * This structure is initialized at boot time and contains
403 * a description of the PMU main characteristics.
404 *
405 * If the probe function is defined, detection is based
406 * on its return value:
407 * 	- 0 means recognized PMU
408 * 	- anything else means not supported
409 * When the probe function is not defined, then the pmu_family field
410 * is used and it must match the host CPU family such that:
411 * 	- cpu->family & config->pmu_family != 0
412 */
413typedef struct {
414	unsigned long  ovfl_val;	/* overflow value for counters */
415
416	pfm_reg_desc_t *pmc_desc;	/* detailed PMC register dependencies descriptions */
417	pfm_reg_desc_t *pmd_desc;	/* detailed PMD register dependencies descriptions */
418
419	unsigned int   num_pmcs;	/* number of PMCS: computed at init time */
420	unsigned int   num_pmds;	/* number of PMDS: computed at init time */
421	unsigned long  impl_pmcs[4];	/* bitmask of implemented PMCS */
422	unsigned long  impl_pmds[4];	/* bitmask of implemented PMDS */
423
424	char	      *pmu_name;	/* PMU family name */
425	unsigned int  pmu_family;	/* cpuid family pattern used to identify pmu */
426	unsigned int  flags;		/* pmu specific flags */
427	unsigned int  num_ibrs;		/* number of IBRS: computed at init time */
428	unsigned int  num_dbrs;		/* number of DBRS: computed at init time */
429	unsigned int  num_counters;	/* PMC/PMD counting pairs : computed at init time */
430	int           (*probe)(void);   /* customized probe routine */
431	unsigned int  use_rr_dbregs:1;	/* set if debug registers used for range restriction */
432} pmu_config_t;
433/*
434 * PMU specific flags
435 */
436#define PFM_PMU_IRQ_RESEND	1	/* PMU needs explicit IRQ resend */
437
438/*
439 * debug register related type definitions
440 */
441typedef struct {
442	unsigned long ibr_mask:56;
443	unsigned long ibr_plm:4;
444	unsigned long ibr_ig:3;
445	unsigned long ibr_x:1;
446} ibr_mask_reg_t;
447
448typedef struct {
449	unsigned long dbr_mask:56;
450	unsigned long dbr_plm:4;
451	unsigned long dbr_ig:2;
452	unsigned long dbr_w:1;
453	unsigned long dbr_r:1;
454} dbr_mask_reg_t;
455
456typedef union {
457	unsigned long  val;
458	ibr_mask_reg_t ibr;
459	dbr_mask_reg_t dbr;
460} dbreg_t;
461
462
463/*
464 * perfmon command descriptions
465 */
466typedef struct {
467	int		(*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
468	char		*cmd_name;
469	int		cmd_flags;
470	unsigned int	cmd_narg;
471	size_t		cmd_argsize;
472	int		(*cmd_getsize)(void *arg, size_t *sz);
473} pfm_cmd_desc_t;
474
475#define PFM_CMD_FD		0x01	/* command requires a file descriptor */
476#define PFM_CMD_ARG_READ	0x02	/* command must read argument(s) */
477#define PFM_CMD_ARG_RW		0x04	/* command must read/write argument(s) */
478#define PFM_CMD_STOP		0x08	/* command does not work on zombie context */
479
480
481#define PFM_CMD_NAME(cmd)	pfm_cmd_tab[(cmd)].cmd_name
482#define PFM_CMD_READ_ARG(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
483#define PFM_CMD_RW_ARG(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
484#define PFM_CMD_USE_FD(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
485#define PFM_CMD_STOPPED(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
486
487#define PFM_CMD_ARG_MANY	-1 /* cannot be zero */
488
489typedef struct {
490	unsigned long pfm_spurious_ovfl_intr_count;	/* keep track of spurious ovfl interrupts */
491	unsigned long pfm_replay_ovfl_intr_count;	/* keep track of replayed ovfl interrupts */
492	unsigned long pfm_ovfl_intr_count; 		/* keep track of ovfl interrupts */
493	unsigned long pfm_ovfl_intr_cycles;		/* cycles spent processing ovfl interrupts */
494	unsigned long pfm_ovfl_intr_cycles_min;		/* min cycles spent processing ovfl interrupts */
495	unsigned long pfm_ovfl_intr_cycles_max;		/* max cycles spent processing ovfl interrupts */
496	unsigned long pfm_smpl_handler_calls;
497	unsigned long pfm_smpl_handler_cycles;
498	char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
499} pfm_stats_t;
500
501/*
502 * perfmon internal variables
503 */
504static pfm_stats_t		pfm_stats[NR_CPUS];
505static pfm_session_t		pfm_sessions;	/* global sessions information */
506
507static DEFINE_SPINLOCK(pfm_alt_install_check);
508static pfm_intr_handler_desc_t  *pfm_alt_intr_handler;
509
510static struct proc_dir_entry 	*perfmon_dir;
511static pfm_uuid_t		pfm_null_uuid = {0,};
512
513static spinlock_t		pfm_buffer_fmt_lock;
514static LIST_HEAD(pfm_buffer_fmt_list);
515
516static pmu_config_t		*pmu_conf;
517
518/* sysctl() controls */
519pfm_sysctl_t pfm_sysctl;
520EXPORT_SYMBOL(pfm_sysctl);
521
522static ctl_table pfm_ctl_table[]={
523	{
524		.procname	= "debug",
525		.data		= &pfm_sysctl.debug,
526		.maxlen		= sizeof(int),
527		.mode		= 0666,
528		.proc_handler	= proc_dointvec,
529	},
530	{
531		.procname	= "debug_ovfl",
532		.data		= &pfm_sysctl.debug_ovfl,
533		.maxlen		= sizeof(int),
534		.mode		= 0666,
535		.proc_handler	= proc_dointvec,
536	},
537	{
538		.procname	= "fastctxsw",
539		.data		= &pfm_sysctl.fastctxsw,
540		.maxlen		= sizeof(int),
541		.mode		= 0600,
542		.proc_handler	= proc_dointvec,
543	},
544	{
545		.procname	= "expert_mode",
546		.data		= &pfm_sysctl.expert_mode,
547		.maxlen		= sizeof(int),
548		.mode		= 0600,
549		.proc_handler	= proc_dointvec,
550	},
551	{}
552};
553static ctl_table pfm_sysctl_dir[] = {
554	{
555		.procname	= "perfmon",
556		.mode		= 0555,
557		.child		= pfm_ctl_table,
558	},
559 	{}
560};
561static ctl_table pfm_sysctl_root[] = {
562	{
563		.procname	= "kernel",
564		.mode		= 0555,
565		.child		= pfm_sysctl_dir,
566	},
567 	{}
568};
569static struct ctl_table_header *pfm_sysctl_header;
570
571static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
572
573#define pfm_get_cpu_var(v)		__ia64_per_cpu_var(v)
574#define pfm_get_cpu_data(a,b)		per_cpu(a, b)
575
576static inline void
577pfm_put_task(struct task_struct *task)
578{
579	if (task != current) put_task_struct(task);
580}
581
582static inline void
583pfm_reserve_page(unsigned long a)
584{
585	SetPageReserved(vmalloc_to_page((void *)a));
586}
587static inline void
588pfm_unreserve_page(unsigned long a)
589{
590	ClearPageReserved(vmalloc_to_page((void*)a));
591}
592
593static inline unsigned long
594pfm_protect_ctx_ctxsw(pfm_context_t *x)
595{
596	spin_lock(&(x)->ctx_lock);
597	return 0UL;
598}
599
600static inline void
601pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
602{
603	spin_unlock(&(x)->ctx_lock);
604}
605
606static inline unsigned int
607pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct)
608{
609	return do_munmap(mm, addr, len);
610}
611
612static inline unsigned long
613pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
614{
615	return get_unmapped_area(file, addr, len, pgoff, flags);
616}
617
618
619static int
620pfmfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data,
621	     struct vfsmount *mnt)
622{
623	return get_sb_pseudo(fs_type, "pfm:", NULL, PFMFS_MAGIC, mnt);
624}
625
626static struct file_system_type pfm_fs_type = {
627	.name     = "pfmfs",
628	.get_sb   = pfmfs_get_sb,
629	.kill_sb  = kill_anon_super,
630};
631
632DEFINE_PER_CPU(unsigned long, pfm_syst_info);
633DEFINE_PER_CPU(struct task_struct *, pmu_owner);
634DEFINE_PER_CPU(pfm_context_t  *, pmu_ctx);
635DEFINE_PER_CPU(unsigned long, pmu_activation_number);
636EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
637
638
639/* forward declaration */
640static const struct file_operations pfm_file_ops;
641
642/*
643 * forward declarations
644 */
645#ifndef CONFIG_SMP
646static void pfm_lazy_save_regs (struct task_struct *ta);
647#endif
648
649void dump_pmu_state(const char *);
650static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
651
652#include "perfmon_itanium.h"
653#include "perfmon_mckinley.h"
654#include "perfmon_montecito.h"
655#include "perfmon_generic.h"
656
657static pmu_config_t *pmu_confs[]={
658	&pmu_conf_mont,
659	&pmu_conf_mck,
660	&pmu_conf_ita,
661	&pmu_conf_gen, /* must be last */
662	NULL
663};
664
665
666static int pfm_end_notify_user(pfm_context_t *ctx);
667
668static inline void
669pfm_clear_psr_pp(void)
670{
671	ia64_rsm(IA64_PSR_PP);
672	ia64_srlz_i();
673}
674
675static inline void
676pfm_set_psr_pp(void)
677{
678	ia64_ssm(IA64_PSR_PP);
679	ia64_srlz_i();
680}
681
682static inline void
683pfm_clear_psr_up(void)
684{
685	ia64_rsm(IA64_PSR_UP);
686	ia64_srlz_i();
687}
688
689static inline void
690pfm_set_psr_up(void)
691{
692	ia64_ssm(IA64_PSR_UP);
693	ia64_srlz_i();
694}
695
696static inline unsigned long
697pfm_get_psr(void)
698{
699	unsigned long tmp;
700	tmp = ia64_getreg(_IA64_REG_PSR);
701	ia64_srlz_i();
702	return tmp;
703}
704
705static inline void
706pfm_set_psr_l(unsigned long val)
707{
708	ia64_setreg(_IA64_REG_PSR_L, val);
709	ia64_srlz_i();
710}
711
712static inline void
713pfm_freeze_pmu(void)
714{
715	ia64_set_pmc(0,1UL);
716	ia64_srlz_d();
717}
718
719static inline void
720pfm_unfreeze_pmu(void)
721{
722	ia64_set_pmc(0,0UL);
723	ia64_srlz_d();
724}
725
726static inline void
727pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
728{
729	int i;
730
731	for (i=0; i < nibrs; i++) {
732		ia64_set_ibr(i, ibrs[i]);
733		ia64_dv_serialize_instruction();
734	}
735	ia64_srlz_i();
736}
737
738static inline void
739pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
740{
741	int i;
742
743	for (i=0; i < ndbrs; i++) {
744		ia64_set_dbr(i, dbrs[i]);
745		ia64_dv_serialize_data();
746	}
747	ia64_srlz_d();
748}
749
750/*
751 * PMD[i] must be a counter. no check is made
752 */
753static inline unsigned long
754pfm_read_soft_counter(pfm_context_t *ctx, int i)
755{
756	return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
757}
758
759/*
760 * PMD[i] must be a counter. no check is made
761 */
762static inline void
763pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
764{
765	unsigned long ovfl_val = pmu_conf->ovfl_val;
766
767	ctx->ctx_pmds[i].val = val  & ~ovfl_val;
768	/*
769	 * writing to unimplemented part is ignore, so we do not need to
770	 * mask off top part
771	 */
772	ia64_set_pmd(i, val & ovfl_val);
773}
774
775static pfm_msg_t *
776pfm_get_new_msg(pfm_context_t *ctx)
777{
778	int idx, next;
779
780	next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
781
782	DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
783	if (next == ctx->ctx_msgq_head) return NULL;
784
785 	idx = 	ctx->ctx_msgq_tail;
786	ctx->ctx_msgq_tail = next;
787
788	DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
789
790	return ctx->ctx_msgq+idx;
791}
792
793static pfm_msg_t *
794pfm_get_next_msg(pfm_context_t *ctx)
795{
796	pfm_msg_t *msg;
797
798	DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
799
800	if (PFM_CTXQ_EMPTY(ctx)) return NULL;
801
802	/*
803	 * get oldest message
804	 */
805	msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
806
807	/*
808	 * and move forward
809	 */
810	ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
811
812	DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
813
814	return msg;
815}
816
817static void
818pfm_reset_msgq(pfm_context_t *ctx)
819{
820	ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
821	DPRINT(("ctx=%p msgq reset\n", ctx));
822}
823
824static void *
825pfm_rvmalloc(unsigned long size)
826{
827	void *mem;
828	unsigned long addr;
829
830	size = PAGE_ALIGN(size);
831	mem  = vmalloc(size);
832	if (mem) {
833		//printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
834		memset(mem, 0, size);
835		addr = (unsigned long)mem;
836		while (size > 0) {
837			pfm_reserve_page(addr);
838			addr+=PAGE_SIZE;
839			size-=PAGE_SIZE;
840		}
841	}
842	return mem;
843}
844
845static void
846pfm_rvfree(void *mem, unsigned long size)
847{
848	unsigned long addr;
849
850	if (mem) {
851		DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
852		addr = (unsigned long) mem;
853		while ((long) size > 0) {
854			pfm_unreserve_page(addr);
855			addr+=PAGE_SIZE;
856			size-=PAGE_SIZE;
857		}
858		vfree(mem);
859	}
860	return;
861}
862
863static pfm_context_t *
864pfm_context_alloc(int ctx_flags)
865{
866	pfm_context_t *ctx;
867
868	/*
869	 * allocate context descriptor
870	 * must be able to free with interrupts disabled
871	 */
872	ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
873	if (ctx) {
874		DPRINT(("alloc ctx @%p\n", ctx));
875
876		/*
877		 * init context protection lock
878		 */
879		spin_lock_init(&ctx->ctx_lock);
880
881		/*
882		 * context is unloaded
883		 */
884		ctx->ctx_state = PFM_CTX_UNLOADED;
885
886		/*
887		 * initialization of context's flags
888		 */
889		ctx->ctx_fl_block       = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
890		ctx->ctx_fl_system      = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
891		ctx->ctx_fl_no_msg      = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
892		/*
893		 * will move to set properties
894		 * ctx->ctx_fl_excl_idle   = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
895		 */
896
897		/*
898		 * init restart semaphore to locked
899		 */
900		init_completion(&ctx->ctx_restart_done);
901
902		/*
903		 * activation is used in SMP only
904		 */
905		ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
906		SET_LAST_CPU(ctx, -1);
907
908		/*
909		 * initialize notification message queue
910		 */
911		ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
912		init_waitqueue_head(&ctx->ctx_msgq_wait);
913		init_waitqueue_head(&ctx->ctx_zombieq);
914
915	}
916	return ctx;
917}
918
919static void
920pfm_context_free(pfm_context_t *ctx)
921{
922	if (ctx) {
923		DPRINT(("free ctx @%p\n", ctx));
924		kfree(ctx);
925	}
926}
927
928static void
929pfm_mask_monitoring(struct task_struct *task)
930{
931	pfm_context_t *ctx = PFM_GET_CTX(task);
932	unsigned long mask, val, ovfl_mask;
933	int i;
934
935	DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
936
937	ovfl_mask = pmu_conf->ovfl_val;
938	/*
939	 * monitoring can only be masked as a result of a valid
940	 * counter overflow. In UP, it means that the PMU still
941	 * has an owner. Note that the owner can be different
942	 * from the current task. However the PMU state belongs
943	 * to the owner.
944	 * In SMP, a valid overflow only happens when task is
945	 * current. Therefore if we come here, we know that
946	 * the PMU state belongs to the current task, therefore
947	 * we can access the live registers.
948	 *
949	 * So in both cases, the live register contains the owner's
950	 * state. We can ONLY touch the PMU registers and NOT the PSR.
951	 *
952	 * As a consequence to this call, the ctx->th_pmds[] array
953	 * contains stale information which must be ignored
954	 * when context is reloaded AND monitoring is active (see
955	 * pfm_restart).
956	 */
957	mask = ctx->ctx_used_pmds[0];
958	for (i = 0; mask; i++, mask>>=1) {
959		/* skip non used pmds */
960		if ((mask & 0x1) == 0) continue;
961		val = ia64_get_pmd(i);
962
963		if (PMD_IS_COUNTING(i)) {
964			/*
965		 	 * we rebuild the full 64 bit value of the counter
966		 	 */
967			ctx->ctx_pmds[i].val += (val & ovfl_mask);
968		} else {
969			ctx->ctx_pmds[i].val = val;
970		}
971		DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
972			i,
973			ctx->ctx_pmds[i].val,
974			val & ovfl_mask));
975	}
976	/*
977	 * mask monitoring by setting the privilege level to 0
978	 * we cannot use psr.pp/psr.up for this, it is controlled by
979	 * the user
980	 *
981	 * if task is current, modify actual registers, otherwise modify
982	 * thread save state, i.e., what will be restored in pfm_load_regs()
983	 */
984	mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
985	for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
986		if ((mask & 0x1) == 0UL) continue;
987		ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
988		ctx->th_pmcs[i] &= ~0xfUL;
989		DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
990	}
991	/*
992	 * make all of this visible
993	 */
994	ia64_srlz_d();
995}
996
997/*
998 * must always be done with task == current
999 *
1000 * context must be in MASKED state when calling
1001 */
1002static void
1003pfm_restore_monitoring(struct task_struct *task)
1004{
1005	pfm_context_t *ctx = PFM_GET_CTX(task);
1006	unsigned long mask, ovfl_mask;
1007	unsigned long psr, val;
1008	int i, is_system;
1009
1010	is_system = ctx->ctx_fl_system;
1011	ovfl_mask = pmu_conf->ovfl_val;
1012
1013	if (task != current) {
1014		printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1015		return;
1016	}
1017	if (ctx->ctx_state != PFM_CTX_MASKED) {
1018		printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1019			task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1020		return;
1021	}
1022	psr = pfm_get_psr();
1023	/*
1024	 * monitoring is masked via the PMC.
1025	 * As we restore their value, we do not want each counter to
1026	 * restart right away. We stop monitoring using the PSR,
1027	 * restore the PMC (and PMD) and then re-establish the psr
1028	 * as it was. Note that there can be no pending overflow at
1029	 * this point, because monitoring was MASKED.
1030	 *
1031	 * system-wide session are pinned and self-monitoring
1032	 */
1033	if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1034		/* disable dcr pp */
1035		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1036		pfm_clear_psr_pp();
1037	} else {
1038		pfm_clear_psr_up();
1039	}
1040	/*
1041	 * first, we restore the PMD
1042	 */
1043	mask = ctx->ctx_used_pmds[0];
1044	for (i = 0; mask; i++, mask>>=1) {
1045		/* skip non used pmds */
1046		if ((mask & 0x1) == 0) continue;
1047
1048		if (PMD_IS_COUNTING(i)) {
1049			/*
1050			 * we split the 64bit value according to
1051			 * counter width
1052			 */
1053			val = ctx->ctx_pmds[i].val & ovfl_mask;
1054			ctx->ctx_pmds[i].val &= ~ovfl_mask;
1055		} else {
1056			val = ctx->ctx_pmds[i].val;
1057		}
1058		ia64_set_pmd(i, val);
1059
1060		DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1061			i,
1062			ctx->ctx_pmds[i].val,
1063			val));
1064	}
1065	/*
1066	 * restore the PMCs
1067	 */
1068	mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1069	for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1070		if ((mask & 0x1) == 0UL) continue;
1071		ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1072		ia64_set_pmc(i, ctx->th_pmcs[i]);
1073		DPRINT(("[%d] pmc[%d]=0x%lx\n",
1074					task_pid_nr(task), i, ctx->th_pmcs[i]));
1075	}
1076	ia64_srlz_d();
1077
1078	if (ctx->ctx_fl_using_dbreg) {
1079		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1080		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1081	}
1082
1083	/*
1084	 * now restore PSR
1085	 */
1086	if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1087		/* enable dcr pp */
1088		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1089		ia64_srlz_i();
1090	}
1091	pfm_set_psr_l(psr);
1092}
1093
1094static inline void
1095pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1096{
1097	int i;
1098
1099	ia64_srlz_d();
1100
1101	for (i=0; mask; i++, mask>>=1) {
1102		if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1103	}
1104}
1105
1106/*
1107 * reload from thread state (used for ctxw only)
1108 */
1109static inline void
1110pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1111{
1112	int i;
1113	unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1114
1115	for (i=0; mask; i++, mask>>=1) {
1116		if ((mask & 0x1) == 0) continue;
1117		val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1118		ia64_set_pmd(i, val);
1119	}
1120	ia64_srlz_d();
1121}
1122
1123/*
1124 * propagate PMD from context to thread-state
1125 */
1126static inline void
1127pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1128{
1129	unsigned long ovfl_val = pmu_conf->ovfl_val;
1130	unsigned long mask = ctx->ctx_all_pmds[0];
1131	unsigned long val;
1132	int i;
1133
1134	DPRINT(("mask=0x%lx\n", mask));
1135
1136	for (i=0; mask; i++, mask>>=1) {
1137
1138		val = ctx->ctx_pmds[i].val;
1139
1140		/*
1141		 * We break up the 64 bit value into 2 pieces
1142		 * the lower bits go to the machine state in the
1143		 * thread (will be reloaded on ctxsw in).
1144		 * The upper part stays in the soft-counter.
