• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-R7000-V1.0.7.12_1.2.5/components/opensource/linux/linux-2.6.36/arch/cris/arch-v32/drivers/
1/*
2 * Physical mapping layer for MTD using the Axis partitiontable format
3 *
4 * Copyright (c) 2001-2007 Axis Communications AB
5 *
6 * This file is under the GPL.
7 *
8 * First partition is always sector 0 regardless of if we find a partitiontable
9 * or not. In the start of the next sector, there can be a partitiontable that
10 * tells us what other partitions to define. If there isn't, we use a default
11 * partition split defined below.
12 *
13 */
14
15#include <linux/module.h>
16#include <linux/types.h>
17#include <linux/kernel.h>
18#include <linux/init.h>
19#include <linux/slab.h>
20
21#include <linux/mtd/concat.h>
22#include <linux/mtd/map.h>
23#include <linux/mtd/mtd.h>
24#include <linux/mtd/mtdram.h>
25#include <linux/mtd/partitions.h>
26
27#include <linux/cramfs_fs.h>
28
29#include <asm/axisflashmap.h>
30#include <asm/mmu.h>
31
32#define MEM_CSE0_SIZE (0x04000000)
33#define MEM_CSE1_SIZE (0x04000000)
34
35#define FLASH_UNCACHED_ADDR  KSEG_E
36#define FLASH_CACHED_ADDR    KSEG_F
37
38#define PAGESIZE (512)
39
40#if CONFIG_ETRAX_FLASH_BUSWIDTH==1
41#define flash_data __u8
42#elif CONFIG_ETRAX_FLASH_BUSWIDTH==2
43#define flash_data __u16
44#elif CONFIG_ETRAX_FLASH_BUSWIDTH==4
45#define flash_data __u32
46#endif
47
48/* From head.S */
49extern unsigned long romfs_in_flash; /* 1 when romfs_start, _length in flash */
50extern unsigned long romfs_start, romfs_length;
51extern unsigned long nand_boot; /* 1 when booted from nand flash */
52
53struct partition_name {
54	char name[6];
55};
56
57/* The master mtd for the entire flash. */
58struct mtd_info* axisflash_mtd = NULL;
59
60/* Map driver functions. */
61
62static map_word flash_read(struct map_info *map, unsigned long ofs)
63{
64	map_word tmp;
65	tmp.x[0] = *(flash_data *)(map->map_priv_1 + ofs);
66	return tmp;
67}
68
69static void flash_copy_from(struct map_info *map, void *to,
70			    unsigned long from, ssize_t len)
71{
72	memcpy(to, (void *)(map->map_priv_1 + from), len);
73}
74
75static void flash_write(struct map_info *map, map_word d, unsigned long adr)
76{
77	*(flash_data *)(map->map_priv_1 + adr) = (flash_data)d.x[0];
78}
79
80/*
81 * The map for chip select e0.
82 *
83 * We run into tricky coherence situations if we mix cached with uncached
84 * accesses to we only use the uncached version here.
85 *
86 * The size field is the total size where the flash chips may be mapped on the
87 * chip select. MTD probes should find all devices there and it does not matter
88 * if there are unmapped gaps or aliases (mirrors of flash devices). The MTD
89 * probes will ignore them.
90 *
91 * The start address in map_priv_1 is in virtual memory so we cannot use
92 * MEM_CSE0_START but must rely on that FLASH_UNCACHED_ADDR is the start
93 * address of cse0.
94 */
95static struct map_info map_cse0 = {
96	.name = "cse0",
97	.size = MEM_CSE0_SIZE,
98	.bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
99	.read = flash_read,
100	.copy_from = flash_copy_from,
101	.write = flash_write,
102	.map_priv_1 = FLASH_UNCACHED_ADDR
103};
104
105/*
106 * The map for chip select e1.
107 *
108 * If there was a gap between cse0 and cse1, map_priv_1 would get the wrong
109 * address, but there isn't.
