1/*
2 * Copyright (c) 2006 Rob Sykes <robs@users.sourceforge.net>
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21#include "libavutil/avstring.h"
22#include "libavutil/opt.h"
23#include "libavutil/samplefmt.h"
24#include "avfilter.h"
25#include "audio.h"
26#include "internal.h"
27#include "generate_wave_table.h"
28
29#define INTERPOLATION_LINEAR    0
30#define INTERPOLATION_QUADRATIC 1
31
32typedef struct FlangerContext {
33    const AVClass *class;
34    double delay_min;
35    double delay_depth;
36    double feedback_gain;
37    double delay_gain;
38    double speed;
39    int wave_shape;
40    double channel_phase;
41    int interpolation;
42    double in_gain;
43    int max_samples;
44    uint8_t **delay_buffer;
45    int delay_buf_pos;
46    double *delay_last;
47    float *lfo;
48    int lfo_length;
49    int lfo_pos;
50} FlangerContext;
51
52#define OFFSET(x) offsetof(FlangerContext, x)
53#define A AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
54
55static const AVOption flanger_options[] = {
56    { "delay", "base delay in milliseconds",        OFFSET(delay_min),   AV_OPT_TYPE_DOUBLE, {.dbl=0}, 0, 30, A },
57    { "depth", "added swept delay in milliseconds", OFFSET(delay_depth), AV_OPT_TYPE_DOUBLE, {.dbl=2}, 0, 10, A },
58    { "regen", "percentage regeneration (delayed signal feedback)", OFFSET(feedback_gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -95, 95, A },
59    { "width", "percentage of delayed signal mixed with original", OFFSET(delay_gain), AV_OPT_TYPE_DOUBLE, {.dbl=71}, 0, 100, A },
60    { "speed", "sweeps per second (Hz)", OFFSET(speed), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0.1, 10, A },
61    { "shape", "swept wave shape", OFFSET(wave_shape), AV_OPT_TYPE_INT, {.i64=WAVE_SIN}, WAVE_SIN, WAVE_NB-1, A, "type" },
62    { "triangular",  NULL, 0, AV_OPT_TYPE_CONST,  {.i64=WAVE_TRI}, 0, 0, A, "type" },
63    { "t",           NULL, 0, AV_OPT_TYPE_CONST,  {.i64=WAVE_TRI}, 0, 0, A, "type" },
64    { "sinusoidal",  NULL, 0, AV_OPT_TYPE_CONST,  {.i64=WAVE_SIN}, 0, 0, A, "type" },
65    { "s",           NULL, 0, AV_OPT_TYPE_CONST,  {.i64=WAVE_SIN}, 0, 0, A, "type" },
66    { "phase", "swept wave percentage phase-shift for multi-channel", OFFSET(channel_phase), AV_OPT_TYPE_DOUBLE, {.dbl=25}, 0, 100, A },
67    { "interp", "delay-line interpolation", OFFSET(interpolation), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, A, "itype" },
68    { "linear",     NULL, 0, AV_OPT_TYPE_CONST,  {.i64=INTERPOLATION_LINEAR},    0, 0, A, "itype" },
69    { "quadratic",  NULL, 0, AV_OPT_TYPE_CONST,  {.i64=INTERPOLATION_QUADRATIC}, 0, 0, A, "itype" },
70    { NULL }
71};
72
73AVFILTER_DEFINE_CLASS(flanger);
74
75static int init(AVFilterContext *ctx)
76{
77    FlangerContext *s = ctx->priv;
78
79    s->feedback_gain /= 100;
80    s->delay_gain    /= 100;
81    s->channel_phase /= 100;
82    s->delay_min     /= 1000;
83    s->delay_depth   /= 1000;
84    s->in_gain        = 1 / (1 + s->delay_gain);
85    s->delay_gain    /= 1 + s->delay_gain;
86    s->delay_gain    *= 1 - fabs(s->feedback_gain);
87
88    return 0;
89}
90
91static int query_formats(AVFilterContext *ctx)
92{
93    AVFilterChannelLayouts *layouts;
94    AVFilterFormats *formats;
95    static const enum AVSampleFormat sample_fmts[] = {
96        AV_SAMPLE_FMT_DBLP, AV_SAMPLE_FMT_NONE
97    };
98
99    layouts = ff_all_channel_layouts();
100    if (!layouts)
101        return AVERROR(ENOMEM);
102    ff_set_common_channel_layouts(ctx, layouts);
103
104    formats = ff_make_format_list(sample_fmts);
105    if (!formats)
106        return AVERROR(ENOMEM);
107    ff_set_common_formats(ctx, formats);
108
109    formats = ff_all_samplerates();
110    if (!formats)
111        return AVERROR(ENOMEM);
112    ff_set_common_samplerates(ctx, formats);
113
114    return 0;
115}
116
117static int config_input(AVFilterLink *inlink)
118{
119    AVFilterContext *ctx = inlink->dst;
120    FlangerContext *s = ctx->priv;
121
122    s->max_samples = (s->delay_min + s->delay_depth) * inlink->sample_rate + 2.5;
123    s->lfo_length  = inlink->sample_rate / s->speed;
124    s->delay_last  = av_calloc(inlink->channels, sizeof(*s->delay_last));
125    s->lfo         = av_calloc(s->lfo_length, sizeof(*s->lfo));