1145		 */
1146		if (PMD_IS_COUNTING(i)) {
1147			ctx->ctx_pmds[i].val = val & ~ovfl_val;
1148			 val &= ovfl_val;
1149		}
1150		ctx->th_pmds[i] = val;
1151
1152		DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1153			i,
1154			ctx->th_pmds[i],
1155			ctx->ctx_pmds[i].val));
1156	}
1157}
1158
1159/*
1160 * propagate PMC from context to thread-state
1161 */
1162static inline void
1163pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1164{
1165	unsigned long mask = ctx->ctx_all_pmcs[0];
1166	int i;
1167
1168	DPRINT(("mask=0x%lx\n", mask));
1169
1170	for (i=0; mask; i++, mask>>=1) {
1171		/* masking 0 with ovfl_val yields 0 */
1172		ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1173		DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1174	}
1175}
1176
1177
1178
1179static inline void
1180pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1181{
1182	int i;
1183
1184	for (i=0; mask; i++, mask>>=1) {
1185		if ((mask & 0x1) == 0) continue;
1186		ia64_set_pmc(i, pmcs[i]);
1187	}
1188	ia64_srlz_d();
1189}
1190
1191static inline int
1192pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1193{
1194	return memcmp(a, b, sizeof(pfm_uuid_t));
1195}
1196
1197static inline int
1198pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1199{
1200	int ret = 0;
1201	if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1202	return ret;
1203}
1204
1205static inline int
1206pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1207{
1208	int ret = 0;
1209	if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1210	return ret;
1211}
1212
1213
1214static inline int
1215pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1216		     int cpu, void *arg)
1217{
1218	int ret = 0;
1219	if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1220	return ret;
1221}
1222
1223static inline int
1224pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1225		     int cpu, void *arg)
1226{
1227	int ret = 0;
1228	if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1229	return ret;
1230}
1231
1232static inline int
1233pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1234{
1235	int ret = 0;
1236	if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1237	return ret;
1238}
1239
1240static inline int
1241pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1242{
1243	int ret = 0;
1244	if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1245	return ret;
1246}
1247
1248static pfm_buffer_fmt_t *
1249__pfm_find_buffer_fmt(pfm_uuid_t uuid)
1250{
1251	struct list_head * pos;
1252	pfm_buffer_fmt_t * entry;
1253
1254	list_for_each(pos, &pfm_buffer_fmt_list) {
1255		entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1256		if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1257			return entry;
1258	}
1259	return NULL;
1260}
1261
1262/*
1263 * find a buffer format based on its uuid
1264 */
1265static pfm_buffer_fmt_t *
1266pfm_find_buffer_fmt(pfm_uuid_t uuid)
1267{
1268	pfm_buffer_fmt_t * fmt;
1269	spin_lock(&pfm_buffer_fmt_lock);
1270	fmt = __pfm_find_buffer_fmt(uuid);
1271	spin_unlock(&pfm_buffer_fmt_lock);
1272	return fmt;
1273}
1274
1275int
1276pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1277{
1278	int ret = 0;
1279
1280	/* some sanity checks */
1281	if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1282
1283	/* we need at least a handler */
1284	if (fmt->fmt_handler == NULL) return -EINVAL;
1285
1286
1287	spin_lock(&pfm_buffer_fmt_lock);
1288
1289	if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1290		printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1291		ret = -EBUSY;
1292		goto out;
1293	}
1294	list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1295	printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1296
1297out:
1298	spin_unlock(&pfm_buffer_fmt_lock);
1299 	return ret;
1300}
1301EXPORT_SYMBOL(pfm_register_buffer_fmt);
1302
1303int
1304pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1305{
1306	pfm_buffer_fmt_t *fmt;
1307	int ret = 0;
1308
1309	spin_lock(&pfm_buffer_fmt_lock);
1310
1311	fmt = __pfm_find_buffer_fmt(uuid);
1312	if (!fmt) {
1313		printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1314		ret = -EINVAL;
1315		goto out;
1316	}
1317	list_del_init(&fmt->fmt_list);
1318	printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1319
1320out:
1321	spin_unlock(&pfm_buffer_fmt_lock);
1322	return ret;
1323
1324}
1325EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1326
1327extern void update_pal_halt_status(int);
1328
1329static int
1330pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1331{
1332	unsigned long flags;
1333	/*
1334	 * validity checks on cpu_mask have been done upstream
1335	 */
1336	LOCK_PFS(flags);
1337
1338	DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1339		pfm_sessions.pfs_sys_sessions,
1340		pfm_sessions.pfs_task_sessions,
1341		pfm_sessions.pfs_sys_use_dbregs,
1342		is_syswide,
1343		cpu));
1344
1345	if (is_syswide) {
1346		/*
1347		 * cannot mix system wide and per-task sessions
1348		 */
1349		if (pfm_sessions.pfs_task_sessions > 0UL) {
1350			DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1351			  	pfm_sessions.pfs_task_sessions));
1352			goto abort;
1353		}
1354
1355		if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1356
1357		DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1358
1359		pfm_sessions.pfs_sys_session[cpu] = task;
1360
1361		pfm_sessions.pfs_sys_sessions++ ;
1362
1363	} else {
1364		if (pfm_sessions.pfs_sys_sessions) goto abort;
1365		pfm_sessions.pfs_task_sessions++;
1366	}
1367
1368	DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1369		pfm_sessions.pfs_sys_sessions,
1370		pfm_sessions.pfs_task_sessions,
1371		pfm_sessions.pfs_sys_use_dbregs,
1372		is_syswide,
1373		cpu));
1374
1375	/*
1376	 * disable default_idle() to go to PAL_HALT
1377	 */
1378	update_pal_halt_status(0);
1379
1380	UNLOCK_PFS(flags);
1381
1382	return 0;
1383
1384error_conflict:
1385	DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1386  		task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1387		cpu));
1388abort:
1389	UNLOCK_PFS(flags);
1390
1391	return -EBUSY;
1392
1393}
1394
1395static int
1396pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1397{
1398	unsigned long flags;
1399	/*
1400	 * validity checks on cpu_mask have been done upstream
1401	 */
1402	LOCK_PFS(flags);
1403
1404	DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1405		pfm_sessions.pfs_sys_sessions,
1406		pfm_sessions.pfs_task_sessions,
1407		pfm_sessions.pfs_sys_use_dbregs,
1408		is_syswide,
1409		cpu));
1410
1411
1412	if (is_syswide) {
1413		pfm_sessions.pfs_sys_session[cpu] = NULL;
1414		/*
1415		 * would not work with perfmon+more than one bit in cpu_mask
1416		 */
1417		if (ctx && ctx->ctx_fl_using_dbreg) {
1418			if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1419				printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1420			} else {
1421				pfm_sessions.pfs_sys_use_dbregs--;
1422			}
1423		}
1424		pfm_sessions.pfs_sys_sessions--;
1425	} else {
1426		pfm_sessions.pfs_task_sessions--;
1427	}
1428	DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1429		pfm_sessions.pfs_sys_sessions,
1430		pfm_sessions.pfs_task_sessions,
1431		pfm_sessions.pfs_sys_use_dbregs,
1432		is_syswide,
1433		cpu));
1434
1435	/*
1436	 * if possible, enable default_idle() to go into PAL_HALT
1437	 */
1438	if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1439		update_pal_halt_status(1);
1440
1441	UNLOCK_PFS(flags);
1442
1443	return 0;
1444}
1445
1446/*
1447 * removes virtual mapping of the sampling buffer.
1448 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1449 * a PROTECT_CTX() section.
1450 */
1451static int
1452pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size)
1453{
1454	int r;
1455
1456	/* sanity checks */
1457	if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1458		printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1459		return -EINVAL;
1460	}
1461
1462	DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1463
1464	/*
1465	 * does the actual unmapping
1466	 */
1467	down_write(&task->mm->mmap_sem);
1468
1469	DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size));
1470
1471	r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0);
1472
1473	up_write(&task->mm->mmap_sem);
1474	if (r !=0) {
1475		printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1476	}
1477
1478	DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1479
1480	return 0;
1481}
1482
1483/*
1484 * free actual physical storage used by sampling buffer
1485 */
1486
1487static inline void
1488pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1489{
1490	if (fmt == NULL) return;
1491
1492	pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1493
1494}
1495
1496/*
1497 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1498 * no real gain from having the whole whorehouse mounted. So we don't need
1499 * any operations on the root directory. However, we need a non-trivial
1500 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1501 */
1502static struct vfsmount *pfmfs_mnt;
1503
1504static int __init
1505init_pfm_fs(void)
1506{
1507	int err = register_filesystem(&pfm_fs_type);
1508	if (!err) {
1509		pfmfs_mnt = kern_mount(&pfm_fs_type);
1510		err = PTR_ERR(pfmfs_mnt);
1511		if (IS_ERR(pfmfs_mnt))
1512			unregister_filesystem(&pfm_fs_type);
1513		else
1514			err = 0;
1515	}
1516	return err;
1517}
1518
1519static ssize_t
1520pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1521{
1522	pfm_context_t *ctx;
1523	pfm_msg_t *msg;
1524	ssize_t ret;
1525	unsigned long flags;
1526  	DECLARE_WAITQUEUE(wait, current);
1527	if (PFM_IS_FILE(filp) == 0) {
1528		printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1529		return -EINVAL;
1530	}
1531
1532	ctx = (pfm_context_t *)filp->private_data;
1533	if (ctx == NULL) {
1534		printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1535		return -EINVAL;
1536	}
1537
1538	/*
1539	 * check even when there is no message
1540	 */
1541	if (size < sizeof(pfm_msg_t)) {
1542		DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1543		return -EINVAL;
1544	}
1545
1546	PROTECT_CTX(ctx, flags);
1547
1548  	/*
1549	 * put ourselves on the wait queue
1550	 */
1551  	add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1552
1553
1554  	for(;;) {
1555		/*
1556		 * check wait queue
1557		 */
1558
1559  		set_current_state(TASK_INTERRUPTIBLE);
1560
1561		DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1562
1563		ret = 0;
1564		if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1565
1566		UNPROTECT_CTX(ctx, flags);
1567
1568		/*
1569		 * check non-blocking read
1570		 */
1571      		ret = -EAGAIN;
1572		if(filp->f_flags & O_NONBLOCK) break;
1573
1574		/*
1575		 * check pending signals
1576		 */
1577		if(signal_pending(current)) {
1578			ret = -EINTR;
1579			break;
1580		}
1581      		/*
1582		 * no message, so wait
1583		 */
1584      		schedule();
1585
1586		PROTECT_CTX(ctx, flags);
1587	}
1588	DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1589  	set_current_state(TASK_RUNNING);
1590	remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1591
1592	if (ret < 0) goto abort;
1593
1594	ret = -EINVAL;
1595	msg = pfm_get_next_msg(ctx);
1596	if (msg == NULL) {
1597		printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1598		goto abort_locked;
1599	}
1600
1601	DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1602
1603	ret = -EFAULT;
1604  	if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1605
1606abort_locked:
1607	UNPROTECT_CTX(ctx, flags);
1608abort:
1609	return ret;
1610}
1611
1612static ssize_t
1613pfm_write(struct file *file, const char __user *ubuf,
1614			  size_t size, loff_t *ppos)
1615{
1616	DPRINT(("pfm_write called\n"));
1617	return -EINVAL;
1618}
1619
1620static unsigned int
1621pfm_poll(struct file *filp, poll_table * wait)
1622{
1623	pfm_context_t *ctx;
1624	unsigned long flags;
1625	unsigned int mask = 0;
1626
1627	if (PFM_IS_FILE(filp) == 0) {
1628		printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1629		return 0;
1630	}
1631
1632	ctx = (pfm_context_t *)filp->private_data;
1633	if (ctx == NULL) {
1634		printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1635		return 0;
1636	}
1637
1638
1639	DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1640
1641	poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1642
1643	PROTECT_CTX(ctx, flags);
1644
1645	if (PFM_CTXQ_EMPTY(ctx) == 0)
1646		mask =  POLLIN | POLLRDNORM;
1647
1648	UNPROTECT_CTX(ctx, flags);
1649
1650	DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1651
1652	return mask;
1653}
1654
1655static long
1656pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1657{
1658	DPRINT(("pfm_ioctl called\n"));
1659	return -EINVAL;
1660}
1661
1662/*
1663 * interrupt cannot be masked when coming here
1664 */
1665static inline int
1666pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1667{
1668	int ret;
1669
1670	ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1671
1672	DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1673		task_pid_nr(current),
1674		fd,
1675		on,
1676		ctx->ctx_async_queue, ret));
1677
1678	return ret;
1679}
1680
1681static int
1682pfm_fasync(int fd, struct file *filp, int on)
1683{
1684	pfm_context_t *ctx;
1685	int ret;
1686
1687	if (PFM_IS_FILE(filp) == 0) {
1688		printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1689		return -EBADF;
1690	}
1691
1692	ctx = (pfm_context_t *)filp->private_data;
1693	if (ctx == NULL) {
1694		printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1695		return -EBADF;
1696	}
1697	/*
1698	 * we cannot mask interrupts during this call because this may
1699	 * may go to sleep if memory is not readily avalaible.
1700	 *
1701	 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1702	 * done in caller. Serialization of this function is ensured by caller.
1703	 */
1704	ret = pfm_do_fasync(fd, filp, ctx, on);
1705
1706
1707	DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1708		fd,
1709		on,
1710		ctx->ctx_async_queue, ret));
1711
1712	return ret;
1713}
1714
1715#ifdef CONFIG_SMP
1716/*
1717 * this function is exclusively called from pfm_close().
1718 * The context is not protected at that time, nor are interrupts
1719 * on the remote CPU. That's necessary to avoid deadlocks.
1720 */
1721static void
1722pfm_syswide_force_stop(void *info)
1723{
1724	pfm_context_t   *ctx = (pfm_context_t *)info;
1725	struct pt_regs *regs = task_pt_regs(current);
1726	struct task_struct *owner;
1727	unsigned long flags;
1728	int ret;
1729
1730	if (ctx->ctx_cpu != smp_processor_id()) {
1731		printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d  but on CPU%d\n",
1732			ctx->ctx_cpu,
1733			smp_processor_id());
1734		return;
1735	}
1736	owner = GET_PMU_OWNER();
1737	if (owner != ctx->ctx_task) {
1738		printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1739			smp_processor_id(),
1740			task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1741		return;
1742	}
1743	if (GET_PMU_CTX() != ctx) {
1744		printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1745			smp_processor_id(),
1746			GET_PMU_CTX(), ctx);
1747		return;
1748	}
1749
1750	DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1751	/*
1752	 * the context is already protected in pfm_close(), we simply
1753	 * need to mask interrupts to avoid a PMU interrupt race on
1754	 * this CPU
1755	 */
1756	local_irq_save(flags);
1757
1758	ret = pfm_context_unload(ctx, NULL, 0, regs);
1759	if (ret) {
1760		DPRINT(("context_unload returned %d\n", ret));
1761	}
1762
1763	/*
1764	 * unmask interrupts, PMU interrupts are now spurious here
1765	 */
1766	local_irq_restore(flags);
1767}
1768
1769static void
1770pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1771{
1772	int ret;
1773
1774	DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1775	ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1776	DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1777}
1778#endif /* CONFIG_SMP */
1779
1780/*
1781 * called for each close(). Partially free resources.
1782 * When caller is self-monitoring, the context is unloaded.
1783 */
1784static int
1785pfm_flush(struct file *filp, fl_owner_t id)
1786{
1787	pfm_context_t *ctx;
1788	struct task_struct *task;
1789	struct pt_regs *regs;
1790	unsigned long flags;
1791	unsigned long smpl_buf_size = 0UL;
1792	void *smpl_buf_vaddr = NULL;
1793	int state, is_system;
1794
1795	if (PFM_IS_FILE(filp) == 0) {
1796		DPRINT(("bad magic for\n"));
1797		return -EBADF;
1798	}
1799
1800	ctx = (pfm_context_t *)filp->private_data;
1801	if (ctx == NULL) {
1802		printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1803		return -EBADF;
1804	}
1805
1806	/*
1807	 * remove our file from the async queue, if we use this mode.
1808	 * This can be done without the context being protected. We come
1809	 * here when the context has become unreachable by other tasks.
1810	 *
1811	 * We may still have active monitoring at this point and we may
1812	 * end up in pfm_overflow_handler(). However, fasync_helper()
1813	 * operates with interrupts disabled and it cleans up the
1814	 * queue. If the PMU handler is called prior to entering
1815	 * fasync_helper() then it will send a signal. If it is
1816	 * invoked after, it will find an empty queue and no
1817	 * signal will be sent. In both case, we are safe
1818	 */
1819	PROTECT_CTX(ctx, flags);
1820
1821	state     = ctx->ctx_state;
1822	is_system = ctx->ctx_fl_system;
1823
1824	task = PFM_CTX_TASK(ctx);
1825	regs = task_pt_regs(task);
1826
1827	DPRINT(("ctx_state=%d is_current=%d\n",
1828		state,
1829		task == current ? 1 : 0));
1830
1831	/*
1832	 * if state == UNLOADED, then task is NULL
1833	 */
1834
1835	/*
1836	 * we must stop and unload because we are losing access to the context.
1837	 */
1838	if (task == current) {
1839#ifdef CONFIG_SMP
1840		/*
1841		 * the task IS the owner but it migrated to another CPU: that's bad
1842		 * but we must handle this cleanly. Unfortunately, the kernel does
1843		 * not provide a mechanism to block migration (while the context is loaded).
1844		 *
1845		 * We need to release the resource on the ORIGINAL cpu.
1846		 */
1847		if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1848
1849			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1850			/*
1851			 * keep context protected but unmask interrupt for IPI
1852			 */
1853			local_irq_restore(flags);
1854
1855			pfm_syswide_cleanup_other_cpu(ctx);
1856
1857			/*
1858			 * restore interrupt masking
1859			 */
1860			local_irq_save(flags);
1861
1862			/*
1863			 * context is unloaded at this point
1864			 */
1865		} else
1866#endif /* CONFIG_SMP */
1867		{
1868
1869			DPRINT(("forcing unload\n"));
1870			/*
1871		 	* stop and unload, returning with state UNLOADED
1872		 	* and session unreserved.
1873		 	*/
1874			pfm_context_unload(ctx, NULL, 0, regs);
1875
1876			DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1877		}
1878	}
1879
1880	/*
1881	 * remove virtual mapping, if any, for the calling task.
1882	 * cannot reset ctx field until last user is calling close().
1883	 *
1884	 * ctx_smpl_vaddr must never be cleared because it is needed
1885	 * by every task with access to the context
1886	 *
1887	 * When called from do_exit(), the mm context is gone already, therefore
1888	 * mm is NULL, i.e., the VMA is already gone  and we do not have to
1889	 * do anything here
1890	 */
1891	if (ctx->ctx_smpl_vaddr && current->mm) {
1892		smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1893		smpl_buf_size  = ctx->ctx_smpl_size;
1894	}
1895
1896	UNPROTECT_CTX(ctx, flags);
1897
1898	/*
1899	 * if there was a mapping, then we systematically remove it
1900	 * at this point. Cannot be done inside critical section
1901	 * because some VM function reenables interrupts.
1902	 *
1903	 */
1904	if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size);
1905
1906	return 0;
1907}
1908/*
1909 * called either on explicit close() or from exit_files().
1910 * Only the LAST user of the file gets to this point, i.e., it is
1911 * called only ONCE.
1912 *
1913 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1914 * (fput()),i.e, last task to access the file. Nobody else can access the
1915 * file at this point.
1916 *
1917 * When called from exit_files(), the VMA has been freed because exit_mm()
1918 * is executed before exit_files().
1919 *
1920 * When called from exit_files(), the current task is not yet ZOMBIE but we
1921 * flush the PMU state to the context.
1922 */
1923static int
1924pfm_close(struct inode *inode, struct file *filp)
1925{
1926	pfm_context_t *ctx;
1927	struct task_struct *task;
1928	struct pt_regs *regs;
1929  	DECLARE_WAITQUEUE(wait, current);
1930	unsigned long flags;
1931	unsigned long smpl_buf_size = 0UL;
1932	void *smpl_buf_addr = NULL;
1933	int free_possible = 1;
1934	int state, is_system;
1935
1936	DPRINT(("pfm_close called private=%p\n", filp->private_data));
1937
1938	if (PFM_IS_FILE(filp) == 0) {
1939		DPRINT(("bad magic\n"));
1940		return -EBADF;
1941	}
1942
1943	ctx = (pfm_context_t *)filp->private_data;
1944	if (ctx == NULL) {
1945		printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1946		return -EBADF;
1947	}
1948
1949	PROTECT_CTX(ctx, flags);
1950
1951	state     = ctx->ctx_state;
1952	is_system = ctx->ctx_fl_system;
1953
1954	task = PFM_CTX_TASK(ctx);
1955	regs = task_pt_regs(task);
1956
1957	DPRINT(("ctx_state=%d is_current=%d\n",
1958		state,
1959		task == current ? 1 : 0));
1960
1961	/*
1962	 * if task == current, then pfm_flush() unloaded the context
1963	 */
1964	if (state == PFM_CTX_UNLOADED) goto doit;
1965
1966	/*
1967	 * context is loaded/masked and task != current, we need to
1968	 * either force an unload or go zombie
1969	 */
1970
1971	/*
1972	 * The task is currently blocked or will block after an overflow.
1973	 * we must force it to wakeup to get out of the
1974	 * MASKED state and transition to the unloaded state by itself.
1975	 *
1976	 * This situation is only possible for per-task mode
1977	 */
1978	if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
1979
1980		/*
1981		 * set a "partial" zombie state to be checked
1982		 * upon return from down() in pfm_handle_work().
1983		 *
1984		 * We cannot use the ZOMBIE state, because it is checked
1985		 * by pfm_load_regs() which is called upon wakeup from down().
1986		 * In such case, it would free the context and then we would
1987		 * return to pfm_handle_work() which would access the
1988		 * stale context. Instead, we set a flag invisible to pfm_load_regs()
1989		 * but visible to pfm_handle_work().
1990		 *
1991		 * For some window of time, we have a zombie context with
1992		 * ctx_state = MASKED  and not ZOMBIE
1993		 */
1994		ctx->ctx_fl_going_zombie = 1;
1995
1996		/*
1997		 * force task to wake up from MASKED state
1998		 */
1999		complete(&ctx->ctx_restart_done);
2000
2001		DPRINT(("waking up ctx_state=%d\n", state));
2002
2003		/*
2004		 * put ourself to sleep waiting for the other
2005		 * task to report completion
2006		 *
2007		 * the context is protected by mutex, therefore there
2008		 * is no risk of being notified of completion before
2009		 * begin actually on the waitq.