110 */
111static struct map_info map_cse1 = {
112	.name = "cse1",
113	.size = MEM_CSE1_SIZE,
114	.bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
115	.read = flash_read,
116	.copy_from = flash_copy_from,
117	.write = flash_write,
118	.map_priv_1 = FLASH_UNCACHED_ADDR + MEM_CSE0_SIZE
119};
120
121#define MAX_PARTITIONS			7
122#ifdef CONFIG_ETRAX_NANDBOOT
123#define NUM_DEFAULT_PARTITIONS		4
124#define DEFAULT_ROOTFS_PARTITION_NO	2
125#define DEFAULT_MEDIA_SIZE              0x2000000 /* 32 megs */
126#else
127#define NUM_DEFAULT_PARTITIONS		3
128#define DEFAULT_ROOTFS_PARTITION_NO	(-1)
129#define DEFAULT_MEDIA_SIZE              0x800000 /* 8 megs */
130#endif
131
132#if (MAX_PARTITIONS < NUM_DEFAULT_PARTITIONS)
133#error MAX_PARTITIONS must be >= than NUM_DEFAULT_PARTITIONS
134#endif
135
136/* Initialize the ones normally used. */
137static struct mtd_partition axis_partitions[MAX_PARTITIONS] = {
138	{
139		.name = "part0",
140		.size = CONFIG_ETRAX_PTABLE_SECTOR,
141		.offset = 0
142	},
143	{
144		.name = "part1",
145		.size = 0,
146		.offset = 0
147	},
148	{
149		.name = "part2",
150		.size = 0,
151		.offset = 0
152	},
153	{
154		.name = "part3",
155		.size = 0,
156		.offset = 0
157	},
158	{
159		.name = "part4",
160		.size = 0,
161		.offset = 0
162	},
163	{
164		.name = "part5",
165		.size = 0,
166		.offset = 0
167	},
168	{
169		.name = "part6",
170		.size = 0,
171		.offset = 0
172	},
173};
174
175
176/* If no partition-table was found, we use this default-set.
177 * Default flash size is 8MB (NOR). CONFIG_ETRAX_PTABLE_SECTOR is most
178 * likely the size of one flash block and "filesystem"-partition needs
179 * to be >=5 blocks to be able to use JFFS.
180 */
181static struct mtd_partition axis_default_partitions[NUM_DEFAULT_PARTITIONS] = {
182	{
183		.name = "boot firmware",
184		.size = CONFIG_ETRAX_PTABLE_SECTOR,
185		.offset = 0
186	},
187	{
188		.name = "kernel",
189		.size = 10 * CONFIG_ETRAX_PTABLE_SECTOR,
190		.offset = CONFIG_ETRAX_PTABLE_SECTOR
191	},
192#define FILESYSTEM_SECTOR (11 * CONFIG_ETRAX_PTABLE_SECTOR)
193#ifdef CONFIG_ETRAX_NANDBOOT
194	{
195		.name = "rootfs",
196		.size = 10 * CONFIG_ETRAX_PTABLE_SECTOR,
197		.offset = FILESYSTEM_SECTOR
198	},
199#undef FILESYSTEM_SECTOR
200#define FILESYSTEM_SECTOR (21 * CONFIG_ETRAX_PTABLE_SECTOR)
201#endif
202	{
203		.name = "rwfs",
204		.size = DEFAULT_MEDIA_SIZE - FILESYSTEM_SECTOR,
205		.offset = FILESYSTEM_SECTOR
206	}
207};
208
209#ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
210/* Main flash device */
211static struct mtd_partition main_partition = {
212	.name = "main",
213	.size = 0,
214	.offset = 0
215};
216#endif
217
218/* Auxilliary partition if we find another flash */
219static struct mtd_partition aux_partition = {
220	.name = "aux",
221	.size = 0,
222	.offset = 0
223};
224
225/*
226 * Probe a chip select for AMD-compatible (JEDEC) or CFI-compatible flash
227 * chips in that order (because the amd_flash-driver is faster).