126    if (!s->lfo || !s->delay_last)
127        return AVERROR(ENOMEM);
128
129    ff_generate_wave_table(s->wave_shape, AV_SAMPLE_FMT_FLT, s->lfo, s->lfo_length,
130                           floor(s->delay_min * inlink->sample_rate + 0.5),
131                           s->max_samples - 2., 3 * M_PI_2);
132
133    return av_samples_alloc_array_and_samples(&s->delay_buffer, NULL,
134                                              inlink->channels, s->max_samples,
135                                              inlink->format, 0);
136}
137
138static int filter_frame(AVFilterLink *inlink, AVFrame *frame)
139{
140    AVFilterContext *ctx = inlink->dst;
141    FlangerContext *s = ctx->priv;
142    AVFrame *out_frame;
143    int chan, i;
144
145    if (av_frame_is_writable(frame)) {
146        out_frame = frame;
147    } else {
148        out_frame = ff_get_audio_buffer(inlink, frame->nb_samples);
149        if (!out_frame)
150            return AVERROR(ENOMEM);
151        av_frame_copy_props(out_frame, frame);
152    }
153
154    for (i = 0; i < frame->nb_samples; i++) {
155
156        s->delay_buf_pos = (s->delay_buf_pos + s->max_samples - 1) % s->max_samples;
157
158        for (chan = 0; chan < inlink->channels; chan++) {
159            double *src = (double *)frame->extended_data[chan];
160            double *dst = (double *)out_frame->extended_data[chan];
161            double delayed_0, delayed_1;
162            double delayed;
163            double in, out;
164            int channel_phase = chan * s->lfo_length * s->channel_phase + .5;
165            double delay = s->lfo[(s->lfo_pos + channel_phase) % s->lfo_length];
166            int int_delay = (int)delay;
167            double frac_delay = modf(delay, &delay);
168            double *delay_buffer = (double *)s->delay_buffer[chan];
169
170            in = src[i];
171            delay_buffer[s->delay_buf_pos] = in + s->delay_last[chan] *
172                                                           s->feedback_gain;
173            delayed_0 = delay_buffer[(s->delay_buf_pos + int_delay++) % s->max_samples];
174            delayed_1 = delay_buffer[(s->delay_buf_pos + int_delay++) % s->max_samples];
175
176            if (s->interpolation == INTERPOLATION_LINEAR) {
177                delayed = delayed_0 + (delayed_1 - delayed_0) * frac_delay;
178            } else {
179                double a, b;
180                double delayed_2 = delay_buffer[(s->delay_buf_pos + int_delay++) % s->max_samples];
181                delayed_2 -= delayed_0;
182                delayed_1 -= delayed_0;
183                a = delayed_2 * .5 - delayed_1;
184                b = delayed_1 *  2 - delayed_2 *.5;
185                delayed = delayed_0 + (a * frac_delay + b) * frac_delay;
186            }
187
188            s->delay_last[chan] = delayed;
189            out = in * s->in_gain + delayed * s->delay_gain;
190            dst[i] = out;
191        }
192        s->lfo_pos = (s->lfo_pos + 1) % s->lfo_length;
193    }
194
195    if (frame != out_frame)
196        av_frame_free(&frame);
197
198    return ff_filter_frame(ctx->outputs[0], out_frame);
199}
200
201static av_cold void uninit(AVFilterContext *ctx)
202{
203    FlangerContext *s = ctx->priv;
204
205    av_freep(&s->lfo);
206    av_freep(&s->delay_last);
207
208    if (s->delay_buffer)
209        av_freep(&s->delay_buffer[0]);
210    av_freep(&s->delay_buffer);
211}
212
213static const AVFilterPad flanger_inputs[] = {
214    {
215        .name         = "default",
216        .type         = AVMEDIA_TYPE_AUDIO,
217        .config_props = config_input,
218        .filter_frame = filter_frame,
219    },
220    { NULL }
221};
222
223static const AVFilterPad flanger_outputs[] = {
224    {
225        .name          = "default",
226        .type          = AVMEDIA_TYPE_AUDIO,
227    },
228    { NULL }
229};
230
231AVFilter ff_af_flanger = {
232    .name          = "flanger",
233    .description   = NULL_IF_CONFIG_SMALL("Apply a flanging effect to the audio."),
234    .query_formats = query_formats,
235    .priv_size     = sizeof(FlangerContext),
236    .priv_class    = &flanger_class,
237    .init          = init,
238    .uninit        = uninit,
239    .inputs        = flanger_inputs,
240    .outputs       = flanger_outputs,
241};
242