2010		 */
2011  		set_current_state(TASK_INTERRUPTIBLE);
2012  		add_wait_queue(&ctx->ctx_zombieq, &wait);
2013
2014		UNPROTECT_CTX(ctx, flags);
2015
2016      		schedule();
2017
2018
2019		PROTECT_CTX(ctx, flags);
2020
2021
2022		remove_wait_queue(&ctx->ctx_zombieq, &wait);
2023  		set_current_state(TASK_RUNNING);
2024
2025		/*
2026		 * context is unloaded at this point
2027		 */
2028		DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2029	}
2030	else if (task != current) {
2031#ifdef CONFIG_SMP
2032		/*
2033	 	 * switch context to zombie state
2034	 	 */
2035		ctx->ctx_state = PFM_CTX_ZOMBIE;
2036
2037		DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2038		/*
2039		 * cannot free the context on the spot. deferred until
2040		 * the task notices the ZOMBIE state
2041		 */
2042		free_possible = 0;
2043#else
2044		pfm_context_unload(ctx, NULL, 0, regs);
2045#endif
2046	}
2047
2048doit:
2049	/* reload state, may have changed during  opening of critical section */
2050	state = ctx->ctx_state;
2051
2052	/*
2053	 * the context is still attached to a task (possibly current)
2054	 * we cannot destroy it right now
2055	 */
2056
2057	/*
2058	 * we must free the sampling buffer right here because
2059	 * we cannot rely on it being cleaned up later by the
2060	 * monitored task. It is not possible to free vmalloc'ed
2061	 * memory in pfm_load_regs(). Instead, we remove the buffer
2062	 * now. should there be subsequent PMU overflow originally
2063	 * meant for sampling, the will be converted to spurious
2064	 * and that's fine because the monitoring tools is gone anyway.
2065	 */
2066	if (ctx->ctx_smpl_hdr) {
2067		smpl_buf_addr = ctx->ctx_smpl_hdr;
2068		smpl_buf_size = ctx->ctx_smpl_size;
2069		/* no more sampling */
2070		ctx->ctx_smpl_hdr = NULL;
2071		ctx->ctx_fl_is_sampling = 0;
2072	}
2073
2074	DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2075		state,
2076		free_possible,
2077		smpl_buf_addr,
2078		smpl_buf_size));
2079
2080	if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2081
2082	/*
2083	 * UNLOADED that the session has already been unreserved.
2084	 */
2085	if (state == PFM_CTX_ZOMBIE) {
2086		pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2087	}
2088
2089	/*
2090	 * disconnect file descriptor from context must be done
2091	 * before we unlock.
2092	 */
2093	filp->private_data = NULL;
2094
2095	/*
2096	 * if we free on the spot, the context is now completely unreachable
2097	 * from the callers side. The monitored task side is also cut, so we
2098	 * can freely cut.
2099	 *
2100	 * If we have a deferred free, only the caller side is disconnected.
2101	 */
2102	UNPROTECT_CTX(ctx, flags);
2103
2104	/*
2105	 * All memory free operations (especially for vmalloc'ed memory)
2106	 * MUST be done with interrupts ENABLED.
2107	 */
2108	if (smpl_buf_addr)  pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2109
2110	/*
2111	 * return the memory used by the context
2112	 */
2113	if (free_possible) pfm_context_free(ctx);
2114
2115	return 0;
2116}
2117
2118static int
2119pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2120{
2121	DPRINT(("pfm_no_open called\n"));
2122	return -ENXIO;
2123}
2124
2125
2126
2127static const struct file_operations pfm_file_ops = {
2128	.llseek		= no_llseek,
2129	.read		= pfm_read,
2130	.write		= pfm_write,
2131	.poll		= pfm_poll,
2132	.unlocked_ioctl = pfm_ioctl,
2133	.open		= pfm_no_open,	/* special open code to disallow open via /proc */
2134	.fasync		= pfm_fasync,
2135	.release	= pfm_close,
2136	.flush		= pfm_flush
2137};
2138
2139static int
2140pfmfs_delete_dentry(struct dentry *dentry)
2141{
2142	return 1;
2143}
2144
2145static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
2146{
2147	return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
2148			     dentry->d_inode->i_ino);
2149}
2150
2151static const struct dentry_operations pfmfs_dentry_operations = {
2152	.d_delete = pfmfs_delete_dentry,
2153	.d_dname = pfmfs_dname,
2154};
2155
2156
2157static struct file *
2158pfm_alloc_file(pfm_context_t *ctx)
2159{
2160	struct file *file;
2161	struct inode *inode;
2162	struct path path;
2163	struct qstr this = { .name = "" };
2164
2165	/*
2166	 * allocate a new inode
2167	 */
2168	inode = new_inode(pfmfs_mnt->mnt_sb);
2169	if (!inode)
2170		return ERR_PTR(-ENOMEM);
2171
2172	DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2173
2174	inode->i_mode = S_IFCHR|S_IRUGO;
2175	inode->i_uid  = current_fsuid();
2176	inode->i_gid  = current_fsgid();
2177
2178	/*
2179	 * allocate a new dcache entry
2180	 */
2181	path.dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this);
2182	if (!path.dentry) {
2183		iput(inode);
2184		return ERR_PTR(-ENOMEM);
2185	}
2186	path.mnt = mntget(pfmfs_mnt);
2187
2188	path.dentry->d_op = &pfmfs_dentry_operations;
2189	d_add(path.dentry, inode);
2190
2191	file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
2192	if (!file) {
2193		path_put(&path);
2194		return ERR_PTR(-ENFILE);
2195	}
2196
2197	file->f_flags = O_RDONLY;
2198	file->private_data = ctx;
2199
2200	return file;
2201}
2202
2203static int
2204pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2205{
2206	DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2207
2208	while (size > 0) {
2209		unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2210
2211
2212		if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2213			return -ENOMEM;
2214
2215		addr  += PAGE_SIZE;
2216		buf   += PAGE_SIZE;
2217		size  -= PAGE_SIZE;
2218	}
2219	return 0;
2220}
2221
2222/*
2223 * allocate a sampling buffer and remaps it into the user address space of the task
2224 */
2225static int
2226pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2227{
2228	struct mm_struct *mm = task->mm;
2229	struct vm_area_struct *vma = NULL;
2230	unsigned long size;
2231	void *smpl_buf;
2232
2233
2234	/*
2235	 * the fixed header + requested size and align to page boundary
2236	 */
2237	size = PAGE_ALIGN(rsize);
2238
2239	DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2240
2241	if (size > task_rlimit(task, RLIMIT_MEMLOCK))
2242		return -ENOMEM;
2243
2244	/*
2245	 * We do the easy to undo allocations first.
2246 	 *
2247	 * pfm_rvmalloc(), clears the buffer, so there is no leak
2248	 */
2249	smpl_buf = pfm_rvmalloc(size);
2250	if (smpl_buf == NULL) {
2251		DPRINT(("Can't allocate sampling buffer\n"));
2252		return -ENOMEM;
2253	}
2254
2255	DPRINT(("smpl_buf @%p\n", smpl_buf));
2256
2257	/* allocate vma */
2258	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2259	if (!vma) {
2260		DPRINT(("Cannot allocate vma\n"));
2261		goto error_kmem;
2262	}
2263	INIT_LIST_HEAD(&vma->anon_vma_chain);
2264
2265	/*
2266	 * partially initialize the vma for the sampling buffer
2267	 */
2268	vma->vm_mm	     = mm;
2269	vma->vm_file	     = filp;
2270	vma->vm_flags	     = VM_READ| VM_MAYREAD |VM_RESERVED;
2271	vma->vm_page_prot    = PAGE_READONLY;
2272
2273	/*
2274	 * Now we have everything we need and we can initialize
2275	 * and connect all the data structures
2276	 */
2277
2278	ctx->ctx_smpl_hdr   = smpl_buf;
2279	ctx->ctx_smpl_size  = size; /* aligned size */
2280
2281	/*
2282	 * Let's do the difficult operations next.
2283	 *
2284	 * now we atomically find some area in the address space and
2285	 * remap the buffer in it.
2286	 */
2287	down_write(&task->mm->mmap_sem);
2288
2289	/* find some free area in address space, must have mmap sem held */
2290	vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
2291	if (vma->vm_start == 0UL) {
2292		DPRINT(("Cannot find unmapped area for size %ld\n", size));
2293		up_write(&task->mm->mmap_sem);
2294		goto error;
2295	}
2296	vma->vm_end = vma->vm_start + size;
2297	vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2298
2299	DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2300
2301	/* can only be applied to current task, need to have the mm semaphore held when called */
2302	if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2303		DPRINT(("Can't remap buffer\n"));
2304		up_write(&task->mm->mmap_sem);
2305		goto error;
2306	}
2307
2308	get_file(filp);
2309
2310	/*
2311	 * now insert the vma in the vm list for the process, must be
2312	 * done with mmap lock held
2313	 */
2314	insert_vm_struct(mm, vma);
2315
2316	mm->total_vm  += size >> PAGE_SHIFT;
2317	vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2318							vma_pages(vma));
2319	up_write(&task->mm->mmap_sem);
2320
2321	/*
2322	 * keep track of user level virtual address
2323	 */
2324	ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2325	*(unsigned long *)user_vaddr = vma->vm_start;
2326
2327	return 0;
2328
2329error:
2330	kmem_cache_free(vm_area_cachep, vma);
2331error_kmem:
2332	pfm_rvfree(smpl_buf, size);
2333
2334	return -ENOMEM;
2335}
2336
2337static int
2338pfm_bad_permissions(struct task_struct *task)
2339{
2340	const struct cred *tcred;
2341	uid_t uid = current_uid();
2342	gid_t gid = current_gid();
2343	int ret;
2344
2345	rcu_read_lock();
2346	tcred = __task_cred(task);
2347
2348	/* inspired by ptrace_attach() */
2349	DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2350		uid,
2351		gid,
2352		tcred->euid,
2353		tcred->suid,
2354		tcred->uid,
2355		tcred->egid,
2356		tcred->sgid));
2357
2358	ret = ((uid != tcred->euid)
2359	       || (uid != tcred->suid)
2360	       || (uid != tcred->uid)
2361	       || (gid != tcred->egid)
2362	       || (gid != tcred->sgid)
2363	       || (gid != tcred->gid)) && !capable(CAP_SYS_PTRACE);
2364
2365	rcu_read_unlock();
2366	return ret;
2367}
2368
2369static int
2370pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2371{
2372	int ctx_flags;
2373
2374	/* valid signal */
2375
2376	ctx_flags = pfx->ctx_flags;
2377
2378	if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2379
2380		/*
2381		 * cannot block in this mode
2382		 */
2383		if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2384			DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2385			return -EINVAL;
2386		}
2387	} else {
2388	}
2389	/* probably more to add here */
2390
2391	return 0;
2392}
2393
2394static int
2395pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2396		     unsigned int cpu, pfarg_context_t *arg)
2397{
2398	pfm_buffer_fmt_t *fmt = NULL;
2399	unsigned long size = 0UL;
2400	void *uaddr = NULL;
2401	void *fmt_arg = NULL;
2402	int ret = 0;
2403#define PFM_CTXARG_BUF_ARG(a)	(pfm_buffer_fmt_t *)(a+1)
2404
2405	/* invoke and lock buffer format, if found */
2406	fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2407	if (fmt == NULL) {
2408		DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2409		return -EINVAL;
2410	}
2411
2412	/*
2413	 * buffer argument MUST be contiguous to pfarg_context_t
2414	 */
2415	if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2416
2417	ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2418
2419	DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2420
2421	if (ret) goto error;
2422
2423	/* link buffer format and context */
2424	ctx->ctx_buf_fmt = fmt;
2425	ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2426
2427	/*
2428	 * check if buffer format wants to use perfmon buffer allocation/mapping service
2429	 */
2430	ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2431	if (ret) goto error;
2432
2433	if (size) {
2434		/*
2435		 * buffer is always remapped into the caller's address space
2436		 */
2437		ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2438		if (ret) goto error;
2439
2440		/* keep track of user address of buffer */
2441		arg->ctx_smpl_vaddr = uaddr;
2442	}
2443	ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2444
2445error:
2446	return ret;
2447}
2448
2449static void
2450pfm_reset_pmu_state(pfm_context_t *ctx)
2451{
2452	int i;
2453
2454	/*
2455	 * install reset values for PMC.
2456	 */
2457	for (i=1; PMC_IS_LAST(i) == 0; i++) {
2458		if (PMC_IS_IMPL(i) == 0) continue;
2459		ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2460		DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2461	}
2462	/*
2463	 * PMD registers are set to 0UL when the context in memset()
2464	 */
2465
2466	/*
2467	 * On context switched restore, we must restore ALL pmc and ALL pmd even
2468	 * when they are not actively used by the task. In UP, the incoming process
2469	 * may otherwise pick up left over PMC, PMD state from the previous process.
2470	 * As opposed to PMD, stale PMC can cause harm to the incoming
2471	 * process because they may change what is being measured.
2472	 * Therefore, we must systematically reinstall the entire
2473	 * PMC state. In SMP, the same thing is possible on the
2474	 * same CPU but also on between 2 CPUs.
2475	 *
2476	 * The problem with PMD is information leaking especially
2477	 * to user level when psr.sp=0
2478	 *
2479	 * There is unfortunately no easy way to avoid this problem
2480	 * on either UP or SMP. This definitively slows down the
2481	 * pfm_load_regs() function.
2482	 */
2483
2484	 /*
2485	  * bitmask of all PMCs accessible to this context
2486	  *
2487	  * PMC0 is treated differently.
2488	  */
2489	ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2490
2491	/*
2492	 * bitmask of all PMDs that are accessible to this context
2493	 */
2494	ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2495
2496	DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2497
2498	/*
2499	 * useful in case of re-enable after disable
2500	 */
2501	ctx->ctx_used_ibrs[0] = 0UL;
2502	ctx->ctx_used_dbrs[0] = 0UL;
2503}
2504
2505static int
2506pfm_ctx_getsize(void *arg, size_t *sz)
2507{
2508	pfarg_context_t *req = (pfarg_context_t *)arg;
2509	pfm_buffer_fmt_t *fmt;
2510
2511	*sz = 0;
2512
2513	if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2514
2515	fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2516	if (fmt == NULL) {
2517		DPRINT(("cannot find buffer format\n"));
2518		return -EINVAL;
2519	}
2520	/* get just enough to copy in user parameters */
2521	*sz = fmt->fmt_arg_size;
2522	DPRINT(("arg_size=%lu\n", *sz));
2523
2524	return 0;
2525}
2526
2527
2528
2529/*
2530 * cannot attach if :
2531 * 	- kernel task
2532 * 	- task not owned by caller
2533 * 	- task incompatible with context mode
2534 */
2535static int
2536pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2537{
2538	/*
2539	 * no kernel task or task not owner by caller
2540	 */
2541	if (task->mm == NULL) {
2542		DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2543		return -EPERM;
2544	}
2545	if (pfm_bad_permissions(task)) {
2546		DPRINT(("no permission to attach to  [%d]\n", task_pid_nr(task)));
2547		return -EPERM;
2548	}
2549	/*
2550	 * cannot block in self-monitoring mode
2551	 */
2552	if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2553		DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2554		return -EINVAL;
2555	}
2556
2557	if (task->exit_state == EXIT_ZOMBIE) {
2558		DPRINT(("cannot attach to  zombie task [%d]\n", task_pid_nr(task)));
2559		return -EBUSY;
2560	}
2561
2562	/*
2563	 * always ok for self
2564	 */
2565	if (task == current) return 0;
2566
2567	if (!task_is_stopped_or_traced(task)) {
2568		DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2569		return -EBUSY;
2570	}
2571	/*
2572	 * make sure the task is off any CPU
2573	 */
2574	wait_task_inactive(task, 0);
2575
2576	/* more to come... */
2577
2578	return 0;
2579}
2580
2581static int
2582pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2583{
2584	struct task_struct *p = current;
2585	int ret;
2586
2587	if (pid < 2) return -EPERM;
2588
2589	if (pid != task_pid_vnr(current)) {
2590
2591		read_lock(&tasklist_lock);
2592
2593		p = find_task_by_vpid(pid);
2594
2595		/* make sure task cannot go away while we operate on it */
2596		if (p) get_task_struct(p);
2597
2598		read_unlock(&tasklist_lock);
2599
2600		if (p == NULL) return -ESRCH;
2601	}
2602
2603	ret = pfm_task_incompatible(ctx, p);
2604	if (ret == 0) {
2605		*task = p;
2606	} else if (p != current) {
2607		pfm_put_task(p);
2608	}
2609	return ret;
2610}
2611
2612
2613
2614static int
2615pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2616{
2617	pfarg_context_t *req = (pfarg_context_t *)arg;
2618	struct file *filp;
2619	struct path path;
2620	int ctx_flags;
2621	int fd;
2622	int ret;
2623
2624	/* let's check the arguments first */
2625	ret = pfarg_is_sane(current, req);
2626	if (ret < 0)
2627		return ret;
2628
2629	ctx_flags = req->ctx_flags;
2630
2631	ret = -ENOMEM;
2632
2633	fd = get_unused_fd();
2634	if (fd < 0)
2635		return fd;
2636
2637	ctx = pfm_context_alloc(ctx_flags);
2638	if (!ctx)
2639		goto error;
2640
2641	filp = pfm_alloc_file(ctx);
2642	if (IS_ERR(filp)) {
2643		ret = PTR_ERR(filp);
2644		goto error_file;
2645	}
2646
2647	req->ctx_fd = ctx->ctx_fd = fd;
2648
2649	/*
2650	 * does the user want to sample?
2651	 */
2652	if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2653		ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2654		if (ret)
2655			goto buffer_error;
2656	}
2657
2658	DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2659		ctx,
2660		ctx_flags,
2661		ctx->ctx_fl_system,
2662		ctx->ctx_fl_block,
2663		ctx->ctx_fl_excl_idle,
2664		ctx->ctx_fl_no_msg,
2665		ctx->ctx_fd));
2666
2667	/*
2668	 * initialize soft PMU state
2669	 */
2670	pfm_reset_pmu_state(ctx);
2671
2672	fd_install(fd, filp);
2673
2674	return 0;
2675
2676buffer_error:
2677	path = filp->f_path;
2678	put_filp(filp);
2679	path_put(&path);
2680
2681	if (ctx->ctx_buf_fmt) {
2682		pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2683	}
2684error_file:
2685	pfm_context_free(ctx);
2686
2687error:
2688	put_unused_fd(fd);
2689	return ret;
2690}
2691
2692static inline unsigned long
2693pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2694{
2695	unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2696	unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2697	extern unsigned long carta_random32 (unsigned long seed);
2698
2699	if (reg->flags & PFM_REGFL_RANDOM) {
2700		new_seed = carta_random32(old_seed);
2701		val -= (old_seed & mask);	/* counter values are negative numbers! */
2702		if ((mask >> 32) != 0)
2703			/* construct a full 64-bit random value: */
2704			new_seed |= carta_random32(old_seed >> 32) << 32;
2705		reg->seed = new_seed;
2706	}
2707	reg->lval = val;
2708	return val;
2709}
2710
2711static void
2712pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2713{
2714	unsigned long mask = ovfl_regs[0];
2715	unsigned long reset_others = 0UL;
2716	unsigned long val;
2717	int i;
2718
2719	/*
2720	 * now restore reset value on sampling overflowed counters
2721	 */
2722	mask >>= PMU_FIRST_COUNTER;
2723	for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2724
2725		if ((mask & 0x1UL) == 0UL) continue;
2726
2727		ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2728		reset_others        |= ctx->ctx_pmds[i].reset_pmds[0];
2729
2730		DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2731	}
2732
2733	/*
2734	 * Now take care of resetting the other registers
2735	 */
2736	for(i = 0; reset_others; i++, reset_others >>= 1) {
2737
2738		if ((reset_others & 0x1) == 0) continue;
2739
2740		ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2741
2742		DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2743			  is_long_reset ? "long" : "short", i, val));
2744	}
2745}
2746
2747static void
2748pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2749{
2750	unsigned long mask = ovfl_regs[0];
2751	unsigned long reset_others = 0UL;
2752	unsigned long val;
2753	int i;
2754
2755	DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2756
2757	if (ctx->ctx_state == PFM_CTX_MASKED) {
2758		pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2759		return;
2760	}
2761
2762	/*
2763	 * now restore reset value on sampling overflowed counters
2764	 */
2765	mask >>= PMU_FIRST_COUNTER;
2766	for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2767
2768		if ((mask & 0x1UL) == 0UL) continue;
2769
2770		val           = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2771		reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2772
2773		DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2774
2775		pfm_write_soft_counter(ctx, i, val);
2776	}
2777
2778	/*
2779	 * Now take care of resetting the other registers
2780	 */
2781	for(i = 0; reset_others; i++, reset_others >>= 1) {
2782
2783		if ((reset_others & 0x1) == 0) continue;
2784
2785		val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2786
2787		if (PMD_IS_COUNTING(i)) {
2788			pfm_write_soft_counter(ctx, i, val);
2789		} else {
2790			ia64_set_pmd(i, val);
2791		}
2792		DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2793			  is_long_reset ? "long" : "short", i, val));
2794	}
2795	ia64_srlz_d();
2796}
2797
2798static int
2799pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2800{
2801	struct task_struct *task;
2802	pfarg_reg_t *req = (pfarg_reg_t *)arg;
2803	unsigned long value, pmc_pm;
2804	unsigned long smpl_pmds, reset_pmds, impl_pmds;
2805	unsigned int cnum, reg_flags, flags, pmc_type;
2806	int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2807	int is_monitor, is_counting, state;
2808	int ret = -EINVAL;
2809	pfm_reg_check_t	wr_func;
2810#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2811
2812	state     = ctx->ctx_state;
2813	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2814	is_system = ctx->ctx_fl_system;
2815	task      = ctx->ctx_task;
2816	impl_pmds = pmu_conf->impl_pmds[0];
2817
2818	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2819
2820	if (is_loaded) {
2821		/*
2822		 * In system wide and when the context is loaded, access can only happen
2823		 * when the caller is running on the CPU being monitored by the session.