228 */
229static struct mtd_info *probe_cs(struct map_info *map_cs)
230{
231	struct mtd_info *mtd_cs = NULL;
232
233	printk(KERN_INFO
234	       "%s: Probing a 0x%08lx bytes large window at 0x%08lx.\n",
235	       map_cs->name, map_cs->size, map_cs->map_priv_1);
236
237#ifdef CONFIG_MTD_CFI
238	mtd_cs = do_map_probe("cfi_probe", map_cs);
239#endif
240#ifdef CONFIG_MTD_JEDECPROBE
241	if (!mtd_cs)
242		mtd_cs = do_map_probe("jedec_probe", map_cs);
243#endif
244
245	return mtd_cs;
246}
247
248/*
249 * Probe each chip select individually for flash chips. If there are chips on
250 * both cse0 and cse1, the mtd_info structs will be concatenated to one struct
251 * so that MTD partitions can cross chip boundries.
252 *
253 * The only known restriction to how you can mount your chips is that each
254 * chip select must hold similar flash chips. But you need external hardware
255 * to do that anyway and you can put totally different chips on cse0 and cse1
256 * so it isn't really much of a restriction.
257 */
258extern struct mtd_info* __init crisv32_nand_flash_probe (void);
259static struct mtd_info *flash_probe(void)
260{
261	struct mtd_info *mtd_cse0;
262	struct mtd_info *mtd_cse1;
263	struct mtd_info *mtd_total;
264	struct mtd_info *mtds[2];
265	int count = 0;
266
267	if ((mtd_cse0 = probe_cs(&map_cse0)) != NULL)
268		mtds[count++] = mtd_cse0;
269	if ((mtd_cse1 = probe_cs(&map_cse1)) != NULL)
270		mtds[count++] = mtd_cse1;
271
272	if (!mtd_cse0 && !mtd_cse1) {
273		/* No chip found. */
274		return NULL;
275	}
276
277	if (count > 1) {
278#ifdef CONFIG_MTD_CONCAT
279		/* Since the concatenation layer adds a small overhead we
280		 * could try to figure out if the chips in cse0 and cse1 are
281		 * identical and reprobe the whole cse0+cse1 window. But since
282		 * flash chips are slow, the overhead is relatively small.
283		 * So we use the MTD concatenation layer instead of further
284		 * complicating the probing procedure.
285		 */
286		mtd_total = mtd_concat_create(mtds, count, "cse0+cse1");
287#else
288		printk(KERN_ERR "%s and %s: Cannot concatenate due to kernel "
289		       "(mis)configuration!\n", map_cse0.name, map_cse1.name);
290		mtd_toal = NULL;
291#endif
292		if (!mtd_total) {
293			printk(KERN_ERR "%s and %s: Concatenation failed!\n",
294				map_cse0.name, map_cse1.name);
295
296			/* The best we can do now is to only use what we found
297			 * at cse0. */
298			mtd_total = mtd_cse0;
299			map_destroy(mtd_cse1);
300		}
301	} else
302		mtd_total = mtd_cse0 ? mtd_cse0 : mtd_cse1;
303
304	return mtd_total;
305}
306
307/*
308 * Probe the flash chip(s) and, if it succeeds, read the partition-table
309 * and register the partitions with MTD.
310 */
311static int __init init_axis_flash(void)
312{
313	struct mtd_info *main_mtd;
314	struct mtd_info *aux_mtd = NULL;
315	int err = 0;
316	int pidx = 0;
317	struct partitiontable_head *ptable_head = NULL;
318	struct partitiontable_entry *ptable;
319	int ptable_ok = 0;
320	static char page[PAGESIZE];
321	size_t len;
322	int ram_rootfs_partition = -1; /* -1 => no RAM rootfs partition */
323	int part;
324
325	/* We need a root fs. If it resides in RAM, we need to use an
326	 * MTDRAM device, so it must be enabled in the kernel config,
327	 * but its size must be configured as 0 so as not to conflict
328	 * with our usage.
