1/*
2 * WebP (.webp) image decoder
3 * Copyright (c) 2013 Aneesh Dogra <aneesh@sugarlabs.org>
4 * Copyright (c) 2013 Justin Ruggles <justin.ruggles@gmail.com>
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23/**
24 * @file
25 * WebP image decoder
26 *
27 * @author Aneesh Dogra <aneesh@sugarlabs.org>
28 * Container and Lossy decoding
29 *
30 * @author Justin Ruggles <justin.ruggles@gmail.com>
31 * Lossless decoder
32 * Compressed alpha for lossy
33 *
34 * @author James Almer <jamrial@gmail.com>
35 * Exif metadata
36 *
37 * Unimplemented:
38 *   - Animation
39 *   - ICC profile
40 *   - XMP metadata
41 */
42
43#define BITSTREAM_READER_LE
44#include "libavutil/imgutils.h"
45#include "avcodec.h"
46#include "bytestream.h"
47#include "exif.h"
48#include "internal.h"
49#include "get_bits.h"
50#include "thread.h"
51#include "vp8.h"
52
53#define VP8X_FLAG_ANIMATION             0x02
54#define VP8X_FLAG_XMP_METADATA          0x04
55#define VP8X_FLAG_EXIF_METADATA         0x08
56#define VP8X_FLAG_ALPHA                 0x10
57#define VP8X_FLAG_ICC                   0x20
58
59#define MAX_PALETTE_SIZE                256
60#define MAX_CACHE_BITS                  11
61#define NUM_CODE_LENGTH_CODES           19
62#define HUFFMAN_CODES_PER_META_CODE     5
63#define NUM_LITERAL_CODES               256
64#define NUM_LENGTH_CODES                24
65#define NUM_DISTANCE_CODES              40
66#define NUM_SHORT_DISTANCES             120
67#define MAX_HUFFMAN_CODE_LENGTH         15
68
69static const uint16_t alphabet_sizes[HUFFMAN_CODES_PER_META_CODE] = {
70    NUM_LITERAL_CODES + NUM_LENGTH_CODES,
71    NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES,
72    NUM_DISTANCE_CODES
73};
74
75static const uint8_t code_length_code_order[NUM_CODE_LENGTH_CODES] = {
76    17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
77};
78
79static const int8_t lz77_distance_offsets[NUM_SHORT_DISTANCES][2] = {
80    {  0, 1 }, {  1, 0 }, {  1, 1 }, { -1, 1 }, {  0, 2 }, {  2, 0 }, {  1, 2 }, { -1, 2 },
81    {  2, 1 }, { -2, 1 }, {  2, 2 }, { -2, 2 }, {  0, 3 }, {  3, 0 }, {  1, 3 }, { -1, 3 },
82    {  3, 1 }, { -3, 1 }, {  2, 3 }, { -2, 3 }, {  3, 2 }, { -3, 2 }, {  0, 4 }, {  4, 0 },
83    {  1, 4 }, { -1, 4 }, {  4, 1 }, { -4, 1 }, {  3, 3 }, { -3, 3 }, {  2, 4 }, { -2, 4 },
84    {  4, 2 }, { -4, 2 }, {  0, 5 }, {  3, 4 }, { -3, 4 }, {  4, 3 }, { -4, 3 }, {  5, 0 },
85    {  1, 5 }, { -1, 5 }, {  5, 1 }, { -5, 1 }, {  2, 5 }, { -2, 5 }, {  5, 2 }, { -5, 2 },
86    {  4, 4 }, { -4, 4 }, {  3, 5 }, { -3, 5 }, {  5, 3 }, { -5, 3 }, {  0, 6 }, {  6, 0 },
87    {  1, 6 }, { -1, 6 }, {  6, 1 }, { -6, 1 }, {  2, 6 }, { -2, 6 }, {  6, 2 }, { -6, 2 },
88    {  4, 5 }, { -4, 5 }, {  5, 4 }, { -5, 4 }, {  3, 6 }, { -3, 6 }, {  6, 3 }, { -6, 3 },
89    {  0, 7 }, {  7, 0 }, {  1, 7 }, { -1, 7 }, {  5, 5 }, { -5, 5 }, {  7, 1 }, { -7, 1 },
90    {  4, 6 }, { -4, 6 }, {  6, 4 }, { -6, 4 }, {  2, 7 }, { -2, 7 }, {  7, 2 }, { -7, 2 },
91    {  3, 7 }, { -3, 7 }, {  7, 3 }, { -7, 3 }, {  5, 6 }, { -5, 6 }, {  6, 5 }, { -6, 5 },
92    {  8, 0 }, {  4, 7 }, { -4, 7 }, {  7, 4 }, { -7, 4 }, {  8, 1 }, {  8, 2 }, {  6, 6 },
93    { -6, 6 }, {  8, 3 }, {  5, 7 }, { -5, 7 }, {  7, 5 }, { -7, 5 }, {  8, 4 }, {  6, 7 },
94    { -6, 7 }, {  7, 6 }, { -7, 6 }, {  8, 5 }, {  7, 7 }, { -7, 7 }, {  8, 6 }, {  8, 7 }
95};
96
97enum AlphaCompression {
98    ALPHA_COMPRESSION_NONE,
99    ALPHA_COMPRESSION_VP8L,
100};
101
102enum AlphaFilter {
103    ALPHA_FILTER_NONE,
104    ALPHA_FILTER_HORIZONTAL,
105    ALPHA_FILTER_VERTICAL,
106    ALPHA_FILTER_GRADIENT,
107};
108
109enum TransformType {
110    PREDICTOR_TRANSFORM      = 0,
111    COLOR_TRANSFORM          = 1,
112    SUBTRACT_GREEN           = 2,
113    COLOR_INDEXING_TRANSFORM = 3,
114};
115
116enum PredictionMode {
117    PRED_MODE_BLACK,
118    PRED_MODE_L,
119    PRED_MODE_T,
120    PRED_MODE_TR,
121    PRED_MODE_TL,