2824		 * It does not have to be the owner (ctx_task) of the context per se.
2825		 */
2826		if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2827			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2828			return -EBUSY;
2829		}
2830		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2831	}
2832	expert_mode = pfm_sysctl.expert_mode;
2833
2834	for (i = 0; i < count; i++, req++) {
2835
2836		cnum       = req->reg_num;
2837		reg_flags  = req->reg_flags;
2838		value      = req->reg_value;
2839		smpl_pmds  = req->reg_smpl_pmds[0];
2840		reset_pmds = req->reg_reset_pmds[0];
2841		flags      = 0;
2842
2843
2844		if (cnum >= PMU_MAX_PMCS) {
2845			DPRINT(("pmc%u is invalid\n", cnum));
2846			goto error;
2847		}
2848
2849		pmc_type   = pmu_conf->pmc_desc[cnum].type;
2850		pmc_pm     = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2851		is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2852		is_monitor  = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2853
2854		/*
2855		 * we reject all non implemented PMC as well
2856		 * as attempts to modify PMC[0-3] which are used
2857		 * as status registers by the PMU
2858		 */
2859		if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2860			DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2861			goto error;
2862		}
2863		wr_func = pmu_conf->pmc_desc[cnum].write_check;
2864		/*
2865		 * If the PMC is a monitor, then if the value is not the default:
2866		 * 	- system-wide session: PMCx.pm=1 (privileged monitor)
2867		 * 	- per-task           : PMCx.pm=0 (user monitor)
2868		 */
2869		if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2870			DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2871				cnum,
2872				pmc_pm,
2873				is_system));
2874			goto error;
2875		}
2876
2877		if (is_counting) {
2878			/*
2879		 	 * enforce generation of overflow interrupt. Necessary on all
2880		 	 * CPUs.
2881		 	 */
2882			value |= 1 << PMU_PMC_OI;
2883
2884			if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2885				flags |= PFM_REGFL_OVFL_NOTIFY;
2886			}
2887
2888			if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2889
2890			/* verify validity of smpl_pmds */
2891			if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2892				DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2893				goto error;
2894			}
2895
2896			/* verify validity of reset_pmds */
2897			if ((reset_pmds & impl_pmds) != reset_pmds) {
2898				DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2899				goto error;
2900			}
2901		} else {
2902			if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2903				DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2904				goto error;
2905			}
2906			/* eventid on non-counting monitors are ignored */
2907		}
2908
2909		/*
2910		 * execute write checker, if any
2911		 */
2912		if (likely(expert_mode == 0 && wr_func)) {
2913			ret = (*wr_func)(task, ctx, cnum, &value, regs);
2914			if (ret) goto error;
2915			ret = -EINVAL;
2916		}
2917
2918		/*
2919		 * no error on this register
2920		 */
2921		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2922
2923		/*
2924		 * Now we commit the changes to the software state
2925		 */
2926
2927		/*
2928		 * update overflow information
2929		 */
2930		if (is_counting) {
2931			/*
2932		 	 * full flag update each time a register is programmed
2933		 	 */
2934			ctx->ctx_pmds[cnum].flags = flags;
2935
2936			ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2937			ctx->ctx_pmds[cnum].smpl_pmds[0]  = smpl_pmds;
2938			ctx->ctx_pmds[cnum].eventid       = req->reg_smpl_eventid;
2939
2940			/*
2941			 * Mark all PMDS to be accessed as used.
2942			 *
2943			 * We do not keep track of PMC because we have to
2944			 * systematically restore ALL of them.
2945			 *
2946			 * We do not update the used_monitors mask, because
2947			 * if we have not programmed them, then will be in
2948			 * a quiescent state, therefore we will not need to
2949			 * mask/restore then when context is MASKED.
2950			 */
2951			CTX_USED_PMD(ctx, reset_pmds);
2952			CTX_USED_PMD(ctx, smpl_pmds);
2953			/*
2954		 	 * make sure we do not try to reset on
2955		 	 * restart because we have established new values
2956		 	 */
2957			if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
2958		}
2959		/*
2960		 * Needed in case the user does not initialize the equivalent
2961		 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
2962		 * possible leak here.
2963		 */
2964		CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
2965
2966		/*
2967		 * keep track of the monitor PMC that we are using.
2968		 * we save the value of the pmc in ctx_pmcs[] and if
2969		 * the monitoring is not stopped for the context we also
2970		 * place it in the saved state area so that it will be
2971		 * picked up later by the context switch code.
2972		 *
2973		 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
2974		 *
2975		 * The value in th_pmcs[] may be modified on overflow, i.e.,  when
2976		 * monitoring needs to be stopped.
2977		 */
2978		if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
2979
2980		/*
2981		 * update context state
2982		 */
2983		ctx->ctx_pmcs[cnum] = value;
2984
2985		if (is_loaded) {
2986			/*
2987			 * write thread state
2988			 */
2989			if (is_system == 0) ctx->th_pmcs[cnum] = value;
2990
2991			/*
2992			 * write hardware register if we can
2993			 */
2994			if (can_access_pmu) {
2995				ia64_set_pmc(cnum, value);
2996			}
2997#ifdef CONFIG_SMP
2998			else {
2999				/*
3000				 * per-task SMP only here
3001				 *
3002			 	 * we are guaranteed that the task is not running on the other CPU,
3003			 	 * we indicate that this PMD will need to be reloaded if the task
3004			 	 * is rescheduled on the CPU it ran last on.
3005			 	 */
3006				ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3007			}
3008#endif
3009		}
3010
3011		DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3012			  cnum,
3013			  value,
3014			  is_loaded,
3015			  can_access_pmu,
3016			  flags,
3017			  ctx->ctx_all_pmcs[0],
3018			  ctx->ctx_used_pmds[0],
3019			  ctx->ctx_pmds[cnum].eventid,
3020			  smpl_pmds,
3021			  reset_pmds,
3022			  ctx->ctx_reload_pmcs[0],
3023			  ctx->ctx_used_monitors[0],
3024			  ctx->ctx_ovfl_regs[0]));
3025	}
3026
3027	/*
3028	 * make sure the changes are visible
3029	 */
3030	if (can_access_pmu) ia64_srlz_d();
3031
3032	return 0;
3033error:
3034	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3035	return ret;
3036}
3037
3038static int
3039pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3040{
3041	struct task_struct *task;
3042	pfarg_reg_t *req = (pfarg_reg_t *)arg;
3043	unsigned long value, hw_value, ovfl_mask;
3044	unsigned int cnum;
3045	int i, can_access_pmu = 0, state;
3046	int is_counting, is_loaded, is_system, expert_mode;
3047	int ret = -EINVAL;
3048	pfm_reg_check_t wr_func;
3049
3050
3051	state     = ctx->ctx_state;
3052	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3053	is_system = ctx->ctx_fl_system;
3054	ovfl_mask = pmu_conf->ovfl_val;
3055	task      = ctx->ctx_task;
3056
3057	if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3058
3059	/*
3060	 * on both UP and SMP, we can only write to the PMC when the task is
3061	 * the owner of the local PMU.
3062	 */
3063	if (likely(is_loaded)) {
3064		/*
3065		 * In system wide and when the context is loaded, access can only happen
3066		 * when the caller is running on the CPU being monitored by the session.
3067		 * It does not have to be the owner (ctx_task) of the context per se.
3068		 */
3069		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3070			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3071			return -EBUSY;
3072		}
3073		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3074	}
3075	expert_mode = pfm_sysctl.expert_mode;
3076
3077	for (i = 0; i < count; i++, req++) {
3078
3079		cnum  = req->reg_num;
3080		value = req->reg_value;
3081
3082		if (!PMD_IS_IMPL(cnum)) {
3083			DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3084			goto abort_mission;
3085		}
3086		is_counting = PMD_IS_COUNTING(cnum);
3087		wr_func     = pmu_conf->pmd_desc[cnum].write_check;
3088
3089		/*
3090		 * execute write checker, if any
3091		 */
3092		if (unlikely(expert_mode == 0 && wr_func)) {
3093			unsigned long v = value;
3094
3095			ret = (*wr_func)(task, ctx, cnum, &v, regs);
3096			if (ret) goto abort_mission;
3097
3098			value = v;
3099			ret   = -EINVAL;
3100		}
3101
3102		/*
3103		 * no error on this register
3104		 */
3105		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3106
3107		/*
3108		 * now commit changes to software state
3109		 */
3110		hw_value = value;
3111
3112		/*
3113		 * update virtualized (64bits) counter
3114		 */
3115		if (is_counting) {
3116			/*
3117			 * write context state
3118			 */
3119			ctx->ctx_pmds[cnum].lval = value;
3120
3121			/*
3122			 * when context is load we use the split value
3123			 */
3124			if (is_loaded) {
3125				hw_value = value &  ovfl_mask;
3126				value    = value & ~ovfl_mask;
3127			}
3128		}
3129		/*
3130		 * update reset values (not just for counters)
3131		 */
3132		ctx->ctx_pmds[cnum].long_reset  = req->reg_long_reset;
3133		ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3134
3135		/*
3136		 * update randomization parameters (not just for counters)
3137		 */
3138		ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3139		ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3140
3141		/*
3142		 * update context value
3143		 */
3144		ctx->ctx_pmds[cnum].val  = value;
3145
3146		/*
3147		 * Keep track of what we use
3148		 *
3149		 * We do not keep track of PMC because we have to
3150		 * systematically restore ALL of them.
3151		 */
3152		CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3153
3154		/*
3155		 * mark this PMD register used as well
3156		 */
3157		CTX_USED_PMD(ctx, RDEP(cnum));
3158
3159		/*
3160		 * make sure we do not try to reset on
3161		 * restart because we have established new values
3162		 */
3163		if (is_counting && state == PFM_CTX_MASKED) {
3164			ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3165		}
3166
3167		if (is_loaded) {
3168			/*
3169		 	 * write thread state
3170		 	 */
3171			if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3172
3173			/*
3174			 * write hardware register if we can
3175			 */
3176			if (can_access_pmu) {
3177				ia64_set_pmd(cnum, hw_value);
3178			} else {
3179#ifdef CONFIG_SMP
3180				/*
3181			 	 * we are guaranteed that the task is not running on the other CPU,
3182			 	 * we indicate that this PMD will need to be reloaded if the task
3183			 	 * is rescheduled on the CPU it ran last on.
3184			 	 */
3185				ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3186#endif
3187			}
3188		}
3189
3190		DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx  short_reset=0x%lx "
3191			  "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3192			cnum,
3193			value,
3194			is_loaded,
3195			can_access_pmu,
3196			hw_value,
3197			ctx->ctx_pmds[cnum].val,
3198			ctx->ctx_pmds[cnum].short_reset,
3199			ctx->ctx_pmds[cnum].long_reset,
3200			PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3201			ctx->ctx_pmds[cnum].seed,
3202			ctx->ctx_pmds[cnum].mask,
3203			ctx->ctx_used_pmds[0],
3204			ctx->ctx_pmds[cnum].reset_pmds[0],
3205			ctx->ctx_reload_pmds[0],
3206			ctx->ctx_all_pmds[0],
3207			ctx->ctx_ovfl_regs[0]));
3208	}
3209
3210	/*
3211	 * make changes visible
3212	 */
3213	if (can_access_pmu) ia64_srlz_d();
3214
3215	return 0;
3216
3217abort_mission:
3218	/*
3219	 * for now, we have only one possibility for error
3220	 */
3221	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3222	return ret;
3223}
3224
3225/*
3226 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3227 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3228 * interrupt is delivered during the call, it will be kept pending until we leave, making
3229 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3230 * guaranteed to return consistent data to the user, it may simply be old. It is not
3231 * trivial to treat the overflow while inside the call because you may end up in
3232 * some module sampling buffer code causing deadlocks.
3233 */
3234static int
3235pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3236{
3237	struct task_struct *task;
3238	unsigned long val = 0UL, lval, ovfl_mask, sval;
3239	pfarg_reg_t *req = (pfarg_reg_t *)arg;
3240	unsigned int cnum, reg_flags = 0;
3241	int i, can_access_pmu = 0, state;
3242	int is_loaded, is_system, is_counting, expert_mode;
3243	int ret = -EINVAL;
3244	pfm_reg_check_t rd_func;
3245
3246	/*
3247	 * access is possible when loaded only for
3248	 * self-monitoring tasks or in UP mode
3249	 */
3250
3251	state     = ctx->ctx_state;
3252	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3253	is_system = ctx->ctx_fl_system;
3254	ovfl_mask = pmu_conf->ovfl_val;
3255	task      = ctx->ctx_task;
3256
3257	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3258
3259	if (likely(is_loaded)) {
3260		/*
3261		 * In system wide and when the context is loaded, access can only happen
3262		 * when the caller is running on the CPU being monitored by the session.
3263		 * It does not have to be the owner (ctx_task) of the context per se.
3264		 */
3265		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3266			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3267			return -EBUSY;
3268		}
3269		/*
3270		 * this can be true when not self-monitoring only in UP
3271		 */
3272		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3273
3274		if (can_access_pmu) ia64_srlz_d();
3275	}
3276	expert_mode = pfm_sysctl.expert_mode;
3277
3278	DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3279		is_loaded,
3280		can_access_pmu,
3281		state));
3282
3283	/*
3284	 * on both UP and SMP, we can only read the PMD from the hardware register when
3285	 * the task is the owner of the local PMU.
3286	 */
3287
3288	for (i = 0; i < count; i++, req++) {
3289
3290		cnum        = req->reg_num;
3291		reg_flags   = req->reg_flags;
3292
3293		if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3294		/*
3295		 * we can only read the register that we use. That includes
3296		 * the one we explicitly initialize AND the one we want included
3297		 * in the sampling buffer (smpl_regs).
3298		 *
3299		 * Having this restriction allows optimization in the ctxsw routine
3300		 * without compromising security (leaks)
3301		 */
3302		if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3303
3304		sval        = ctx->ctx_pmds[cnum].val;
3305		lval        = ctx->ctx_pmds[cnum].lval;
3306		is_counting = PMD_IS_COUNTING(cnum);
3307
3308		/*
3309		 * If the task is not the current one, then we check if the
3310		 * PMU state is still in the local live register due to lazy ctxsw.
3311		 * If true, then we read directly from the registers.
3312		 */
3313		if (can_access_pmu){
3314			val = ia64_get_pmd(cnum);
3315		} else {
3316			/*
3317			 * context has been saved
3318			 * if context is zombie, then task does not exist anymore.
3319			 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3320			 */
3321			val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3322		}
3323		rd_func = pmu_conf->pmd_desc[cnum].read_check;
3324
3325		if (is_counting) {
3326			val &= ovfl_mask;
3327			val += sval;
3328		}
3329
3330		/*
3331		 * execute read checker, if any
3332		 */
3333		if (unlikely(expert_mode == 0 && rd_func)) {
3334			unsigned long v = val;
3335			ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3336			if (ret) goto error;
3337			val = v;
3338			ret = -EINVAL;
3339		}
3340
3341		PFM_REG_RETFLAG_SET(reg_flags, 0);
3342
3343		DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3344
3345		/*
3346		 * update register return value, abort all if problem during copy.
3347		 * we only modify the reg_flags field. no check mode is fine because
3348		 * access has been verified upfront in sys_perfmonctl().
3349		 */
3350		req->reg_value            = val;
3351		req->reg_flags            = reg_flags;
3352		req->reg_last_reset_val   = lval;
3353	}
3354
3355	return 0;
3356
3357error:
3358	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3359	return ret;
3360}
3361
3362int
3363pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3364{
3365	pfm_context_t *ctx;
3366
3367	if (req == NULL) return -EINVAL;
3368
3369 	ctx = GET_PMU_CTX();
3370
3371	if (ctx == NULL) return -EINVAL;
3372
3373	/*
3374	 * for now limit to current task, which is enough when calling
3375	 * from overflow handler
3376	 */
3377	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3378
3379	return pfm_write_pmcs(ctx, req, nreq, regs);
3380}
3381EXPORT_SYMBOL(pfm_mod_write_pmcs);
3382
3383int
3384pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3385{
3386	pfm_context_t *ctx;
3387
3388	if (req == NULL) return -EINVAL;
3389
3390 	ctx = GET_PMU_CTX();
3391
3392	if (ctx == NULL) return -EINVAL;
3393
3394	/*
3395	 * for now limit to current task, which is enough when calling
3396	 * from overflow handler
3397	 */
3398	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3399
3400	return pfm_read_pmds(ctx, req, nreq, regs);
3401}
3402EXPORT_SYMBOL(pfm_mod_read_pmds);
3403
3404/*
3405 * Only call this function when a process it trying to
3406 * write the debug registers (reading is always allowed)
3407 */
3408int
3409pfm_use_debug_registers(struct task_struct *task)
3410{
3411	pfm_context_t *ctx = task->thread.pfm_context;
3412	unsigned long flags;
3413	int ret = 0;
3414
3415	if (pmu_conf->use_rr_dbregs == 0) return 0;
3416
3417	DPRINT(("called for [%d]\n", task_pid_nr(task)));
3418
3419	/*
3420	 * do it only once
3421	 */
3422	if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3423
3424	/*
3425	 * Even on SMP, we do not need to use an atomic here because
3426	 * the only way in is via ptrace() and this is possible only when the
3427	 * process is stopped. Even in the case where the ctxsw out is not totally
3428	 * completed by the time we come here, there is no way the 'stopped' process
3429	 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3430	 * So this is always safe.
3431	 */
3432	if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3433
3434	LOCK_PFS(flags);
3435
3436	/*
3437	 * We cannot allow setting breakpoints when system wide monitoring
3438	 * sessions are using the debug registers.
3439	 */
3440	if (pfm_sessions.pfs_sys_use_dbregs> 0)
3441		ret = -1;
3442	else
3443		pfm_sessions.pfs_ptrace_use_dbregs++;
3444
3445	DPRINT(("ptrace_use_dbregs=%u  sys_use_dbregs=%u by [%d] ret = %d\n",
3446		  pfm_sessions.pfs_ptrace_use_dbregs,
3447		  pfm_sessions.pfs_sys_use_dbregs,
3448		  task_pid_nr(task), ret));
3449
3450	UNLOCK_PFS(flags);
3451
3452	return ret;
3453}
3454
3455/*
3456 * This function is called for every task that exits with the
3457 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3458 * able to use the debug registers for debugging purposes via
3459 * ptrace(). Therefore we know it was not using them for
3460 * performance monitoring, so we only decrement the number
3461 * of "ptraced" debug register users to keep the count up to date
3462 */
3463int
3464pfm_release_debug_registers(struct task_struct *task)
3465{
3466	unsigned long flags;
3467	int ret;
3468
3469	if (pmu_conf->use_rr_dbregs == 0) return 0;
3470
3471	LOCK_PFS(flags);
3472	if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3473		printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3474		ret = -1;
3475	}  else {
3476		pfm_sessions.pfs_ptrace_use_dbregs--;
3477		ret = 0;
3478	}
3479	UNLOCK_PFS(flags);
3480
3481	return ret;
3482}
3483
3484static int
3485pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3486{
3487	struct task_struct *task;
3488	pfm_buffer_fmt_t *fmt;
3489	pfm_ovfl_ctrl_t rst_ctrl;
3490	int state, is_system;
3491	int ret = 0;
3492
3493	state     = ctx->ctx_state;
3494	fmt       = ctx->ctx_buf_fmt;
3495	is_system = ctx->ctx_fl_system;
3496	task      = PFM_CTX_TASK(ctx);
3497
3498	switch(state) {
3499		case PFM_CTX_MASKED:
3500			break;
3501		case PFM_CTX_LOADED:
3502			if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3503			/* fall through */
3504		case PFM_CTX_UNLOADED:
3505		case PFM_CTX_ZOMBIE:
3506			DPRINT(("invalid state=%d\n", state));
3507			return -EBUSY;
3508		default:
3509			DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3510			return -EINVAL;
3511	}
3512
3513	/*
3514 	 * In system wide and when the context is loaded, access can only happen
3515 	 * when the caller is running on the CPU being monitored by the session.
3516 	 * It does not have to be the owner (ctx_task) of the context per se.
3517 	 */
3518	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3519		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3520		return -EBUSY;
3521	}
3522
3523	/* sanity check */
3524	if (unlikely(task == NULL)) {
3525		printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3526		return -EINVAL;
3527	}
3528
3529	if (task == current || is_system) {
3530
3531		fmt = ctx->ctx_buf_fmt;
3532
3533		DPRINT(("restarting self %d ovfl=0x%lx\n",
3534			task_pid_nr(task),
3535			ctx->ctx_ovfl_regs[0]));
3536
3537		if (CTX_HAS_SMPL(ctx)) {
3538
3539			prefetch(ctx->ctx_smpl_hdr);
3540
3541			rst_ctrl.bits.mask_monitoring = 0;
3542			rst_ctrl.bits.reset_ovfl_pmds = 0;
3543
3544			if (state == PFM_CTX_LOADED)
3545				ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3546			else
3547				ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3548		} else {
3549			rst_ctrl.bits.mask_monitoring = 0;
3550			rst_ctrl.bits.reset_ovfl_pmds = 1;
3551		}
3552
3553		if (ret == 0) {
3554			if (rst_ctrl.bits.reset_ovfl_pmds)
3555				pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3556
3557			if (rst_ctrl.bits.mask_monitoring == 0) {
3558				DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3559
3560				if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3561			} else {
3562				DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3563
3564				// cannot use pfm_stop_monitoring(task, regs);
3565			}
3566		}
3567		/*
3568		 * clear overflowed PMD mask to remove any stale information
3569		 */
3570		ctx->ctx_ovfl_regs[0] = 0UL;
3571
3572		/*
3573		 * back to LOADED state
3574		 */
3575		ctx->ctx_state = PFM_CTX_LOADED;
3576
3577		ctx->ctx_fl_can_restart = 0;
3578
3579		return 0;
3580	}
3581
3582	/*
3583	 * restart another task
3584	 */
3585
3586	/*
3587	 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3588	 * one is seen by the task.