329	 */
330#if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || \
331	(CONFIG_MTDRAM_ABS_POS != 0)
332	if (!romfs_in_flash && !nand_boot) {
333		printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM "
334		       "device; configure CONFIG_MTD_MTDRAM with size = 0!\n");
335		panic("This kernel cannot boot from RAM!\n");
336	}
337#endif
338
339#ifndef CONFIG_ETRAX_VCS_SIM
340	main_mtd = flash_probe();
341	if (main_mtd)
342		printk(KERN_INFO "%s: 0x%08x bytes of NOR flash memory.\n",
343		       main_mtd->name, main_mtd->size);
344
345#ifdef CONFIG_ETRAX_NANDFLASH
346	aux_mtd = crisv32_nand_flash_probe();
347	if (aux_mtd)
348		printk(KERN_INFO "%s: 0x%08x bytes of NAND flash memory.\n",
349			aux_mtd->name, aux_mtd->size);
350
351#ifdef CONFIG_ETRAX_NANDBOOT
352	{
353		struct mtd_info *tmp_mtd;
354
355		printk(KERN_INFO "axisflashmap: Set to boot from NAND flash, "
356		       "making NAND flash primary device.\n");
357		tmp_mtd = main_mtd;
358		main_mtd = aux_mtd;
359		aux_mtd = tmp_mtd;
360	}
361#endif /* CONFIG_ETRAX_NANDBOOT */
362#endif /* CONFIG_ETRAX_NANDFLASH */
363
364	if (!main_mtd && !aux_mtd) {
365		/* There's no reason to use this module if no flash chip can
366		 * be identified. Make sure that's understood.
367		 */
368		printk(KERN_INFO "axisflashmap: Found no flash chip.\n");
369	}
370
371
372	if (main_mtd) {
373		main_mtd->owner = THIS_MODULE;
374		axisflash_mtd = main_mtd;
375
376		loff_t ptable_sector = CONFIG_ETRAX_PTABLE_SECTOR;
377
378		/* First partition (rescue) is always set to the default. */
379		pidx++;
380#ifdef CONFIG_ETRAX_NANDBOOT
381		/* We know where the partition table should be located,
382		 * it will be in first good block after that.
383		 */
384		int blockstat;
385		do {
386			blockstat = main_mtd->block_isbad(main_mtd,
387				ptable_sector);
388			if (blockstat < 0)
389				ptable_sector = 0; /* read error */
390			else if (blockstat)
391				ptable_sector += main_mtd->erasesize;
392		} while (blockstat && ptable_sector);
393#endif
394		if (ptable_sector) {
395			main_mtd->read(main_mtd, ptable_sector, PAGESIZE,
396				&len, page);
397			ptable_head = &((struct partitiontable *) page)->head;
398		}
399
400	}
401
402	if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC)
403	    && (ptable_head->size <
404		(MAX_PARTITIONS * sizeof(struct partitiontable_entry) +
405		PARTITIONTABLE_END_MARKER_SIZE))
406	    && (*(unsigned long*)((void*)ptable_head + sizeof(*ptable_head) +
407				  ptable_head->size -
408				  PARTITIONTABLE_END_MARKER_SIZE)
409		== PARTITIONTABLE_END_MARKER)) {
410		/* Looks like a start, sane length and end of a
411		 * partition table, lets check csum etc.