122    PRED_MODE_AVG_T_AVG_L_TR,
123    PRED_MODE_AVG_L_TL,
124    PRED_MODE_AVG_L_T,
125    PRED_MODE_AVG_TL_T,
126    PRED_MODE_AVG_T_TR,
127    PRED_MODE_AVG_AVG_L_TL_AVG_T_TR,
128    PRED_MODE_SELECT,
129    PRED_MODE_ADD_SUBTRACT_FULL,
130    PRED_MODE_ADD_SUBTRACT_HALF,
131};
132
133enum HuffmanIndex {
134    HUFF_IDX_GREEN = 0,
135    HUFF_IDX_RED   = 1,
136    HUFF_IDX_BLUE  = 2,
137    HUFF_IDX_ALPHA = 3,
138    HUFF_IDX_DIST  = 4
139};
140
141/* The structure of WebP lossless is an optional series of transformation data,
142 * followed by the primary image. The primary image also optionally contains
143 * an entropy group mapping if there are multiple entropy groups. There is a
144 * basic image type called an "entropy coded image" that is used for all of
145 * these. The type of each entropy coded image is referred to by the
146 * specification as its role. */
147enum ImageRole {
148    /* Primary Image: Stores the actual pixels of the image. */
149    IMAGE_ROLE_ARGB,
150
151    /* Entropy Image: Defines which Huffman group to use for different areas of
152     *                the primary image. */
153    IMAGE_ROLE_ENTROPY,
154
155    /* Predictors: Defines which predictor type to use for different areas of
156     *             the primary image. */
157    IMAGE_ROLE_PREDICTOR,
158
159    /* Color Transform Data: Defines the color transformation for different
160     *                       areas of the primary image. */
161    IMAGE_ROLE_COLOR_TRANSFORM,
162
163    /* Color Index: Stored as an image of height == 1. */
164    IMAGE_ROLE_COLOR_INDEXING,
165
166    IMAGE_ROLE_NB,
167};
168
169typedef struct HuffReader {
170    VLC vlc;                            /* Huffman decoder context */
171    int simple;                         /* whether to use simple mode */
172    int nb_symbols;                     /* number of coded symbols */
173    uint16_t simple_symbols[2];         /* symbols for simple mode */
174} HuffReader;
175
176typedef struct ImageContext {
177    enum ImageRole role;                /* role of this image */
178    AVFrame *frame;                     /* AVFrame for data */
179    int color_cache_bits;               /* color cache size, log2 */
180    uint32_t *color_cache;              /* color cache data */
181    int nb_huffman_groups;              /* number of huffman groups */
182    HuffReader *huffman_groups;         /* reader for each huffman group */
183    int size_reduction;                 /* relative size compared to primary image, log2 */
184    int is_alpha_primary;
185} ImageContext;
186
187typedef struct WebPContext {
188    VP8Context v;                       /* VP8 Context used for lossy decoding */
189    GetBitContext gb;                   /* bitstream reader for main image chunk */
190    AVFrame *alpha_frame;               /* AVFrame for alpha data decompressed from VP8L */
191    AVCodecContext *avctx;              /* parent AVCodecContext */
192    int initialized;                    /* set once the VP8 context is initialized */
193    int has_alpha;                      /* has a separate alpha chunk */
194    enum AlphaCompression alpha_compression; /* compression type for alpha chunk */
195    enum AlphaFilter alpha_filter;      /* filtering method for alpha chunk */
196    uint8_t *alpha_data;                /* alpha chunk data */
197    int alpha_data_size;                /* alpha chunk data size */
198    int has_exif;                       /* set after an EXIF chunk has been processed */
199    AVDictionary *exif_metadata;        /* EXIF chunk data */
200    int width;                          /* image width */
201    int height;                         /* image height */
202    int lossless;                       /* indicates lossless or lossy */
203
204    int nb_transforms;                  /* number of transforms */
205    enum TransformType transforms[4];   /* transformations used in the image, in order */