3589	 */
3590	if (state == PFM_CTX_MASKED) {
3591		if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3592		/*
3593		 * will prevent subsequent restart before this one is
3594		 * seen by other task
3595		 */
3596		ctx->ctx_fl_can_restart = 0;
3597	}
3598
3599	/*
3600	 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3601	 * the task is blocked or on its way to block. That's the normal
3602	 * restart path. If the monitoring is not masked, then the task
3603	 * can be actively monitoring and we cannot directly intervene.
3604	 * Therefore we use the trap mechanism to catch the task and
3605	 * force it to reset the buffer/reset PMDs.
3606	 *
3607	 * if non-blocking, then we ensure that the task will go into
3608	 * pfm_handle_work() before returning to user mode.
3609	 *
3610	 * We cannot explicitly reset another task, it MUST always
3611	 * be done by the task itself. This works for system wide because
3612	 * the tool that is controlling the session is logically doing
3613	 * "self-monitoring".
3614	 */
3615	if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3616		DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
3617		complete(&ctx->ctx_restart_done);
3618	} else {
3619		DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3620
3621		ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3622
3623		PFM_SET_WORK_PENDING(task, 1);
3624
3625		set_notify_resume(task);
3626
3627	}
3628	return 0;
3629}
3630
3631static int
3632pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3633{
3634	unsigned int m = *(unsigned int *)arg;
3635
3636	pfm_sysctl.debug = m == 0 ? 0 : 1;
3637
3638	printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3639
3640	if (m == 0) {
3641		memset(pfm_stats, 0, sizeof(pfm_stats));
3642		for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3643	}
3644	return 0;
3645}
3646
3647/*
3648 * arg can be NULL and count can be zero for this function
3649 */
3650static int
3651pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3652{
3653	struct thread_struct *thread = NULL;
3654	struct task_struct *task;
3655	pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3656	unsigned long flags;
3657	dbreg_t dbreg;
3658	unsigned int rnum;
3659	int first_time;
3660	int ret = 0, state;
3661	int i, can_access_pmu = 0;
3662	int is_system, is_loaded;
3663
3664	if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3665
3666	state     = ctx->ctx_state;
3667	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3668	is_system = ctx->ctx_fl_system;
3669	task      = ctx->ctx_task;
3670
3671	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3672
3673	/*
3674	 * on both UP and SMP, we can only write to the PMC when the task is
3675	 * the owner of the local PMU.
3676	 */
3677	if (is_loaded) {
3678		thread = &task->thread;
3679		/*
3680		 * In system wide and when the context is loaded, access can only happen
3681		 * when the caller is running on the CPU being monitored by the session.
3682		 * It does not have to be the owner (ctx_task) of the context per se.
3683		 */
3684		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3685			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3686			return -EBUSY;
3687		}
3688		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3689	}
3690
3691	/*
3692	 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3693	 * ensuring that no real breakpoint can be installed via this call.
3694	 *
3695	 * IMPORTANT: regs can be NULL in this function
3696	 */
3697
3698	first_time = ctx->ctx_fl_using_dbreg == 0;
3699
3700	/*
3701	 * don't bother if we are loaded and task is being debugged
3702	 */
3703	if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3704		DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3705		return -EBUSY;
3706	}
3707
3708	/*
3709	 * check for debug registers in system wide mode
3710	 *
3711	 * If though a check is done in pfm_context_load(),
3712	 * we must repeat it here, in case the registers are
3713	 * written after the context is loaded
3714	 */
3715	if (is_loaded) {
3716		LOCK_PFS(flags);
3717
3718		if (first_time && is_system) {
3719			if (pfm_sessions.pfs_ptrace_use_dbregs)
3720				ret = -EBUSY;
3721			else
3722				pfm_sessions.pfs_sys_use_dbregs++;
3723		}
3724		UNLOCK_PFS(flags);
3725	}
3726
3727	if (ret != 0) return ret;
3728
3729	/*
3730	 * mark ourself as user of the debug registers for
3731	 * perfmon purposes.
3732	 */
3733	ctx->ctx_fl_using_dbreg = 1;
3734
3735	/*
3736 	 * clear hardware registers to make sure we don't
3737 	 * pick up stale state.
3738	 *
3739	 * for a system wide session, we do not use
3740	 * thread.dbr, thread.ibr because this process
3741	 * never leaves the current CPU and the state
3742	 * is shared by all processes running on it
3743 	 */
3744	if (first_time && can_access_pmu) {
3745		DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3746		for (i=0; i < pmu_conf->num_ibrs; i++) {
3747			ia64_set_ibr(i, 0UL);
3748			ia64_dv_serialize_instruction();
3749		}
3750		ia64_srlz_i();
3751		for (i=0; i < pmu_conf->num_dbrs; i++) {
3752			ia64_set_dbr(i, 0UL);
3753			ia64_dv_serialize_data();
3754		}
3755		ia64_srlz_d();
3756	}
3757
3758	/*
3759	 * Now install the values into the registers
3760	 */
3761	for (i = 0; i < count; i++, req++) {
3762
3763		rnum      = req->dbreg_num;
3764		dbreg.val = req->dbreg_value;
3765
3766		ret = -EINVAL;
3767
3768		if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3769			DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3770				  rnum, dbreg.val, mode, i, count));
3771
3772			goto abort_mission;
3773		}
3774
3775		/*
3776		 * make sure we do not install enabled breakpoint
3777		 */
3778		if (rnum & 0x1) {
3779			if (mode == PFM_CODE_RR)
3780				dbreg.ibr.ibr_x = 0;
3781			else
3782				dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3783		}
3784
3785		PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3786
3787		/*
3788		 * Debug registers, just like PMC, can only be modified
3789		 * by a kernel call. Moreover, perfmon() access to those
3790		 * registers are centralized in this routine. The hardware
3791		 * does not modify the value of these registers, therefore,
3792		 * if we save them as they are written, we can avoid having
3793		 * to save them on context switch out. This is made possible
3794		 * by the fact that when perfmon uses debug registers, ptrace()
3795		 * won't be able to modify them concurrently.
3796		 */
3797		if (mode == PFM_CODE_RR) {
3798			CTX_USED_IBR(ctx, rnum);
3799
3800			if (can_access_pmu) {
3801				ia64_set_ibr(rnum, dbreg.val);
3802				ia64_dv_serialize_instruction();
3803			}
3804
3805			ctx->ctx_ibrs[rnum] = dbreg.val;
3806
3807			DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3808				rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3809		} else {
3810			CTX_USED_DBR(ctx, rnum);
3811
3812			if (can_access_pmu) {
3813				ia64_set_dbr(rnum, dbreg.val);
3814				ia64_dv_serialize_data();
3815			}
3816			ctx->ctx_dbrs[rnum] = dbreg.val;
3817
3818			DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3819				rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3820		}
3821	}
3822
3823	return 0;
3824
3825abort_mission:
3826	/*
3827	 * in case it was our first attempt, we undo the global modifications
3828	 */
3829	if (first_time) {
3830		LOCK_PFS(flags);
3831		if (ctx->ctx_fl_system) {
3832			pfm_sessions.pfs_sys_use_dbregs--;
3833		}
3834		UNLOCK_PFS(flags);
3835		ctx->ctx_fl_using_dbreg = 0;
3836	}
3837	/*
3838	 * install error return flag
3839	 */
3840	PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3841
3842	return ret;
3843}
3844
3845static int
3846pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3847{
3848	return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3849}
3850
3851static int
3852pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3853{
3854	return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3855}
3856
3857int
3858pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3859{
3860	pfm_context_t *ctx;
3861
3862	if (req == NULL) return -EINVAL;
3863
3864 	ctx = GET_PMU_CTX();
3865
3866	if (ctx == NULL) return -EINVAL;
3867
3868	/*
3869	 * for now limit to current task, which is enough when calling
3870	 * from overflow handler
3871	 */
3872	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3873
3874	return pfm_write_ibrs(ctx, req, nreq, regs);
3875}
3876EXPORT_SYMBOL(pfm_mod_write_ibrs);
3877
3878int
3879pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3880{
3881	pfm_context_t *ctx;
3882
3883	if (req == NULL) return -EINVAL;
3884
3885 	ctx = GET_PMU_CTX();
3886
3887	if (ctx == NULL) return -EINVAL;
3888
3889	/*
3890	 * for now limit to current task, which is enough when calling
3891	 * from overflow handler
3892	 */
3893	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3894
3895	return pfm_write_dbrs(ctx, req, nreq, regs);
3896}
3897EXPORT_SYMBOL(pfm_mod_write_dbrs);
3898
3899
3900static int
3901pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3902{
3903	pfarg_features_t *req = (pfarg_features_t *)arg;
3904
3905	req->ft_version = PFM_VERSION;
3906	return 0;
3907}
3908
3909static int
3910pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3911{
3912	struct pt_regs *tregs;
3913	struct task_struct *task = PFM_CTX_TASK(ctx);
3914	int state, is_system;
3915
3916	state     = ctx->ctx_state;
3917	is_system = ctx->ctx_fl_system;
3918
3919	/*
3920	 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3921	 */
3922	if (state == PFM_CTX_UNLOADED) return -EINVAL;
3923
3924	/*
3925 	 * In system wide and when the context is loaded, access can only happen
3926 	 * when the caller is running on the CPU being monitored by the session.
3927 	 * It does not have to be the owner (ctx_task) of the context per se.
3928 	 */
3929	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3930		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3931		return -EBUSY;
3932	}
3933	DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3934		task_pid_nr(PFM_CTX_TASK(ctx)),
3935		state,
3936		is_system));
3937	/*
3938	 * in system mode, we need to update the PMU directly
3939	 * and the user level state of the caller, which may not
3940	 * necessarily be the creator of the context.
3941	 */
3942	if (is_system) {
3943		/*
3944		 * Update local PMU first
3945		 *
3946		 * disable dcr pp
3947		 */
3948		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
3949		ia64_srlz_i();
3950
3951		/*
3952		 * update local cpuinfo
3953		 */
3954		PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
3955
3956		/*
3957		 * stop monitoring, does srlz.i
3958		 */
3959		pfm_clear_psr_pp();
3960
3961		/*
3962		 * stop monitoring in the caller
3963		 */
3964		ia64_psr(regs)->pp = 0;
3965
3966		return 0;
3967	}
3968	/*
3969	 * per-task mode
3970	 */
3971
3972	if (task == current) {
3973		/* stop monitoring  at kernel level */
3974		pfm_clear_psr_up();
3975
3976		/*
3977	 	 * stop monitoring at the user level
3978	 	 */
3979		ia64_psr(regs)->up = 0;
3980	} else {
3981		tregs = task_pt_regs(task);
3982
3983		/*
3984	 	 * stop monitoring at the user level
3985	 	 */
3986		ia64_psr(tregs)->up = 0;
3987
3988		/*
3989		 * monitoring disabled in kernel at next reschedule
3990		 */
3991		ctx->ctx_saved_psr_up = 0;
3992		DPRINT(("task=[%d]\n", task_pid_nr(task)));
3993	}
3994	return 0;
3995}
3996
3997
3998static int
3999pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4000{
4001	struct pt_regs *tregs;
4002	int state, is_system;
4003
4004	state     = ctx->ctx_state;
4005	is_system = ctx->ctx_fl_system;
4006
4007	if (state != PFM_CTX_LOADED) return -EINVAL;
4008
4009	/*
4010 	 * In system wide and when the context is loaded, access can only happen
4011 	 * when the caller is running on the CPU being monitored by the session.
4012 	 * It does not have to be the owner (ctx_task) of the context per se.
4013 	 */
4014	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4015		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4016		return -EBUSY;
4017	}
4018
4019	/*
4020	 * in system mode, we need to update the PMU directly
4021	 * and the user level state of the caller, which may not
4022	 * necessarily be the creator of the context.
4023	 */
4024	if (is_system) {
4025
4026		/*
4027		 * set user level psr.pp for the caller
4028		 */
4029		ia64_psr(regs)->pp = 1;
4030
4031		/*
4032		 * now update the local PMU and cpuinfo
4033		 */
4034		PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4035
4036		/*
4037		 * start monitoring at kernel level
4038		 */
4039		pfm_set_psr_pp();
4040
4041		/* enable dcr pp */
4042		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4043		ia64_srlz_i();
4044
4045		return 0;
4046	}
4047
4048	/*
4049	 * per-process mode
4050	 */
4051
4052	if (ctx->ctx_task == current) {
4053
4054		/* start monitoring at kernel level */
4055		pfm_set_psr_up();
4056
4057		/*
4058		 * activate monitoring at user level
4059		 */
4060		ia64_psr(regs)->up = 1;
4061
4062	} else {
4063		tregs = task_pt_regs(ctx->ctx_task);
4064
4065		/*
4066		 * start monitoring at the kernel level the next
4067		 * time the task is scheduled
4068		 */
4069		ctx->ctx_saved_psr_up = IA64_PSR_UP;
4070
4071		/*
4072		 * activate monitoring at user level
4073		 */
4074		ia64_psr(tregs)->up = 1;
4075	}
4076	return 0;
4077}
4078
4079static int
4080pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4081{
4082	pfarg_reg_t *req = (pfarg_reg_t *)arg;
4083	unsigned int cnum;
4084	int i;
4085	int ret = -EINVAL;
4086
4087	for (i = 0; i < count; i++, req++) {
4088
4089		cnum = req->reg_num;
4090
4091		if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4092
4093		req->reg_value = PMC_DFL_VAL(cnum);
4094
4095		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4096
4097		DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4098	}
4099	return 0;
4100
4101abort_mission:
4102	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4103	return ret;
4104}
4105
4106static int
4107pfm_check_task_exist(pfm_context_t *ctx)
4108{
4109	struct task_struct *g, *t;
4110	int ret = -ESRCH;
4111
4112	read_lock(&tasklist_lock);
4113
4114	do_each_thread (g, t) {
4115		if (t->thread.pfm_context == ctx) {
4116			ret = 0;
4117			goto out;
4118		}
4119	} while_each_thread (g, t);
4120out:
4121	read_unlock(&tasklist_lock);
4122
4123	DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4124
4125	return ret;
4126}
4127
4128static int
4129pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4130{
4131	struct task_struct *task;
4132	struct thread_struct *thread;
4133	struct pfm_context_t *old;
4134	unsigned long flags;
4135#ifndef CONFIG_SMP
4136	struct task_struct *owner_task = NULL;
4137#endif
4138	pfarg_load_t *req = (pfarg_load_t *)arg;
4139	unsigned long *pmcs_source, *pmds_source;
4140	int the_cpu;
4141	int ret = 0;
4142	int state, is_system, set_dbregs = 0;
4143
4144	state     = ctx->ctx_state;
4145	is_system = ctx->ctx_fl_system;
4146	/*
4147	 * can only load from unloaded or terminated state
4148	 */
4149	if (state != PFM_CTX_UNLOADED) {
4150		DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4151			req->load_pid,
4152			ctx->ctx_state));
4153		return -EBUSY;
4154	}
4155
4156	DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4157
4158	if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4159		DPRINT(("cannot use blocking mode on self\n"));
4160		return -EINVAL;
4161	}
4162
4163	ret = pfm_get_task(ctx, req->load_pid, &task);
4164	if (ret) {
4165		DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4166		return ret;
4167	}
4168
4169	ret = -EINVAL;
4170
4171	/*
4172	 * system wide is self monitoring only
4173	 */
4174	if (is_system && task != current) {
4175		DPRINT(("system wide is self monitoring only load_pid=%d\n",
4176			req->load_pid));
4177		goto error;
4178	}
4179
4180	thread = &task->thread;
4181
4182	ret = 0;
4183	/*
4184	 * cannot load a context which is using range restrictions,
4185	 * into a task that is being debugged.
4186	 */
4187	if (ctx->ctx_fl_using_dbreg) {
4188		if (thread->flags & IA64_THREAD_DBG_VALID) {
4189			ret = -EBUSY;
4190			DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4191			goto error;
4192		}
4193		LOCK_PFS(flags);
4194
4195		if (is_system) {
4196			if (pfm_sessions.pfs_ptrace_use_dbregs) {
4197				DPRINT(("cannot load [%d] dbregs in use\n",
4198							task_pid_nr(task)));
4199				ret = -EBUSY;
4200			} else {
4201				pfm_sessions.pfs_sys_use_dbregs++;
4202				DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4203				set_dbregs = 1;
4204			}
4205		}
4206
4207		UNLOCK_PFS(flags);
4208
4209		if (ret) goto error;
4210	}
4211
4212	/*
4213	 * SMP system-wide monitoring implies self-monitoring.
4214	 *
4215	 * The programming model expects the task to
4216	 * be pinned on a CPU throughout the session.
4217	 * Here we take note of the current CPU at the
4218	 * time the context is loaded. No call from
4219	 * another CPU will be allowed.
4220	 *
4221	 * The pinning via shed_setaffinity()
4222	 * must be done by the calling task prior
4223	 * to this call.
4224	 *
4225	 * systemwide: keep track of CPU this session is supposed to run on
4226	 */
4227	the_cpu = ctx->ctx_cpu = smp_processor_id();
4228
4229	ret = -EBUSY;
4230	/*
4231	 * now reserve the session
4232	 */
4233	ret = pfm_reserve_session(current, is_system, the_cpu);
4234	if (ret) goto error;
4235
4236	DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4237		thread->pfm_context, ctx));
4238
4239	ret = -EBUSY;
4240	old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4241	if (old != NULL) {
4242		DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4243		goto error_unres;
4244	}
4245
4246	pfm_reset_msgq(ctx);
4247
4248	ctx->ctx_state = PFM_CTX_LOADED;
4249
4250	/*
4251	 * link context to task
4252	 */
4253	ctx->ctx_task = task;
4254
4255	if (is_system) {
4256		/*
4257		 * we load as stopped
4258		 */
4259		PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4260		PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4261
4262		if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4263	} else {
4264		thread->flags |= IA64_THREAD_PM_VALID;
4265	}
4266
4267	/*
4268	 * propagate into thread-state
4269	 */
4270	pfm_copy_pmds(task, ctx);
4271	pfm_copy_pmcs(task, ctx);
4272
4273	pmcs_source = ctx->th_pmcs;
4274	pmds_source = ctx->th_pmds;
4275
4276	/*
4277	 * always the case for system-wide
4278	 */
4279	if (task == current) {
4280
4281		if (is_system == 0) {
4282
4283			/* allow user level control */
4284			ia64_psr(regs)->sp = 0;
4285			DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4286
4287			SET_LAST_CPU(ctx, smp_processor_id());
4288			INC_ACTIVATION();
4289			SET_ACTIVATION(ctx);
4290#ifndef CONFIG_SMP
4291			/*
4292			 * push the other task out, if any
4293			 */
4294			owner_task = GET_PMU_OWNER();
4295			if (owner_task) pfm_lazy_save_regs(owner_task);
4296#endif
4297		}
4298		/*
4299		 * load all PMD from ctx to PMU (as opposed to thread state)
4300		 * restore all PMC from ctx to PMU
4301		 */
4302		pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4303		pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4304
4305		ctx->ctx_reload_pmcs[0] = 0UL;
4306		ctx->ctx_reload_pmds[0] = 0UL;
4307
4308		/*
4309		 * guaranteed safe by earlier check against DBG_VALID
4310		 */
4311		if (ctx->ctx_fl_using_dbreg) {
4312			pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4313			pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4314		}
4315		/*
4316		 * set new ownership
4317		 */
4318		SET_PMU_OWNER(task, ctx);
4319
4320		DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4321	} else {
4322		/*
4323		 * when not current, task MUST be stopped, so this is safe
4324		 */
4325		regs = task_pt_regs(task);
4326
4327		/* force a full reload */
4328		ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4329		SET_LAST_CPU(ctx, -1);
4330
4331		/* initial saved psr (stopped) */
4332		ctx->ctx_saved_psr_up = 0UL;
4333		ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4334	}
4335
4336	ret = 0;
4337
4338error_unres:
4339	if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4340error:
4341	/*
4342	 * we must undo the dbregs setting (for system-wide)
4343	 */
4344	if (ret && set_dbregs) {
4345		LOCK_PFS(flags);
4346		pfm_sessions.pfs_sys_use_dbregs--;
4347		UNLOCK_PFS(flags);
4348	}
4349	/*
4350	 * release task, there is now a link with the context
4351	 */
4352	if (is_system == 0 && task != current) {
4353		pfm_put_task(task);
4354
4355		if (ret == 0) {
4356			ret = pfm_check_task_exist(ctx);
4357			if (ret) {
4358				ctx->ctx_state = PFM_CTX_UNLOADED;
4359				ctx->ctx_task  = NULL;
4360			}
4361		}
4362	}
4363	return ret;
4364}
4365
4366/*
4367 * in this function, we do not need to increase the use count
4368 * for the task via get_task_struct(), because we hold the
4369 * context lock. If the task were to disappear while having
4370 * a context attached, it would go through pfm_exit_thread()
4371 * which also grabs the context lock  and would therefore be blocked
4372 * until we are here.
4373 */
4374static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4375
4376static int
4377pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4378{
4379	struct task_struct *task = PFM_CTX_TASK(ctx);
4380	struct pt_regs *tregs;
4381	int prev_state, is_system;
4382	int ret;
4383
4384	DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4385
4386	prev_state = ctx->ctx_state;
4387	is_system  = ctx->ctx_fl_system;
4388
4389	/*
4390	 * unload only when necessary
4391	 */
4392	if (prev_state == PFM_CTX_UNLOADED) {
4393		DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4394		return 0;
4395	}
4396
4397	/*
4398	 * clear psr and dcr bits
4399	 */
4400	ret = pfm_stop(ctx, NULL, 0, regs);
4401	if (ret) return ret;
4402
4403	ctx->ctx_state = PFM_CTX_UNLOADED;
4404
4405	/*
4406	 * in system mode, we need to update the PMU directly
4407	 * and the user level state of the caller, which may not
4408	 * necessarily be the creator of the context.
4409	 */
4410	if (is_system) {
4411
4412		/*
4413		 * Update cpuinfo
4414		 *
4415		 * local PMU is taken care of in pfm_stop()
4416		 */
4417		PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4418		PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4419
4420		/*
4421		 * save PMDs in context
4422		 * release ownership
4423		 */
4424		pfm_flush_pmds(current, ctx);
4425
4426		/*
4427		 * at this point we are done with the PMU
4428		 * so we can unreserve the resource.