412		 */
413		struct partitiontable_entry *max_addr =
414			(struct partitiontable_entry *)
415			((unsigned long)ptable_head + sizeof(*ptable_head) +
416			 ptable_head->size);
417		unsigned long offset = CONFIG_ETRAX_PTABLE_SECTOR;
418		unsigned char *p;
419		unsigned long csum = 0;
420
421		ptable = (struct partitiontable_entry *)
422			((unsigned long)ptable_head + sizeof(*ptable_head));
423
424		/* Lets be PARANOID, and check the checksum. */
425		p = (unsigned char*) ptable;
426
427		while (p <= (unsigned char*)max_addr) {
428			csum += *p++;
429			csum += *p++;
430			csum += *p++;
431			csum += *p++;
432		}
433		ptable_ok = (csum == ptable_head->checksum);
434
435		/* Read the entries and use/show the info.  */
436		printk(KERN_INFO "axisflashmap: "
437		       "Found a%s partition table at 0x%p-0x%p.\n",
438		       (ptable_ok ? " valid" : "n invalid"), ptable_head,
439		       max_addr);
440
441		/* We have found a working bootblock.  Now read the
442		 * partition table.  Scan the table.  It ends with 0xffffffff.
443		 */
444		while (ptable_ok
445		       && ptable->offset != PARTITIONTABLE_END_MARKER
446		       && ptable < max_addr
447		       && pidx < MAX_PARTITIONS - 1) {
448
449			axis_partitions[pidx].offset = offset + ptable->offset;
450#ifdef CONFIG_ETRAX_NANDFLASH
451			if (main_mtd->type == MTD_NANDFLASH) {
452				axis_partitions[pidx].size =
453					(((ptable+1)->offset ==
454					  PARTITIONTABLE_END_MARKER) ?
455					  main_mtd->size :
456					  ((ptable+1)->offset + offset)) -
457					(ptable->offset + offset);
458
459			} else
460#endif /* CONFIG_ETRAX_NANDFLASH */
461				axis_partitions[pidx].size = ptable->size;
462#ifdef CONFIG_ETRAX_NANDBOOT
463			/* Save partition number of jffs2 ro partition.
464			 * Needed if RAM booting or root file system in RAM.
465			 */
466			if (!nand_boot &&
467			    ram_rootfs_partition < 0 && /* not already set */
468			    ptable->type == PARTITION_TYPE_JFFS2 &&
469			    (ptable->flags & PARTITION_FLAGS_READONLY_MASK) ==
470				PARTITION_FLAGS_READONLY)
471				ram_rootfs_partition = pidx;
472#endif /* CONFIG_ETRAX_NANDBOOT */
473			pidx++;
474			ptable++;
475		}
476	}
477
478	/* Decide whether to use default partition table. */
479	/* Only use default table if we actually have a device (main_mtd) */
480
481	struct mtd_partition *partition = &axis_partitions[0];
482	if (main_mtd && !ptable_ok) {
483		memcpy(axis_partitions, axis_default_partitions,
484		       sizeof(axis_default_partitions));
485		pidx = NUM_DEFAULT_PARTITIONS;
486		ram_rootfs_partition = DEFAULT_ROOTFS_PARTITION_NO;
487	}
488
489	/* Add artificial partitions for rootfs if necessary */
490	if (romfs_in_flash) {
491		/* rootfs is in directly accessible flash memory = NOR flash.
492		   Add an overlapping device for the rootfs partition. */
493		printk(KERN_INFO "axisflashmap: Adding partition for "
494		       "overlapping root file system image\n");
495		axis_partitions[pidx].size = romfs_length;
496		axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR;
497		axis_partitions[pidx].name = "romfs";
498		axis_partitions[pidx].mask_flags |= MTD_WRITEABLE;
499		ram_rootfs_partition = -1;
500		pidx++;
501	} else if (romfs_length && !nand_boot) {
502		/* romfs exists in memory, but not in flash, so must be in RAM.