206    int reduced_width;                  /* reduced width for index image, if applicable */
207    int nb_huffman_groups;              /* number of huffman groups in the primary image */
208    ImageContext image[IMAGE_ROLE_NB];  /* image context for each role */
209} WebPContext;
210
211#define GET_PIXEL(frame, x, y) \
212    ((frame)->data[0] + (y) * frame->linesize[0] + 4 * (x))
213
214#define GET_PIXEL_COMP(frame, x, y, c) \
215    (*((frame)->data[0] + (y) * frame->linesize[0] + 4 * (x) + c))
216
217static void image_ctx_free(ImageContext *img)
218{
219    int i, j;
220
221    av_free(img->color_cache);
222    if (img->role != IMAGE_ROLE_ARGB && !img->is_alpha_primary)
223        av_frame_free(&img->frame);
224    if (img->huffman_groups) {
225        for (i = 0; i < img->nb_huffman_groups; i++) {
226            for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; j++)
227                ff_free_vlc(&img->huffman_groups[i * HUFFMAN_CODES_PER_META_CODE + j].vlc);
228        }
229        av_free(img->huffman_groups);
230    }
231    memset(img, 0, sizeof(*img));
232}
233
234
235/* Differs from get_vlc2() in the following ways:
236 *   - codes are bit-reversed
237 *   - assumes 8-bit table to make reversal simpler
238 *   - assumes max depth of 2 since the max code length for WebP is 15
239 */
240static av_always_inline int webp_get_vlc(GetBitContext *gb, VLC_TYPE (*table)[2])
241{
242    int n, nb_bits;
243    unsigned int index;
244    int code;
245
246    OPEN_READER(re, gb);
247    UPDATE_CACHE(re, gb);
248
249    index = SHOW_UBITS(re, gb, 8);
250    index = ff_reverse[index];
251    code  = table[index][0];
252    n     = table[index][1];
253
254    if (n < 0) {
255        LAST_SKIP_BITS(re, gb, 8);
256        UPDATE_CACHE(re, gb);
257
258        nb_bits = -n;
259
260        index = SHOW_UBITS(re, gb, nb_bits);
261        index = (ff_reverse[index] >> (8 - nb_bits)) + code;
262        code  = table[index][0];
263        n     = table[index][1];
264    }
265    SKIP_BITS(re, gb, n);
266
267    CLOSE_READER(re, gb);
268
269    return code;
270}
271
272static int huff_reader_get_symbol(HuffReader *r, GetBitContext *gb)
273{
274    if (r->simple) {
275        if (r->nb_symbols == 1)
276            return r->simple_symbols[0];
277        else
278            return r->simple_symbols[get_bits1(gb)];
279    } else
280        return webp_get_vlc(gb, r->vlc.table);
281}
282
283static int huff_reader_build_canonical(HuffReader *r, int *code_lengths,
284                                       int alphabet_size)
285{
286    int len = 0, sym, code = 0, ret;
287    int max_code_length = 0;
288    uint16_t *codes;
289
290    /* special-case 1 symbol since the vlc reader cannot handle it */
291    for (sym = 0; sym < alphabet_size; sym++) {
292        if (code_lengths[sym] > 0) {
293            len++;
294            code = sym;
295            if (len > 1)
296                break;
297        }
298    }
299    if (len == 1) {
300        r->nb_symbols = 1;
301        r->simple_symbols[0] = code;
302        r->simple = 1;
303        return 0;
304    }
305
306    for (sym = 0; sym < alphabet_size; sym++)
307        max_code_length = FFMAX(max_code_length, code_lengths[sym]);
308
309    if (max_code_length == 0 || max_code_length > MAX_HUFFMAN_CODE_LENGTH)
310        return AVERROR(EINVAL);
311
312    codes = av_malloc_array(alphabet_size, sizeof(*codes));
313    if (!codes)
314        return AVERROR(ENOMEM);
315
316    code = 0;
317    r->nb_symbols = 0;
318    for (len = 1; len <= max_code_length; len++) {
319        for (sym = 0; sym < alphabet_size; sym++) {
320            if (code_lengths[sym] != len)
321                continue;
322            codes[sym] = code++;
323            r->nb_symbols++;
324        }
325        code <<= 1;
326    }
327    if (!r->nb_symbols) {
328        av_free(codes);