4429		 */
4430		if (prev_state != PFM_CTX_ZOMBIE)
4431			pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4432
4433		/*
4434		 * disconnect context from task
4435		 */
4436		task->thread.pfm_context = NULL;
4437		/*
4438		 * disconnect task from context
4439		 */
4440		ctx->ctx_task = NULL;
4441
4442		/*
4443		 * There is nothing more to cleanup here.
4444		 */
4445		return 0;
4446	}
4447
4448	/*
4449	 * per-task mode
4450	 */
4451	tregs = task == current ? regs : task_pt_regs(task);
4452
4453	if (task == current) {
4454		/*
4455		 * cancel user level control
4456		 */
4457		ia64_psr(regs)->sp = 1;
4458
4459		DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4460	}
4461	/*
4462	 * save PMDs to context
4463	 * release ownership
4464	 */
4465	pfm_flush_pmds(task, ctx);
4466
4467	/*
4468	 * at this point we are done with the PMU
4469	 * so we can unreserve the resource.
4470	 *
4471	 * when state was ZOMBIE, we have already unreserved.
4472	 */
4473	if (prev_state != PFM_CTX_ZOMBIE)
4474		pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4475
4476	/*
4477	 * reset activation counter and psr
4478	 */
4479	ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4480	SET_LAST_CPU(ctx, -1);
4481
4482	/*
4483	 * PMU state will not be restored
4484	 */
4485	task->thread.flags &= ~IA64_THREAD_PM_VALID;
4486
4487	/*
4488	 * break links between context and task
4489	 */
4490	task->thread.pfm_context  = NULL;
4491	ctx->ctx_task             = NULL;
4492
4493	PFM_SET_WORK_PENDING(task, 0);
4494
4495	ctx->ctx_fl_trap_reason  = PFM_TRAP_REASON_NONE;
4496	ctx->ctx_fl_can_restart  = 0;
4497	ctx->ctx_fl_going_zombie = 0;
4498
4499	DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4500
4501	return 0;
4502}
4503
4504
4505/*
4506 * called only from exit_thread(): task == current
4507 * we come here only if current has a context attached (loaded or masked)
4508 */
4509void
4510pfm_exit_thread(struct task_struct *task)
4511{
4512	pfm_context_t *ctx;
4513	unsigned long flags;
4514	struct pt_regs *regs = task_pt_regs(task);
4515	int ret, state;
4516	int free_ok = 0;
4517
4518	ctx = PFM_GET_CTX(task);
4519
4520	PROTECT_CTX(ctx, flags);
4521
4522	DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4523
4524	state = ctx->ctx_state;
4525	switch(state) {
4526		case PFM_CTX_UNLOADED:
4527			/*
4528	 		 * only comes to this function if pfm_context is not NULL, i.e., cannot
4529			 * be in unloaded state
4530	 		 */
4531			printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4532			break;
4533		case PFM_CTX_LOADED:
4534		case PFM_CTX_MASKED:
4535			ret = pfm_context_unload(ctx, NULL, 0, regs);
4536			if (ret) {
4537				printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4538			}
4539			DPRINT(("ctx unloaded for current state was %d\n", state));
4540
4541			pfm_end_notify_user(ctx);
4542			break;
4543		case PFM_CTX_ZOMBIE:
4544			ret = pfm_context_unload(ctx, NULL, 0, regs);
4545			if (ret) {
4546				printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4547			}
4548			free_ok = 1;
4549			break;
4550		default:
4551			printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4552			break;
4553	}
4554	UNPROTECT_CTX(ctx, flags);
4555
4556	{ u64 psr = pfm_get_psr();
4557	  BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4558	  BUG_ON(GET_PMU_OWNER());
4559	  BUG_ON(ia64_psr(regs)->up);
4560	  BUG_ON(ia64_psr(regs)->pp);
4561	}
4562
4563	/*
4564	 * All memory free operations (especially for vmalloc'ed memory)
4565	 * MUST be done with interrupts ENABLED.
4566	 */
4567	if (free_ok) pfm_context_free(ctx);
4568}
4569
4570/*
4571 * functions MUST be listed in the increasing order of their index (see permfon.h)
4572 */
4573#define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4574#define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4575#define PFM_CMD_PCLRWS	(PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4576#define PFM_CMD_PCLRW	(PFM_CMD_FD|PFM_CMD_ARG_RW)
4577#define PFM_CMD_NONE	{ NULL, "no-cmd", 0, 0, 0, NULL}
4578
4579static pfm_cmd_desc_t pfm_cmd_tab[]={
4580/* 0  */PFM_CMD_NONE,
4581/* 1  */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4582/* 2  */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4583/* 3  */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4584/* 4  */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4585/* 5  */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4586/* 6  */PFM_CMD_NONE,
4587/* 7  */PFM_CMD_NONE,
4588/* 8  */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4589/* 9  */PFM_CMD_NONE,
4590/* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4591/* 11 */PFM_CMD_NONE,
4592/* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4593/* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4594/* 14 */PFM_CMD_NONE,
4595/* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4596/* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4597/* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4598/* 18 */PFM_CMD_NONE,
4599/* 19 */PFM_CMD_NONE,
4600/* 20 */PFM_CMD_NONE,
4601/* 21 */PFM_CMD_NONE,
4602/* 22 */PFM_CMD_NONE,
4603/* 23 */PFM_CMD_NONE,
4604/* 24 */PFM_CMD_NONE,
4605/* 25 */PFM_CMD_NONE,
4606/* 26 */PFM_CMD_NONE,
4607/* 27 */PFM_CMD_NONE,
4608/* 28 */PFM_CMD_NONE,
4609/* 29 */PFM_CMD_NONE,
4610/* 30 */PFM_CMD_NONE,
4611/* 31 */PFM_CMD_NONE,
4612/* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4613/* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4614};
4615#define PFM_CMD_COUNT	(sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4616
4617static int
4618pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4619{
4620	struct task_struct *task;
4621	int state, old_state;
4622
4623recheck:
4624	state = ctx->ctx_state;
4625	task  = ctx->ctx_task;
4626
4627	if (task == NULL) {
4628		DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4629		return 0;
4630	}
4631
4632	DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4633		ctx->ctx_fd,
4634		state,
4635		task_pid_nr(task),
4636		task->state, PFM_CMD_STOPPED(cmd)));
4637
4638	/*
4639	 * self-monitoring always ok.
4640	 *
4641	 * for system-wide the caller can either be the creator of the
4642	 * context (to one to which the context is attached to) OR
4643	 * a task running on the same CPU as the session.
4644	 */
4645	if (task == current || ctx->ctx_fl_system) return 0;
4646
4647	/*
4648	 * we are monitoring another thread
4649	 */
4650	switch(state) {
4651		case PFM_CTX_UNLOADED:
4652			/*
4653			 * if context is UNLOADED we are safe to go
4654			 */
4655			return 0;
4656		case PFM_CTX_ZOMBIE:
4657			/*
4658			 * no command can operate on a zombie context
4659			 */
4660			DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4661			return -EINVAL;
4662		case PFM_CTX_MASKED:
4663			/*
4664			 * PMU state has been saved to software even though
4665			 * the thread may still be running.
4666			 */
4667			if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4668	}
4669
4670	/*
4671	 * context is LOADED or MASKED. Some commands may need to have
4672	 * the task stopped.
4673	 *
4674	 * We could lift this restriction for UP but it would mean that
4675	 * the user has no guarantee the task would not run between
4676	 * two successive calls to perfmonctl(). That's probably OK.
4677	 * If this user wants to ensure the task does not run, then
4678	 * the task must be stopped.
4679	 */
4680	if (PFM_CMD_STOPPED(cmd)) {
4681		if (!task_is_stopped_or_traced(task)) {
4682			DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4683			return -EBUSY;
4684		}
4685		/*
4686		 * task is now stopped, wait for ctxsw out
4687		 *
4688		 * This is an interesting point in the code.
4689		 * We need to unprotect the context because
4690		 * the pfm_save_regs() routines needs to grab
4691		 * the same lock. There are danger in doing
4692		 * this because it leaves a window open for
4693		 * another task to get access to the context
4694		 * and possibly change its state. The one thing
4695		 * that is not possible is for the context to disappear
4696		 * because we are protected by the VFS layer, i.e.,
4697		 * get_fd()/put_fd().
4698		 */
4699		old_state = state;
4700
4701		UNPROTECT_CTX(ctx, flags);
4702
4703		wait_task_inactive(task, 0);
4704
4705		PROTECT_CTX(ctx, flags);
4706
4707		/*
4708		 * we must recheck to verify if state has changed
4709		 */
4710		if (ctx->ctx_state != old_state) {
4711			DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4712			goto recheck;
4713		}
4714	}
4715	return 0;
4716}
4717
4718/*
4719 * system-call entry point (must return long)
4720 */
4721asmlinkage long
4722sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4723{
4724	struct file *file = NULL;
4725	pfm_context_t *ctx = NULL;
4726	unsigned long flags = 0UL;
4727	void *args_k = NULL;
4728	long ret; /* will expand int return types */
4729	size_t base_sz, sz, xtra_sz = 0;
4730	int narg, completed_args = 0, call_made = 0, cmd_flags;
4731	int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4732	int (*getsize)(void *arg, size_t *sz);
4733#define PFM_MAX_ARGSIZE	4096
4734
4735	/*
4736	 * reject any call if perfmon was disabled at initialization
4737	 */
4738	if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4739
4740	if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4741		DPRINT(("invalid cmd=%d\n", cmd));
4742		return -EINVAL;
4743	}
4744
4745	func      = pfm_cmd_tab[cmd].cmd_func;
4746	narg      = pfm_cmd_tab[cmd].cmd_narg;
4747	base_sz   = pfm_cmd_tab[cmd].cmd_argsize;
4748	getsize   = pfm_cmd_tab[cmd].cmd_getsize;
4749	cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4750
4751	if (unlikely(func == NULL)) {
4752		DPRINT(("invalid cmd=%d\n", cmd));
4753		return -EINVAL;
4754	}
4755
4756	DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4757		PFM_CMD_NAME(cmd),
4758		cmd,
4759		narg,
4760		base_sz,
4761		count));
4762
4763	/*
4764	 * check if number of arguments matches what the command expects
4765	 */
4766	if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4767		return -EINVAL;
4768
4769restart_args:
4770	sz = xtra_sz + base_sz*count;
4771	/*
4772	 * limit abuse to min page size
4773	 */
4774	if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4775		printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4776		return -E2BIG;
4777	}
4778
4779	/*
4780	 * allocate default-sized argument buffer
4781	 */
4782	if (likely(count && args_k == NULL)) {
4783		args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4784		if (args_k == NULL) return -ENOMEM;
4785	}
4786
4787	ret = -EFAULT;
4788
4789	/*
4790	 * copy arguments
4791	 *
4792	 * assume sz = 0 for command without parameters
4793	 */
4794	if (sz && copy_from_user(args_k, arg, sz)) {
4795		DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4796		goto error_args;
4797	}
4798
4799	/*
4800	 * check if command supports extra parameters
4801	 */
4802	if (completed_args == 0 && getsize) {
4803		/*
4804		 * get extra parameters size (based on main argument)
4805		 */
4806		ret = (*getsize)(args_k, &xtra_sz);
4807		if (ret) goto error_args;
4808
4809		completed_args = 1;
4810
4811		DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4812
4813		/* retry if necessary */
4814		if (likely(xtra_sz)) goto restart_args;
4815	}
4816
4817	if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4818
4819	ret = -EBADF;
4820
4821	file = fget(fd);
4822	if (unlikely(file == NULL)) {
4823		DPRINT(("invalid fd %d\n", fd));
4824		goto error_args;
4825	}
4826	if (unlikely(PFM_IS_FILE(file) == 0)) {
4827		DPRINT(("fd %d not related to perfmon\n", fd));
4828		goto error_args;
4829	}
4830
4831	ctx = (pfm_context_t *)file->private_data;
4832	if (unlikely(ctx == NULL)) {
4833		DPRINT(("no context for fd %d\n", fd));
4834		goto error_args;
4835	}
4836	prefetch(&ctx->ctx_state);
4837
4838	PROTECT_CTX(ctx, flags);
4839
4840	/*
4841	 * check task is stopped
4842	 */
4843	ret = pfm_check_task_state(ctx, cmd, flags);
4844	if (unlikely(ret)) goto abort_locked;
4845
4846skip_fd:
4847	ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4848
4849	call_made = 1;
4850
4851abort_locked:
4852	if (likely(ctx)) {
4853		DPRINT(("context unlocked\n"));
4854		UNPROTECT_CTX(ctx, flags);
4855	}
4856
4857	/* copy argument back to user, if needed */
4858	if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4859
4860error_args:
4861	if (file)
4862		fput(file);
4863
4864	kfree(args_k);
4865
4866	DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4867
4868	return ret;
4869}
4870
4871static void
4872pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4873{
4874	pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4875	pfm_ovfl_ctrl_t rst_ctrl;
4876	int state;
4877	int ret = 0;
4878
4879	state = ctx->ctx_state;
4880	if (CTX_HAS_SMPL(ctx)) {
4881
4882		rst_ctrl.bits.mask_monitoring = 0;
4883		rst_ctrl.bits.reset_ovfl_pmds = 0;
4884
4885		if (state == PFM_CTX_LOADED)
4886			ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4887		else
4888			ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4889	} else {
4890		rst_ctrl.bits.mask_monitoring = 0;
4891		rst_ctrl.bits.reset_ovfl_pmds = 1;
4892	}
4893
4894	if (ret == 0) {
4895		if (rst_ctrl.bits.reset_ovfl_pmds) {
4896			pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4897		}
4898		if (rst_ctrl.bits.mask_monitoring == 0) {
4899			DPRINT(("resuming monitoring\n"));
4900			if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4901		} else {
4902			DPRINT(("stopping monitoring\n"));
4903			//pfm_stop_monitoring(current, regs);
4904		}
4905		ctx->ctx_state = PFM_CTX_LOADED;
4906	}
4907}
4908
4909/*
4910 * context MUST BE LOCKED when calling
4911 * can only be called for current
4912 */
4913static void
4914pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4915{
4916	int ret;
4917
4918	DPRINT(("entering for [%d]\n", task_pid_nr(current)));
4919
4920	ret = pfm_context_unload(ctx, NULL, 0, regs);
4921	if (ret) {
4922		printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
4923	}
4924
4925	/*
4926	 * and wakeup controlling task, indicating we are now disconnected
4927	 */
4928	wake_up_interruptible(&ctx->ctx_zombieq);
4929
4930	/*
4931	 * given that context is still locked, the controlling
4932	 * task will only get access when we return from
4933	 * pfm_handle_work().
4934	 */
4935}
4936
4937static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
4938
4939 /*
4940  * pfm_handle_work() can be called with interrupts enabled
4941  * (TIF_NEED_RESCHED) or disabled. The down_interruptible
4942  * call may sleep, therefore we must re-enable interrupts
4943  * to avoid deadlocks. It is safe to do so because this function
4944  * is called ONLY when returning to user level (pUStk=1), in which case
4945  * there is no risk of kernel stack overflow due to deep
4946  * interrupt nesting.
4947  */
4948void
4949pfm_handle_work(void)
4950{
4951	pfm_context_t *ctx;
4952	struct pt_regs *regs;
4953	unsigned long flags, dummy_flags;
4954	unsigned long ovfl_regs;
4955	unsigned int reason;
4956	int ret;
4957
4958	ctx = PFM_GET_CTX(current);
4959	if (ctx == NULL) {
4960		printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
4961			task_pid_nr(current));
4962		return;
4963	}
4964
4965	PROTECT_CTX(ctx, flags);
4966
4967	PFM_SET_WORK_PENDING(current, 0);
4968
4969	regs = task_pt_regs(current);
4970
4971	/*
4972	 * extract reason for being here and clear
4973	 */
4974	reason = ctx->ctx_fl_trap_reason;
4975	ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4976	ovfl_regs = ctx->ctx_ovfl_regs[0];
4977
4978	DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
4979
4980	/*
4981	 * must be done before we check for simple-reset mode
4982	 */
4983	if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
4984		goto do_zombie;
4985
4986	//if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
4987	if (reason == PFM_TRAP_REASON_RESET)
4988		goto skip_blocking;
4989
4990	/*
4991	 * restore interrupt mask to what it was on entry.
4992	 * Could be enabled/diasbled.
4993	 */
4994	UNPROTECT_CTX(ctx, flags);
4995
4996	/*
4997	 * force interrupt enable because of down_interruptible()
4998	 */
4999	local_irq_enable();
5000
5001	DPRINT(("before block sleeping\n"));
5002
5003	/*
5004	 * may go through without blocking on SMP systems
5005	 * if restart has been received already by the time we call down()
5006	 */
5007	ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5008
5009	DPRINT(("after block sleeping ret=%d\n", ret));
5010
5011	/*
5012	 * lock context and mask interrupts again
5013	 * We save flags into a dummy because we may have
5014	 * altered interrupts mask compared to entry in this
5015	 * function.
5016	 */
5017	PROTECT_CTX(ctx, dummy_flags);
5018
5019	/*
5020	 * we need to read the ovfl_regs only after wake-up
5021	 * because we may have had pfm_write_pmds() in between
5022	 * and that can changed PMD values and therefore
5023	 * ovfl_regs is reset for these new PMD values.
5024	 */
5025	ovfl_regs = ctx->ctx_ovfl_regs[0];
5026
5027	if (ctx->ctx_fl_going_zombie) {
5028do_zombie:
5029		DPRINT(("context is zombie, bailing out\n"));
5030		pfm_context_force_terminate(ctx, regs);
5031		goto nothing_to_do;
5032	}
5033	/*
5034	 * in case of interruption of down() we don't restart anything
5035	 */
5036	if (ret < 0)
5037		goto nothing_to_do;
5038
5039skip_blocking:
5040	pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5041	ctx->ctx_ovfl_regs[0] = 0UL;
5042
5043nothing_to_do:
5044	/*
5045	 * restore flags as they were upon entry
5046	 */
5047	UNPROTECT_CTX(ctx, flags);
5048}
5049
5050static int
5051pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5052{
5053	if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5054		DPRINT(("ignoring overflow notification, owner is zombie\n"));
5055		return 0;
5056	}
5057
5058	DPRINT(("waking up somebody\n"));
5059
5060	if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5061
5062	/*
5063	 * safe, we are not in intr handler, nor in ctxsw when
5064	 * we come here
5065	 */
5066	kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5067
5068	return 0;
5069}
5070
5071static int
5072pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5073{
5074	pfm_msg_t *msg = NULL;
5075
5076	if (ctx->ctx_fl_no_msg == 0) {
5077		msg = pfm_get_new_msg(ctx);
5078		if (msg == NULL) {
5079			printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5080			return -1;
5081		}
5082
5083		msg->pfm_ovfl_msg.msg_type         = PFM_MSG_OVFL;
5084		msg->pfm_ovfl_msg.msg_ctx_fd       = ctx->ctx_fd;
5085		msg->pfm_ovfl_msg.msg_active_set   = 0;
5086		msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5087		msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5088		msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5089		msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5090		msg->pfm_ovfl_msg.msg_tstamp       = 0UL;
5091	}
5092
5093	DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5094		msg,
5095		ctx->ctx_fl_no_msg,
5096		ctx->ctx_fd,
5097		ovfl_pmds));
5098
5099	return pfm_notify_user(ctx, msg);
5100}
5101
5102static int
5103pfm_end_notify_user(pfm_context_t *ctx)
5104{
5105	pfm_msg_t *msg;
5106
5107	msg = pfm_get_new_msg(ctx);
5108	if (msg == NULL) {
5109		printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5110		return -1;
5111	}
5112	/* no leak */
5113	memset(msg, 0, sizeof(*msg));
5114
5115	msg->pfm_end_msg.msg_type    = PFM_MSG_END;
5116	msg->pfm_end_msg.msg_ctx_fd  = ctx->ctx_fd;
5117	msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5118
5119	DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5120		msg,
5121		ctx->ctx_fl_no_msg,
5122		ctx->ctx_fd));
5123
5124	return pfm_notify_user(ctx, msg);
5125}
5126
5127/*
5128 * main overflow processing routine.
5129 * it can be called from the interrupt path or explicitly during the context switch code
5130 */
5131static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5132				unsigned long pmc0, struct pt_regs *regs)
5133{
5134	pfm_ovfl_arg_t *ovfl_arg;
5135	unsigned long mask;
5136	unsigned long old_val, ovfl_val, new_val;
5137	unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5138	unsigned long tstamp;
5139	pfm_ovfl_ctrl_t	ovfl_ctrl;
5140	unsigned int i, has_smpl;
5141	int must_notify = 0;
5142
5143	if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5144
5145	/*
5146	 * sanity test. Should never happen
5147	 */
5148	if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5149
5150	tstamp   = ia64_get_itc();
5151	mask     = pmc0 >> PMU_FIRST_COUNTER;
5152	ovfl_val = pmu_conf->ovfl_val;
5153	has_smpl = CTX_HAS_SMPL(ctx);
5154
5155	DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5156		     "used_pmds=0x%lx\n",
5157			pmc0,
5158			task ? task_pid_nr(task): -1,
5159			(regs ? regs->cr_iip : 0),
5160			CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5161			ctx->ctx_used_pmds[0]));
5162
5163
5164	/*
5165	 * first we update the virtual counters
5166	 * assume there was a prior ia64_srlz_d() issued
5167	 */
5168	for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5169
5170		/* skip pmd which did not overflow */
5171		if ((mask & 0x1) == 0) continue;
5172
5173		/*
5174		 * Note that the pmd is not necessarily 0 at this point as qualified events
5175		 * may have happened before the PMU was frozen. The residual count is not
5176		 * taken into consideration here but will be with any read of the pmd via
5177		 * pfm_read_pmds().