503		 * Configure an MTDRAM partition. */
504		if (ram_rootfs_partition < 0) {
505			/* None set yet, put it at the end */
506			ram_rootfs_partition = pidx;
507			pidx++;
508		}
509		printk(KERN_INFO "axisflashmap: Adding partition for "
510		       "root file system image in RAM\n");
511		axis_partitions[ram_rootfs_partition].size = romfs_length;
512		axis_partitions[ram_rootfs_partition].offset = romfs_start;
513		axis_partitions[ram_rootfs_partition].name = "romfs";
514		axis_partitions[ram_rootfs_partition].mask_flags |=
515			MTD_WRITEABLE;
516	}
517
518#ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
519	if (main_mtd) {
520		main_partition.size = main_mtd->size;
521		err = add_mtd_partitions(main_mtd, &main_partition, 1);
522		if (err)
523			panic("axisflashmap: Could not initialize "
524			      "partition for whole main mtd device!\n");
525	}
526#endif
527
528	/* Now, register all partitions with mtd.
529	 * We do this one at a time so we can slip in an MTDRAM device
530	 * in the proper place if required. */
531
532	for (part = 0; part < pidx; part++) {
533		if (part == ram_rootfs_partition) {
534			/* add MTDRAM partition here */
535			struct mtd_info *mtd_ram;
536
537			mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
538			if (!mtd_ram)
539				panic("axisflashmap: Couldn't allocate memory "
540				      "for mtd_info!\n");
541			printk(KERN_INFO "axisflashmap: Adding RAM partition "
542			       "for rootfs image.\n");
543			err = mtdram_init_device(mtd_ram,
544						 (void *)partition[part].offset,
545						 partition[part].size,
546						 partition[part].name);
547			if (err)
548				panic("axisflashmap: Could not initialize "
549				      "MTD RAM device!\n");
550			/* JFFS2 likes to have an erasesize. Keep potential
551			 * JFFS2 rootfs happy by providing one. Since image
552			 * was most likely created for main mtd, use that
553			 * erasesize, if available. Otherwise, make a guess. */
554			mtd_ram->erasesize = (main_mtd ? main_mtd->erasesize :
555				CONFIG_ETRAX_PTABLE_SECTOR);
556		} else {
557			err = add_mtd_partitions(main_mtd, &partition[part], 1);
558			if (err)
559				panic("axisflashmap: Could not add mtd "
560					"partition %d\n", part);
561		}
562	}
563#endif /* CONFIG_EXTRAX_VCS_SIM */
564
565#ifdef CONFIG_ETRAX_VCS_SIM
566	/* For simulator, always use a RAM partition.
567	 * The rootfs will be found after the kernel in RAM,
568	 * with romfs_start and romfs_end indicating location and size.
569	 */
570	struct mtd_info *mtd_ram;
571
572	mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
573	if (!mtd_ram) {
574		panic("axisflashmap: Couldn't allocate memory for "
575		      "mtd_info!\n");
576	}
577
578	printk(KERN_INFO "axisflashmap: Adding RAM partition for romfs, "
579	       "at %u, size %u\n",
580	       (unsigned) romfs_start, (unsigned) romfs_length);
581
582	err = mtdram_init_device(mtd_ram, (void *)romfs_start,
583				 romfs_length, "romfs");
584	if (err) {
585		panic("axisflashmap: Could not initialize MTD RAM "
586		      "device!\n");
587	}
588#endif /* CONFIG_EXTRAX_VCS_SIM */
589
590#ifndef CONFIG_ETRAX_VCS_SIM
591	if (aux_mtd) {
592		aux_partition.size = aux_mtd->size;
593		err = add_mtd_partitions(aux_mtd, &aux_partition, 1);
594		if (err)
595			panic("axisflashmap: Could not initialize "
596			      "aux mtd device!\n");
597
598	}
599#endif /* CONFIG_EXTRAX_VCS_SIM */
600
601	return err;
602}
603
604/* This adds the above to the kernels init-call chain. */
605module_init(init_axis_flash);
606
607EXPORT_SYMBOL(axisflash_mtd);
608