329        return AVERROR_INVALIDDATA;
330    }
331
332    ret = init_vlc(&r->vlc, 8, alphabet_size,
333                   code_lengths, sizeof(*code_lengths), sizeof(*code_lengths),
334                   codes, sizeof(*codes), sizeof(*codes), 0);
335    if (ret < 0) {
336        av_free(codes);
337        return ret;
338    }
339    r->simple = 0;
340
341    av_free(codes);
342    return 0;
343}
344
345static void read_huffman_code_simple(WebPContext *s, HuffReader *hc)
346{
347    hc->nb_symbols = get_bits1(&s->gb) + 1;
348
349    if (get_bits1(&s->gb))
350        hc->simple_symbols[0] = get_bits(&s->gb, 8);
351    else
352        hc->simple_symbols[0] = get_bits1(&s->gb);
353
354    if (hc->nb_symbols == 2)
355        hc->simple_symbols[1] = get_bits(&s->gb, 8);
356
357    hc->simple = 1;
358}
359
360static int read_huffman_code_normal(WebPContext *s, HuffReader *hc,
361                                    int alphabet_size)
362{
363    HuffReader code_len_hc = { { 0 }, 0, 0, { 0 } };
364    int *code_lengths = NULL;
365    int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 };
366    int i, symbol, max_symbol, prev_code_len, ret;
367    int num_codes = 4 + get_bits(&s->gb, 4);
368
369    if (num_codes > NUM_CODE_LENGTH_CODES)
370        return AVERROR_INVALIDDATA;
371
372    for (i = 0; i < num_codes; i++)
373        code_length_code_lengths[code_length_code_order[i]] = get_bits(&s->gb, 3);
374
375    ret = huff_reader_build_canonical(&code_len_hc, code_length_code_lengths,
376                                      NUM_CODE_LENGTH_CODES);
377    if (ret < 0)
378        goto finish;
379
380    code_lengths = av_mallocz_array(alphabet_size, sizeof(*code_lengths));
381    if (!code_lengths) {
382        ret = AVERROR(ENOMEM);
383        goto finish;
384    }
385
386    if (get_bits1(&s->gb)) {
387        int bits   = 2 + 2 * get_bits(&s->gb, 3);
388        max_symbol = 2 + get_bits(&s->gb, bits);
389        if (max_symbol > alphabet_size) {
390            av_log(s->avctx, AV_LOG_ERROR, "max symbol %d > alphabet size %d\n",
391                   max_symbol, alphabet_size);
392            ret = AVERROR_INVALIDDATA;
393            goto finish;
394        }
395    } else {
396        max_symbol = alphabet_size;
397    }
398
399    prev_code_len = 8;
400    symbol        = 0;
401    while (symbol < alphabet_size) {
402        int code_len;
403
404        if (!max_symbol--)
405            break;
406        code_len = huff_reader_get_symbol(&code_len_hc, &s->gb);
407        if (code_len < 16) {
408            /* Code length code [0..15] indicates literal code lengths. */
409            code_lengths[symbol++] = code_len;
410            if (code_len)
411                prev_code_len = code_len;
412        } else {
413            int repeat = 0, length = 0;
414            switch (code_len) {
415            case 16:
416                /* Code 16 repeats the previous non-zero value [3..6] times,
417                 * i.e., 3 + ReadBits(2) times. If code 16 is used before a
418                 * non-zero value has been emitted, a value of 8 is repeated. */
419                repeat = 3 + get_bits(&s->gb, 2);
420                length = prev_code_len;
421                break;
422            case 17:
423                /* Code 17 emits a streak of zeros [3..10], i.e.,
424                 * 3 + ReadBits(3) times. */
425                repeat = 3 + get_bits(&s->gb, 3);
426                break;
427            case 18:
428                /* Code 18 emits a streak of zeros of length [11..138], i.e.,
429                 * 11 + ReadBits(7) times. */
430                repeat = 11 + get_bits(&s->gb, 7);
431                break;
432            }
433            if (symbol + repeat > alphabet_size) {
434                av_log(s->avctx, AV_LOG_ERROR,
435                       "invalid symbol %d + repeat %d > alphabet size %d\n",