5178		 */
5179		old_val              = new_val = ctx->ctx_pmds[i].val;
5180		new_val             += 1 + ovfl_val;
5181		ctx->ctx_pmds[i].val = new_val;
5182
5183		/*
5184		 * check for overflow condition
5185		 */
5186		if (likely(old_val > new_val)) {
5187			ovfl_pmds |= 1UL << i;
5188			if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5189		}
5190
5191		DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5192			i,
5193			new_val,
5194			old_val,
5195			ia64_get_pmd(i) & ovfl_val,
5196			ovfl_pmds,
5197			ovfl_notify));
5198	}
5199
5200	/*
5201	 * there was no 64-bit overflow, nothing else to do
5202	 */
5203	if (ovfl_pmds == 0UL) return;
5204
5205	/*
5206	 * reset all control bits
5207	 */
5208	ovfl_ctrl.val = 0;
5209	reset_pmds    = 0UL;
5210
5211	/*
5212	 * if a sampling format module exists, then we "cache" the overflow by
5213	 * calling the module's handler() routine.
5214	 */
5215	if (has_smpl) {
5216		unsigned long start_cycles, end_cycles;
5217		unsigned long pmd_mask;
5218		int j, k, ret = 0;
5219		int this_cpu = smp_processor_id();
5220
5221		pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5222		ovfl_arg = &ctx->ctx_ovfl_arg;
5223
5224		prefetch(ctx->ctx_smpl_hdr);
5225
5226		for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5227
5228			mask = 1UL << i;
5229
5230			if ((pmd_mask & 0x1) == 0) continue;
5231
5232			ovfl_arg->ovfl_pmd      = (unsigned char )i;
5233			ovfl_arg->ovfl_notify   = ovfl_notify & mask ? 1 : 0;
5234			ovfl_arg->active_set    = 0;
5235			ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5236			ovfl_arg->smpl_pmds[0]  = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5237
5238			ovfl_arg->pmd_value      = ctx->ctx_pmds[i].val;
5239			ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5240			ovfl_arg->pmd_eventid    = ctx->ctx_pmds[i].eventid;
5241
5242			/*
5243		 	 * copy values of pmds of interest. Sampling format may copy them
5244		 	 * into sampling buffer.
5245		 	 */
5246			if (smpl_pmds) {
5247				for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5248					if ((smpl_pmds & 0x1) == 0) continue;
5249					ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ?  pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5250					DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5251				}
5252			}
5253
5254			pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5255
5256			start_cycles = ia64_get_itc();
5257
5258			/*
5259		 	 * call custom buffer format record (handler) routine
5260		 	 */
5261			ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5262
5263			end_cycles = ia64_get_itc();
5264
5265			/*
5266			 * For those controls, we take the union because they have
5267			 * an all or nothing behavior.
5268			 */
5269			ovfl_ctrl.bits.notify_user     |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5270			ovfl_ctrl.bits.block_task      |= ovfl_arg->ovfl_ctrl.bits.block_task;
5271			ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5272			/*
5273			 * build the bitmask of pmds to reset now
5274			 */
5275			if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5276
5277			pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5278		}
5279		/*
5280		 * when the module cannot handle the rest of the overflows, we abort right here
5281		 */
5282		if (ret && pmd_mask) {
5283			DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5284				pmd_mask<<PMU_FIRST_COUNTER));
5285		}
5286		/*
5287		 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5288		 */
5289		ovfl_pmds &= ~reset_pmds;
5290	} else {
5291		/*
5292		 * when no sampling module is used, then the default
5293		 * is to notify on overflow if requested by user
5294		 */
5295		ovfl_ctrl.bits.notify_user     = ovfl_notify ? 1 : 0;
5296		ovfl_ctrl.bits.block_task      = ovfl_notify ? 1 : 0;
5297		ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0;
5298		ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5299		/*
5300		 * if needed, we reset all overflowed pmds
5301		 */
5302		if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5303	}
5304
5305	DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5306
5307	/*
5308	 * reset the requested PMD registers using the short reset values
5309	 */
5310	if (reset_pmds) {
5311		unsigned long bm = reset_pmds;
5312		pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5313	}
5314
5315	if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5316		/*
5317		 * keep track of what to reset when unblocking
5318		 */
5319		ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5320
5321		/*
5322		 * check for blocking context
5323		 */
5324		if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5325
5326			ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5327
5328			/*
5329			 * set the perfmon specific checking pending work for the task
5330			 */
5331			PFM_SET_WORK_PENDING(task, 1);
5332
5333			/*
5334			 * when coming from ctxsw, current still points to the
5335			 * previous task, therefore we must work with task and not current.
5336			 */
5337			set_notify_resume(task);
5338		}
5339		/*
5340		 * defer until state is changed (shorten spin window). the context is locked
5341		 * anyway, so the signal receiver would come spin for nothing.
5342		 */
5343		must_notify = 1;
5344	}
5345
5346	DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5347			GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5348			PFM_GET_WORK_PENDING(task),
5349			ctx->ctx_fl_trap_reason,
5350			ovfl_pmds,
5351			ovfl_notify,
5352			ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5353	/*
5354	 * in case monitoring must be stopped, we toggle the psr bits
5355	 */
5356	if (ovfl_ctrl.bits.mask_monitoring) {
5357		pfm_mask_monitoring(task);
5358		ctx->ctx_state = PFM_CTX_MASKED;
5359		ctx->ctx_fl_can_restart = 1;
5360	}
5361
5362	/*
5363	 * send notification now
5364	 */
5365	if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5366
5367	return;
5368
5369sanity_check:
5370	printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5371			smp_processor_id(),
5372			task ? task_pid_nr(task) : -1,
5373			pmc0);
5374	return;
5375
5376stop_monitoring:
5377	/*
5378	 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5379	 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5380	 * come here as zombie only if the task is the current task. In which case, we
5381	 * can access the PMU  hardware directly.
5382	 *
5383	 * Note that zombies do have PM_VALID set. So here we do the minimal.
5384	 *
5385	 * In case the context was zombified it could not be reclaimed at the time
5386	 * the monitoring program exited. At this point, the PMU reservation has been
5387	 * returned, the sampiing buffer has been freed. We must convert this call
5388	 * into a spurious interrupt. However, we must also avoid infinite overflows
5389	 * by stopping monitoring for this task. We can only come here for a per-task
5390	 * context. All we need to do is to stop monitoring using the psr bits which
5391	 * are always task private. By re-enabling secure montioring, we ensure that
5392	 * the monitored task will not be able to re-activate monitoring.
5393	 * The task will eventually be context switched out, at which point the context
5394	 * will be reclaimed (that includes releasing ownership of the PMU).
5395	 *
5396	 * So there might be a window of time where the number of per-task session is zero
5397	 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5398	 * context. This is safe because if a per-task session comes in, it will push this one
5399	 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5400	 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5401	 * also push our zombie context out.
5402	 *
5403	 * Overall pretty hairy stuff....
5404	 */
5405	DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5406	pfm_clear_psr_up();
5407	ia64_psr(regs)->up = 0;
5408	ia64_psr(regs)->sp = 1;
5409	return;
5410}
5411
5412static int
5413pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5414{
5415	struct task_struct *task;
5416	pfm_context_t *ctx;
5417	unsigned long flags;
5418	u64 pmc0;
5419	int this_cpu = smp_processor_id();
5420	int retval = 0;
5421
5422	pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5423
5424	/*
5425	 * srlz.d done before arriving here
5426	 */
5427	pmc0 = ia64_get_pmc(0);
5428
5429	task = GET_PMU_OWNER();
5430	ctx  = GET_PMU_CTX();
5431
5432	/*
5433	 * if we have some pending bits set
5434	 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5435	 */
5436	if (PMC0_HAS_OVFL(pmc0) && task) {
5437		/*
5438		 * we assume that pmc0.fr is always set here
5439		 */
5440
5441		/* sanity check */
5442		if (!ctx) goto report_spurious1;
5443
5444		if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5445			goto report_spurious2;
5446
5447		PROTECT_CTX_NOPRINT(ctx, flags);
5448
5449		pfm_overflow_handler(task, ctx, pmc0, regs);
5450
5451		UNPROTECT_CTX_NOPRINT(ctx, flags);
5452
5453	} else {
5454		pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5455		retval = -1;
5456	}
5457	/*
5458	 * keep it unfrozen at all times
5459	 */
5460	pfm_unfreeze_pmu();
5461
5462	return retval;
5463
5464report_spurious1:
5465	printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5466		this_cpu, task_pid_nr(task));
5467	pfm_unfreeze_pmu();
5468	return -1;
5469report_spurious2:
5470	printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5471		this_cpu,
5472		task_pid_nr(task));
5473	pfm_unfreeze_pmu();
5474	return -1;
5475}
5476
5477static irqreturn_t
5478pfm_interrupt_handler(int irq, void *arg)
5479{
5480	unsigned long start_cycles, total_cycles;
5481	unsigned long min, max;
5482	int this_cpu;
5483	int ret;
5484	struct pt_regs *regs = get_irq_regs();
5485
5486	this_cpu = get_cpu();
5487	if (likely(!pfm_alt_intr_handler)) {
5488		min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5489		max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5490
5491		start_cycles = ia64_get_itc();
5492
5493		ret = pfm_do_interrupt_handler(arg, regs);
5494
5495		total_cycles = ia64_get_itc();
5496
5497		/*
5498		 * don't measure spurious interrupts
5499		 */
5500		if (likely(ret == 0)) {
5501			total_cycles -= start_cycles;
5502
5503			if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5504			if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5505
5506			pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5507		}
5508	}
5509	else {
5510		(*pfm_alt_intr_handler->handler)(irq, arg, regs);
5511	}
5512
5513	put_cpu();
5514	return IRQ_HANDLED;
5515}
5516
5517/*
5518 * /proc/perfmon interface, for debug only
5519 */
5520
5521#define PFM_PROC_SHOW_HEADER	((void *)(long)nr_cpu_ids+1)
5522
5523static void *
5524pfm_proc_start(struct seq_file *m, loff_t *pos)
5525{
5526	if (*pos == 0) {
5527		return PFM_PROC_SHOW_HEADER;
5528	}
5529
5530	while (*pos <= nr_cpu_ids) {
5531		if (cpu_online(*pos - 1)) {
5532			return (void *)*pos;
5533		}
5534		++*pos;
5535	}
5536	return NULL;
5537}
5538
5539static void *
5540pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5541{
5542	++*pos;
5543	return pfm_proc_start(m, pos);
5544}
5545
5546static void
5547pfm_proc_stop(struct seq_file *m, void *v)
5548{
5549}
5550
5551static void
5552pfm_proc_show_header(struct seq_file *m)
5553{
5554	struct list_head * pos;
5555	pfm_buffer_fmt_t * entry;
5556	unsigned long flags;
5557
5558 	seq_printf(m,
5559		"perfmon version           : %u.%u\n"
5560		"model                     : %s\n"
5561		"fastctxsw                 : %s\n"
5562		"expert mode               : %s\n"
5563		"ovfl_mask                 : 0x%lx\n"
5564		"PMU flags                 : 0x%x\n",
5565		PFM_VERSION_MAJ, PFM_VERSION_MIN,
5566		pmu_conf->pmu_name,
5567		pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5568		pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5569		pmu_conf->ovfl_val,
5570		pmu_conf->flags);
5571
5572  	LOCK_PFS(flags);
5573
5574 	seq_printf(m,
5575 		"proc_sessions             : %u\n"
5576 		"sys_sessions              : %u\n"
5577 		"sys_use_dbregs            : %u\n"
5578 		"ptrace_use_dbregs         : %u\n",
5579 		pfm_sessions.pfs_task_sessions,
5580 		pfm_sessions.pfs_sys_sessions,
5581 		pfm_sessions.pfs_sys_use_dbregs,
5582 		pfm_sessions.pfs_ptrace_use_dbregs);
5583
5584  	UNLOCK_PFS(flags);
5585
5586	spin_lock(&pfm_buffer_fmt_lock);
5587
5588	list_for_each(pos, &pfm_buffer_fmt_list) {
5589		entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5590		seq_printf(m, "format                    : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5591			entry->fmt_uuid[0],
5592			entry->fmt_uuid[1],
5593			entry->fmt_uuid[2],
5594			entry->fmt_uuid[3],
5595			entry->fmt_uuid[4],
5596			entry->fmt_uuid[5],
5597			entry->fmt_uuid[6],
5598			entry->fmt_uuid[7],
5599			entry->fmt_uuid[8],
5600			entry->fmt_uuid[9],
5601			entry->fmt_uuid[10],
5602			entry->fmt_uuid[11],
5603			entry->fmt_uuid[12],
5604			entry->fmt_uuid[13],
5605			entry->fmt_uuid[14],
5606			entry->fmt_uuid[15],
5607			entry->fmt_name);
5608	}
5609	spin_unlock(&pfm_buffer_fmt_lock);
5610
5611}
5612
5613static int
5614pfm_proc_show(struct seq_file *m, void *v)
5615{
5616	unsigned long psr;
5617	unsigned int i;
5618	int cpu;
5619
5620	if (v == PFM_PROC_SHOW_HEADER) {
5621		pfm_proc_show_header(m);
5622		return 0;
5623	}
5624
5625	/* show info for CPU (v - 1) */
5626
5627	cpu = (long)v - 1;
5628	seq_printf(m,
5629		"CPU%-2d overflow intrs      : %lu\n"
5630		"CPU%-2d overflow cycles     : %lu\n"
5631		"CPU%-2d overflow min        : %lu\n"
5632		"CPU%-2d overflow max        : %lu\n"
5633		"CPU%-2d smpl handler calls  : %lu\n"
5634		"CPU%-2d smpl handler cycles : %lu\n"
5635		"CPU%-2d spurious intrs      : %lu\n"
5636		"CPU%-2d replay   intrs      : %lu\n"
5637		"CPU%-2d syst_wide           : %d\n"
5638		"CPU%-2d dcr_pp              : %d\n"
5639		"CPU%-2d exclude idle        : %d\n"
5640		"CPU%-2d owner               : %d\n"
5641		"CPU%-2d context             : %p\n"
5642		"CPU%-2d activations         : %lu\n",
5643		cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5644		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5645		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5646		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5647		cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5648		cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5649		cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5650		cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5651		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5652		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5653		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5654		cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5655		cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5656		cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5657
5658	if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5659
5660		psr = pfm_get_psr();
5661
5662		ia64_srlz_d();
5663
5664		seq_printf(m,
5665			"CPU%-2d psr                 : 0x%lx\n"
5666			"CPU%-2d pmc0                : 0x%lx\n",
5667			cpu, psr,
5668			cpu, ia64_get_pmc(0));
5669
5670		for (i=0; PMC_IS_LAST(i) == 0;  i++) {
5671			if (PMC_IS_COUNTING(i) == 0) continue;
5672   			seq_printf(m,
5673				"CPU%-2d pmc%u                : 0x%lx\n"
5674   				"CPU%-2d pmd%u                : 0x%lx\n",
5675				cpu, i, ia64_get_pmc(i),
5676				cpu, i, ia64_get_pmd(i));
5677  		}
5678	}
5679	return 0;
5680}
5681
5682const struct seq_operations pfm_seq_ops = {
5683	.start =	pfm_proc_start,
5684 	.next =		pfm_proc_next,
5685 	.stop =		pfm_proc_stop,
5686 	.show =		pfm_proc_show
5687};
5688
5689static int
5690pfm_proc_open(struct inode *inode, struct file *file)
5691{
5692	return seq_open(file, &pfm_seq_ops);
5693}
5694
5695
5696/*
5697 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5698 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5699 * is active or inactive based on mode. We must rely on the value in
5700 * local_cpu_data->pfm_syst_info
5701 */
5702void
5703pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5704{
5705	struct pt_regs *regs;
5706	unsigned long dcr;
5707	unsigned long dcr_pp;
5708
5709	dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5710
5711	/*
5712	 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5713	 * on every CPU, so we can rely on the pid to identify the idle task.
5714	 */
5715	if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5716		regs = task_pt_regs(task);
5717		ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5718		return;
5719	}
5720	/*
5721	 * if monitoring has started
5722	 */
5723	if (dcr_pp) {
5724		dcr = ia64_getreg(_IA64_REG_CR_DCR);
5725		/*
5726		 * context switching in?
5727		 */
5728		if (is_ctxswin) {
5729			/* mask monitoring for the idle task */
5730			ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5731			pfm_clear_psr_pp();
5732			ia64_srlz_i();
5733			return;
5734		}
5735		/*
5736		 * context switching out
5737		 * restore monitoring for next task
5738		 *
5739		 * Due to inlining this odd if-then-else construction generates
5740		 * better code.
5741		 */
5742		ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5743		pfm_set_psr_pp();
5744		ia64_srlz_i();
5745	}
5746}
5747
5748#ifdef CONFIG_SMP
5749
5750static void
5751pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5752{
5753	struct task_struct *task = ctx->ctx_task;
5754
5755	ia64_psr(regs)->up = 0;
5756	ia64_psr(regs)->sp = 1;
5757
5758	if (GET_PMU_OWNER() == task) {
5759		DPRINT(("cleared ownership for [%d]\n",
5760					task_pid_nr(ctx->ctx_task)));
5761		SET_PMU_OWNER(NULL, NULL);
5762	}
5763
5764	/*
5765	 * disconnect the task from the context and vice-versa
5766	 */
5767	PFM_SET_WORK_PENDING(task, 0);
5768
5769	task->thread.pfm_context  = NULL;
5770	task->thread.flags       &= ~IA64_THREAD_PM_VALID;
5771
5772	DPRINT(("force cleanup for [%d]\n",  task_pid_nr(task)));
5773}
5774
5775
5776/*
5777 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5778 */
5779void
5780pfm_save_regs(struct task_struct *task)
5781{
5782	pfm_context_t *ctx;
5783	unsigned long flags;
5784	u64 psr;
5785
5786
5787	ctx = PFM_GET_CTX(task);
5788	if (ctx == NULL) return;
5789
5790	/*
5791 	 * we always come here with interrupts ALREADY disabled by
5792 	 * the scheduler. So we simply need to protect against concurrent
5793	 * access, not CPU concurrency.
5794	 */
5795	flags = pfm_protect_ctx_ctxsw(ctx);
5796
5797	if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5798		struct pt_regs *regs = task_pt_regs(task);
5799
5800		pfm_clear_psr_up();
5801
5802		pfm_force_cleanup(ctx, regs);
5803
5804		BUG_ON(ctx->ctx_smpl_hdr);
5805
5806		pfm_unprotect_ctx_ctxsw(ctx, flags);
5807
5808		pfm_context_free(ctx);
5809		return;
5810	}
5811
5812	/*
5813	 * save current PSR: needed because we modify it
5814	 */
5815	ia64_srlz_d();
5816	psr = pfm_get_psr();
5817
5818	BUG_ON(psr & (IA64_PSR_I));
5819
5820	/*
5821	 * stop monitoring:
5822	 * This is the last instruction which may generate an overflow
5823	 *
5824	 * We do not need to set psr.sp because, it is irrelevant in kernel.
5825	 * It will be restored from ipsr when going back to user level
5826	 */
5827	pfm_clear_psr_up();
5828
5829	/*
5830	 * keep a copy of psr.up (for reload)
5831	 */
5832	ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5833
5834	/*
5835	 * release ownership of this PMU.
5836	 * PM interrupts are masked, so nothing
5837	 * can happen.
5838	 */
5839	SET_PMU_OWNER(NULL, NULL);
5840
5841	/*
5842	 * we systematically save the PMD as we have no
5843	 * guarantee we will be schedule at that same
5844	 * CPU again.
5845	 */
5846	pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5847
5848	/*
5849	 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5850	 * we will need it on the restore path to check
5851	 * for pending overflow.
5852	 */
5853	ctx->th_pmcs[0] = ia64_get_pmc(0);
5854
5855	/*
5856	 * unfreeze PMU if had pending overflows
5857	 */
5858	if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5859
5860	/*
5861	 * finally, allow context access.
5862	 * interrupts will still be masked after this call.
5863	 */
5864	pfm_unprotect_ctx_ctxsw(ctx, flags);
5865}
5866
5867#else /* !CONFIG_SMP */
5868void
5869pfm_save_regs(struct task_struct *task)
5870{
5871	pfm_context_t *ctx;
5872	u64 psr;
5873
5874	ctx = PFM_GET_CTX(task);
5875	if (ctx == NULL) return;
5876
5877	/*
5878	 * save current PSR: needed because we modify it
5879	 */
5880	psr = pfm_get_psr();
5881
5882	BUG_ON(psr & (IA64_PSR_I));
5883
5884	/*
5885	 * stop monitoring:
5886	 * This is the last instruction which may generate an overflow
5887	 *
5888	 * We do not need to set psr.sp because, it is irrelevant in kernel.
5889	 * It will be restored from ipsr when going back to user level
5890	 */
5891	pfm_clear_psr_up();
5892
5893	/*
5894	 * keep a copy of psr.up (for reload)
5895	 */
5896	ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5897}
5898
5899static void
5900pfm_lazy_save_regs (struct task_struct *task)
5901{
5902	pfm_context_t *ctx;
5903	unsigned long flags;
5904
5905	{ u64 psr  = pfm_get_psr();
5906	  BUG_ON(psr & IA64_PSR_UP);
5907	}
5908
5909	ctx = PFM_GET_CTX(task);
5910
5911	PROTECT_CTX(ctx,flags);
5912
5913	/*
5914	 * release ownership of this PMU.
5915	 * must be done before we save the registers.
5916	 *
5917	 * after this call any PMU interrupt is treated
5918	 * as spurious.
5919	 */
5920	SET_PMU_OWNER(NULL, NULL);
5921
5922	/*
5923	 * save all the pmds we use
5924	 */
5925	pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5926
5927	/*
5928	 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5929	 * it is needed to check for pended overflow
5930	 * on the restore path
5931	 */
5932	ctx->th_pmcs[0] = ia64_get_pmc(0);
5933
5934	/*
5935	 * unfreeze PMU if had pending overflows
5936	 */
5937	if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5938
5939	/*
5940	 * now get can unmask PMU interrupts, they will
5941	 * be treated as purely spurious and we will not
5942	 * lose any information
5943	 */
5944	UNPROTECT_CTX(ctx,flags);
5945}
5946#endif /* CONFIG_SMP */
5947
5948#ifdef CONFIG_SMP
5949/*
5950 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5951 */
5952void
5953pfm_load_regs (struct task_struct *task)
5954{
5955	pfm_context_t *ctx;
5956	unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
5957	unsigned long flags;
5958	u64 psr, psr_up;
5959	int need_irq_resend;
5960
5961	ctx = PFM_GET_CTX(task);
5962	if (unlikely(ctx == NULL)) return;
5963
5964	BUG_ON(GET_PMU_OWNER());
5965
5966	/*
5967	 * possible on unload
5968	 */
5969	if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
5970
5971	/*
5972 	 * we always come here with interrupts ALREADY disabled by
5973 	 * the scheduler. So we simply need to protect against concurrent
5974	 * access, not CPU concurrency.
5975	 */
5976	flags = pfm_protect_ctx_ctxsw(ctx);
5977	psr   = pfm_get_psr();
5978
5979	need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
5980
5981	BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
5982	BUG_ON(psr & IA64_PSR_I);
5983
5984	if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
5985		struct pt_regs *regs = task_pt_regs(task);
5986
5987		BUG_ON(ctx->ctx_smpl_hdr);
5988
5989		pfm_force_cleanup(ctx, regs);
5990
5991		pfm_unprotect_ctx_ctxsw(ctx, flags);
5992
5993		/*
5994		 * this one (kmalloc'ed) is fine with interrupts disabled
5995		 */
5996		pfm_context_free(ctx);
5997
5998		return;
5999	}
6000
6001	/*
6002	 * we restore ALL the debug registers to avoid picking up
6003	 * stale state.
6004	 */
6005	if (ctx->ctx_fl_using_dbreg) {
6006		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6007		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6008	}
6009	/*
6010	 * retrieve saved psr.up
6011	 */
6012	psr_up = ctx->ctx_saved_psr_up;
6013
6014	/*
6015	 * if we were the last user of the PMU on that CPU,
6016	 * then nothing to do except restore psr
6017	 */
6018	if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6019
6020		/*
6021		 * retrieve partial reload masks (due to user modifications)
6022		 */
6023		pmc_mask = ctx->ctx_reload_pmcs[0];
6024		pmd_mask = ctx->ctx_reload_pmds[0];
6025
6026	} else {
6027		/*
6028	 	 * To avoid leaking information to the user level when psr.sp=0,
6029	 	 * we must reload ALL implemented pmds (even the ones we don't use).
6030	 	 * In the kernel we only allow PFM_READ_PMDS on registers which
6031	 	 * we initialized or requested (sampling) so there is no risk there.
6032	 	 */
6033		pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6034
6035		/*
6036	 	 * ALL accessible PMCs are systematically reloaded, unused registers
6037	 	 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6038	 	 * up stale configuration.
6039	 	 *
6040	 	 * PMC0 is never in the mask. It is always restored separately.
6041	 	 */
6042		pmc_mask = ctx->ctx_all_pmcs[0];
6043	}
6044	if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6045	if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6046
6047	/*
6048	 * check for pending overflow at the time the state
6049	 * was saved.
6050	 */
6051	if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6052		/*
6053		 * reload pmc0 with the overflow information
6054		 * On McKinley PMU, this will trigger a PMU interrupt
6055		 */
6056		ia64_set_pmc(0, ctx->th_pmcs[0]);
6057		ia64_srlz_d();
6058		ctx->th_pmcs[0] = 0UL;
6059
6060		/*
6061		 * will replay the PMU interrupt
6062		 */
6063		if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6064
6065		pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6066	}
6067
6068	/*
6069	 * we just did a reload, so we reset the partial reload fields
6070	 */
6071	ctx->ctx_reload_pmcs[0] = 0UL;
6072	ctx->ctx_reload_pmds[0] = 0UL;
6073
6074	SET_LAST_CPU(ctx, smp_processor_id());
6075
6076	/*
6077	 * dump activation value for this PMU
6078	 */
6079	INC_ACTIVATION();
6080	/*
6081	 * record current activation for this context
6082	 */
6083	SET_ACTIVATION(ctx);
6084
6085	/*
6086	 * establish new ownership.
6087	 */
6088	SET_PMU_OWNER(task, ctx);
6089
6090	/*
6091	 * restore the psr.up bit. measurement
6092	 * is active again.
6093	 * no PMU interrupt can happen at this point
6094	 * because we still have interrupts disabled.
6095	 */
6096	if (likely(psr_up)) pfm_set_psr_up();
6097
6098	/*
6099	 * allow concurrent access to context
6100	 */
6101	pfm_unprotect_ctx_ctxsw(ctx, flags);
6102}
6103#else /*  !CONFIG_SMP */
6104/*
6105 * reload PMU state for UP kernels
6106 * in 2.5 we come here with interrupts disabled
6107 */
6108void
6109pfm_load_regs (struct task_struct *task)
6110{
6111	pfm_context_t *ctx;
6112	struct task_struct *owner;
6113	unsigned long pmd_mask, pmc_mask;
6114	u64 psr, psr_up;
6115	int need_irq_resend;
6116
6117	owner = GET_PMU_OWNER();
6118	ctx   = PFM_GET_CTX(task);
6119	psr   = pfm_get_psr();
6120
6121	BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6122	BUG_ON(psr & IA64_PSR_I);
6123
6124	/*
6125	 * we restore ALL the debug registers to avoid picking up
6126	 * stale state.
6127	 *
6128	 * This must be done even when the task is still the owner
6129	 * as the registers may have been modified via ptrace()
6130	 * (not perfmon) by the previous task.
6131	 */
6132	if (ctx->ctx_fl_using_dbreg) {
6133		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6134		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6135	}
6136
6137	/*
6138	 * retrieved saved psr.up
6139	 */
6140	psr_up = ctx->ctx_saved_psr_up;
6141	need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6142
6143	/*
6144	 * short path, our state is still there, just
6145	 * need to restore psr and we go
6146	 *
6147	 * we do not touch either PMC nor PMD. the psr is not touched
6148	 * by the overflow_handler. So we are safe w.r.t. to interrupt
6149	 * concurrency even without interrupt masking.
6150	 */
6151	if (likely(owner == task)) {
6152		if (likely(psr_up)) pfm_set_psr_up();
6153		return;
6154	}
6155
6156	/*
6157	 * someone else is still using the PMU, first push it out and
6158	 * then we'll be able to install our stuff !
6159	 *
6160	 * Upon return, there will be no owner for the current PMU
6161	 */
6162	if (owner) pfm_lazy_save_regs(owner);
6163
6164	/*
6165	 * To avoid leaking information to the user level when psr.sp=0,
6166	 * we must reload ALL implemented pmds (even the ones we don't use).
6167	 * In the kernel we only allow PFM_READ_PMDS on registers which
6168	 * we initialized or requested (sampling) so there is no risk there.
6169	 */
6170	pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6171
6172	/*
6173	 * ALL accessible PMCs are systematically reloaded, unused registers
6174	 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6175	 * up stale configuration.
6176	 *
6177	 * PMC0 is never in the mask. It is always restored separately
6178	 */
6179	pmc_mask = ctx->ctx_all_pmcs[0];
6180
6181	pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6182	pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6183
6184	/*
6185	 * check for pending overflow at the time the state
6186	 * was saved.
6187	 */
6188	if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6189		/*
6190		 * reload pmc0 with the overflow information
6191		 * On McKinley PMU, this will trigger a PMU interrupt
6192		 */
6193		ia64_set_pmc(0, ctx->th_pmcs[0]);
6194		ia64_srlz_d();
6195
6196		ctx->th_pmcs[0] = 0UL;
6197
6198		/*
6199		 * will replay the PMU interrupt
6200		 */
6201		if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6202
6203		pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6204	}
6205
6206	/*
6207	 * establish new ownership.
6208	 */
6209	SET_PMU_OWNER(task, ctx);
6210
6211	/*
6212	 * restore the psr.up bit. measurement
6213	 * is active again.
6214	 * no PMU interrupt can happen at this point
6215	 * because we still have interrupts disabled.
6216	 */
6217	if (likely(psr_up)) pfm_set_psr_up();
6218}
6219#endif /* CONFIG_SMP */
6220
6221/*
6222 * this function assumes monitoring is stopped
6223 */
6224static void
6225pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6226{
6227	u64 pmc0;
6228	unsigned long mask2, val, pmd_val, ovfl_val;
6229	int i, can_access_pmu = 0;
6230	int is_self;
6231
6232	/*
6233	 * is the caller the task being monitored (or which initiated the
6234	 * session for system wide measurements)
6235	 */
6236	is_self = ctx->ctx_task == task ? 1 : 0;
6237
6238	/*
6239	 * can access PMU is task is the owner of the PMU state on the current CPU
6240	 * or if we are running on the CPU bound to the context in system-wide mode
6241	 * (that is not necessarily the task the context is attached to in this mode).
6242	 * In system-wide we always have can_access_pmu true because a task running on an
6243	 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6244	 */
6245	can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6246	if (can_access_pmu) {
6247		/*
6248		 * Mark the PMU as not owned
6249		 * This will cause the interrupt handler to do nothing in case an overflow
6250		 * interrupt was in-flight
6251		 * This also guarantees that pmc0 will contain the final state
6252		 * It virtually gives us full control on overflow processing from that point
6253		 * on.
6254		 */
6255		SET_PMU_OWNER(NULL, NULL);
6256		DPRINT(("releasing ownership\n"));
6257
6258		/*
6259		 * read current overflow status:
6260		 *
6261		 * we are guaranteed to read the final stable state
6262		 */
6263		ia64_srlz_d();
6264		pmc0 = ia64_get_pmc(0); /* slow */
6265
6266		/*
6267		 * reset freeze bit, overflow status information destroyed
6268		 */
6269		pfm_unfreeze_pmu();
6270	} else {
6271		pmc0 = ctx->th_pmcs[0];
6272		/*
6273		 * clear whatever overflow status bits there were
6274		 */
6275		ctx->th_pmcs[0] = 0;
6276	}
6277	ovfl_val = pmu_conf->ovfl_val;
6278	mask2 = ctx->ctx_used_pmds[0];
6279
6280	DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6281
6282	for (i = 0; mask2; i++, mask2>>=1) {
6283
6284		/* skip non used pmds */
6285		if ((mask2 & 0x1) == 0) continue;
6286
6287		/*
6288		 * can access PMU always true in system wide mode
6289		 */
6290		val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6291
6292		if (PMD_IS_COUNTING(i)) {
6293			DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6294				task_pid_nr(task),
6295				i,
6296				ctx->ctx_pmds[i].val,
6297				val & ovfl_val));
6298
6299			/*
6300			 * we rebuild the full 64 bit value of the counter
6301			 */
6302			val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6303
6304			/*
6305			 * now everything is in ctx_pmds[] and we need
6306			 * to clear the saved context from save_regs() such that
6307			 * pfm_read_pmds() gets the correct value
6308			 */
6309			pmd_val = 0UL;
6310
6311			/*
6312			 * take care of overflow inline
6313			 */
6314			if (pmc0 & (1UL << i)) {
6315				val += 1 + ovfl_val;
6316				DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6317			}
6318		}
6319
6320		DPRINT(("[%d] ctx_pmd[%d]=0x%lx  pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6321
6322		if (is_self) ctx->th_pmds[i] = pmd_val;
6323
6324		ctx->ctx_pmds[i].val = val;
6325	}
6326}
6327
6328static struct irqaction perfmon_irqaction = {
6329	.handler = pfm_interrupt_handler,
6330	.flags   = IRQF_DISABLED,
6331	.name    = "perfmon"
6332};
6333
6334static void
6335pfm_alt_save_pmu_state(void *data)
6336{
6337	struct pt_regs *regs;
6338
6339	regs = task_pt_regs(current);
6340
6341	DPRINT(("called\n"));
6342
6343	/*
6344	 * should not be necessary but
6345	 * let's take not risk
6346	 */
6347	pfm_clear_psr_up();
6348	pfm_clear_psr_pp();
6349	ia64_psr(regs)->pp = 0;
6350
6351	/*
6352	 * This call is required
6353	 * May cause a spurious interrupt on some processors
6354	 */
6355	pfm_freeze_pmu();
6356
6357	ia64_srlz_d();
6358}
6359
6360void
6361pfm_alt_restore_pmu_state(void *data)
6362{
6363	struct pt_regs *regs;
6364
6365	regs = task_pt_regs(current);
6366
6367	DPRINT(("called\n"));
6368
6369	/*
6370	 * put PMU back in state expected
6371	 * by perfmon
6372	 */
6373	pfm_clear_psr_up();
6374	pfm_clear_psr_pp();
6375	ia64_psr(regs)->pp = 0;
6376
6377	/*
6378	 * perfmon runs with PMU unfrozen at all times
6379	 */
6380	pfm_unfreeze_pmu();
6381
6382	ia64_srlz_d();
6383}
6384
6385int
6386pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6387{
6388	int ret, i;
6389	int reserve_cpu;
6390
6391	/* some sanity checks */
6392	if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6393
6394	/* do the easy test first */
6395	if (pfm_alt_intr_handler) return -EBUSY;
6396
6397	/* one at a time in the install or remove, just fail the others */
6398	if (!spin_trylock(&pfm_alt_install_check)) {
6399		return -EBUSY;
6400	}
6401
6402	/* reserve our session */
6403	for_each_online_cpu(reserve_cpu) {
6404		ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6405		if (ret) goto cleanup_reserve;
6406	}
6407
6408	/* save the current system wide pmu states */
6409	ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6410	if (ret) {
6411		DPRINT(("on_each_cpu() failed: %d\n", ret));
6412		goto cleanup_reserve;
6413	}
6414
6415	/* officially change to the alternate interrupt handler */
6416	pfm_alt_intr_handler = hdl;
6417
6418	spin_unlock(&pfm_alt_install_check);
6419
6420	return 0;
6421
6422cleanup_reserve:
6423	for_each_online_cpu(i) {
6424		/* don't unreserve more than we reserved */
6425		if (i >= reserve_cpu) break;
6426
6427		pfm_unreserve_session(NULL, 1, i);
6428	}
6429
6430	spin_unlock(&pfm_alt_install_check);
6431
6432	return ret;
6433}
6434EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6435
6436int
6437pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6438{
6439	int i;
6440	int ret;
6441
6442	if (hdl == NULL) return -EINVAL;
6443
6444	/* cannot remove someone else's handler! */
6445	if (pfm_alt_intr_handler != hdl) return -EINVAL;
6446
6447	/* one at a time in the install or remove, just fail the others */
6448	if (!spin_trylock(&pfm_alt_install_check)) {
6449		return -EBUSY;
6450	}
6451
6452	pfm_alt_intr_handler = NULL;
6453
6454	ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6455	if (ret) {
6456		DPRINT(("on_each_cpu() failed: %d\n", ret));
6457	}
6458
6459	for_each_online_cpu(i) {
6460		pfm_unreserve_session(NULL, 1, i);
6461	}
6462
6463	spin_unlock(&pfm_alt_install_check);
6464
6465	return 0;
6466}
6467EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6468
6469/*
6470 * perfmon initialization routine, called from the initcall() table
6471 */
6472static int init_pfm_fs(void);
6473
6474static int __init
6475pfm_probe_pmu(void)
6476{
6477	pmu_config_t **p;
6478	int family;
6479
6480	family = local_cpu_data->family;
6481	p      = pmu_confs;
6482
6483	while(*p) {
6484		if ((*p)->probe) {
6485			if ((*p)->probe() == 0) goto found;
6486		} else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6487			goto found;
6488		}
6489		p++;
6490	}
6491	return -1;
6492found:
6493	pmu_conf = *p;
6494	return 0;
6495}
6496
6497static const struct file_operations pfm_proc_fops = {
6498	.open		= pfm_proc_open,
6499	.read		= seq_read,
6500	.llseek		= seq_lseek,
6501	.release	= seq_release,
6502};
6503
6504int __init
6505pfm_init(void)
6506{
6507	unsigned int n, n_counters, i;
6508
6509	printk("perfmon: version %u.%u IRQ %u\n",
6510		PFM_VERSION_MAJ,
6511		PFM_VERSION_MIN,
6512		IA64_PERFMON_VECTOR);
6513
6514	if (pfm_probe_pmu()) {
6515		printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6516				local_cpu_data->family);
6517		return -ENODEV;
6518	}
6519
6520	/*
6521	 * compute the number of implemented PMD/PMC from the
6522	 * description tables
6523	 */
6524	n = 0;
6525	for (i=0; PMC_IS_LAST(i) == 0;  i++) {
6526		if (PMC_IS_IMPL(i) == 0) continue;
6527		pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6528		n++;
6529	}
6530	pmu_conf->num_pmcs = n;
6531
6532	n = 0; n_counters = 0;
6533	for (i=0; PMD_IS_LAST(i) == 0;  i++) {
6534		if (PMD_IS_IMPL(i) == 0) continue;
6535		pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6536		n++;
6537		if (PMD_IS_COUNTING(i)) n_counters++;
6538	}
6539	pmu_conf->num_pmds      = n;
6540	pmu_conf->num_counters  = n_counters;
6541
6542	/*
6543	 * sanity checks on the number of debug registers
6544	 */
6545	if (pmu_conf->use_rr_dbregs) {
6546		if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6547			printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6548			pmu_conf = NULL;
6549			return -1;
6550		}
6551		if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6552			printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6553			pmu_conf = NULL;
6554			return -1;
6555		}
6556	}
6557
6558	printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6559	       pmu_conf->pmu_name,
6560	       pmu_conf->num_pmcs,
6561	       pmu_conf->num_pmds,
6562	       pmu_conf->num_counters,
6563	       ffz(pmu_conf->ovfl_val));
6564
6565	/* sanity check */
6566	if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6567		printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6568		pmu_conf = NULL;
6569		return -1;
6570	}
6571
6572	/*
6573	 * create /proc/perfmon (mostly for debugging purposes)
6574	 */
6575	perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
6576	if (perfmon_dir == NULL) {
6577		printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6578		pmu_conf = NULL;
6579		return -1;
6580	}
6581
6582	/*
6583	 * create /proc/sys/kernel/perfmon (for debugging purposes)
6584	 */
6585	pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6586
6587	/*
6588	 * initialize all our spinlocks
6589	 */
6590	spin_lock_init(&pfm_sessions.pfs_lock);
6591	spin_lock_init(&pfm_buffer_fmt_lock);
6592
6593	init_pfm_fs();
6594
6595	for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6596
6597	return 0;
6598}
6599
6600__initcall(pfm_init);
6601
6602/*
6603 * this function is called before pfm_init()
6604 */
6605void
6606pfm_init_percpu (void)
6607{
6608	static int first_time=1;
6609	/*
6610	 * make sure no measurement is active
6611	 * (may inherit programmed PMCs from EFI).
6612	 */
6613	pfm_clear_psr_pp();
6614	pfm_clear_psr_up();
6615
6616	/*
6617	 * we run with the PMU not frozen at all times
6618	 */
6619	pfm_unfreeze_pmu();
6620
6621	if (first_time) {
6622		register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6623		first_time=0;
6624	}
6625
6626	ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6627	ia64_srlz_d();
6628}
6629
6630/*
6631 * used for debug purposes only
6632 */
6633void
6634dump_pmu_state(const char *from)
6635{
6636	struct task_struct *task;
6637	struct pt_regs *regs;
6638	pfm_context_t *ctx;
6639	unsigned long psr, dcr, info, flags;
6640	int i, this_cpu;
6641
6642	local_irq_save(flags);
6643
6644	this_cpu = smp_processor_id();
6645	regs     = task_pt_regs(current);
6646	info     = PFM_CPUINFO_GET();
6647	dcr      = ia64_getreg(_IA64_REG_CR_DCR);
6648
6649	if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6650		local_irq_restore(flags);
6651		return;
6652	}
6653
6654	printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6655		this_cpu,
6656		from,
6657		task_pid_nr(current),
6658		regs->cr_iip,
6659		current->comm);
6660
6661	task = GET_PMU_OWNER();
6662	ctx  = GET_PMU_CTX();
6663
6664	printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6665
6666	psr = pfm_get_psr();
6667
6668	printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6669		this_cpu,
6670		ia64_get_pmc(0),
6671		psr & IA64_PSR_PP ? 1 : 0,
6672		psr & IA64_PSR_UP ? 1 : 0,
6673		dcr & IA64_DCR_PP ? 1 : 0,
6674		info,
6675		ia64_psr(regs)->up,
6676		ia64_psr(regs)->pp);
6677
6678	ia64_psr(regs)->up = 0;
6679	ia64_psr(regs)->pp = 0;
6680
6681	for (i=1; PMC_IS_LAST(i) == 0; i++) {
6682		if (PMC_IS_IMPL(i) == 0) continue;
6683		printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6684	}
6685
6686	for (i=1; PMD_IS_LAST(i) == 0; i++) {
6687		if (PMD_IS_IMPL(i) == 0) continue;
6688		printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6689	}
6690
6691	if (ctx) {
6692		printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6693				this_cpu,
6694				ctx->ctx_state,
6695				ctx->ctx_smpl_vaddr,
6696				ctx->ctx_smpl_hdr,
6697				ctx->ctx_msgq_head,
6698				ctx->ctx_msgq_tail,
6699				ctx->ctx_saved_psr_up);
6700	}
6701	local_irq_restore(flags);
6702}
6703
6704/*
6705 * called from process.c:copy_thread(). task is new child.
6706 */
6707void
6708pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6709{
6710	struct thread_struct *thread;
6711
6712	DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6713
6714	thread = &task->thread;
6715
6716	/*
6717	 * cut links inherited from parent (current)
6718	 */
6719	thread->pfm_context = NULL;
6720
6721	PFM_SET_WORK_PENDING(task, 0);
6722
6723	/*
6724	 * the psr bits are already set properly in copy_threads()
6725	 */
6726}
6727#else  /* !CONFIG_PERFMON */
6728asmlinkage long
6729sys_perfmonctl (int fd, int cmd, void *arg, int count)
6730{
6731	return -ENOSYS;
6732}
6733#endif /* CONFIG_PERFMON */
6734