436                       symbol, repeat, alphabet_size);
437                ret = AVERROR_INVALIDDATA;
438                goto finish;
439            }
440            while (repeat-- > 0)
441                code_lengths[symbol++] = length;
442        }
443    }
444
445    ret = huff_reader_build_canonical(hc, code_lengths, alphabet_size);
446
447finish:
448    ff_free_vlc(&code_len_hc.vlc);
449    av_free(code_lengths);
450    return ret;
451}
452
453static int decode_entropy_coded_image(WebPContext *s, enum ImageRole role,
454                                      int w, int h);
455
456#define PARSE_BLOCK_SIZE(w, h) do {                                         \
457    block_bits = get_bits(&s->gb, 3) + 2;                                   \
458    blocks_w   = FFALIGN((w), 1 << block_bits) >> block_bits;               \
459    blocks_h   = FFALIGN((h), 1 << block_bits) >> block_bits;               \
460} while (0)
461
462static int decode_entropy_image(WebPContext *s)
463{
464    ImageContext *img;
465    int ret, block_bits, width, blocks_w, blocks_h, x, y, max;
466
467    width = s->width;
468    if (s->reduced_width > 0)
469        width = s->reduced_width;
470
471    PARSE_BLOCK_SIZE(width, s->height);
472
473    ret = decode_entropy_coded_image(s, IMAGE_ROLE_ENTROPY, blocks_w, blocks_h);
474    if (ret < 0)
475        return ret;
476
477    img = &s->image[IMAGE_ROLE_ENTROPY];
478    img->size_reduction = block_bits;
479
480    /* the number of huffman groups is determined by the maximum group number
481     * coded in the entropy image */
482    max = 0;
483    for (y = 0; y < img->frame->height; y++) {
484        for (x = 0; x < img->frame->width; x++) {
485            int p0 = GET_PIXEL_COMP(img->frame, x, y, 1);
486            int p1 = GET_PIXEL_COMP(img->frame, x, y, 2);
487            int p  = p0 << 8 | p1;
488            max = FFMAX(max, p);
489        }
490    }
491    s->nb_huffman_groups = max + 1;
492
493    return 0;
494}
495
496static int parse_transform_predictor(WebPContext *s)
497{
498    int block_bits, blocks_w, blocks_h, ret;
499
500    PARSE_BLOCK_SIZE(s->width, s->height);
501
502    ret = decode_entropy_coded_image(s, IMAGE_ROLE_PREDICTOR, blocks_w,
503                                     blocks_h);
504    if (ret < 0)
505        return ret;
506
507    s->image[IMAGE_ROLE_PREDICTOR].size_reduction = block_bits;
508
509    return 0;
510}
511
512static int parse_transform_color(WebPContext *s)
513{
514    int block_bits, blocks_w, blocks_h, ret;
515
516    PARSE_BLOCK_SIZE(s->width, s->height);
517
518    ret = decode_entropy_coded_image(s, IMAGE_ROLE_COLOR_TRANSFORM, blocks_w,
519                                     blocks_h);
520    if (ret < 0)
521        return ret;
522
523    s->image[IMAGE_ROLE_COLOR_TRANSFORM].size_reduction = block_bits;
524
525    return 0;
526}
527
528static int parse_transform_color_indexing(WebPContext *s)
529{
530    ImageContext *img;
531    int width_bits, index_size, ret, x;
532    uint8_t *ct;
533
534    index_size = get_bits(&s->gb, 8) + 1;
535
536    if (index_size <= 2)
537        width_bits = 3;
538    else if (index_size <= 4)
539        width_bits = 2;
540    else if (index_size <= 16)
541        width_bits = 1;
542    else
543        width_bits = 0;
544
545    ret = decode_entropy_coded_image(s, IMAGE_ROLE_COLOR_INDEXING,
546                                     index_size, 1);
547    if (ret < 0)
548        return ret;
549
550    img = &s->image[IMAGE_ROLE_COLOR_INDEXING];
551    img->size_reduction = width_bits;
552    if (width_bits > 0)
553        s->reduced_width = (s->width + ((1 << width_bits) - 1)) >> width_bits;
554
555    /* color index values are delta-coded */
556    ct  = img->frame->data[0] + 4;
557    for (x = 4; x < img->frame->width * 4; x++, ct++)
558        ct[0] += ct[-4];
559
560    return 0;
561}
562
563static HuffReader *get_huffman_group(WebPContext *s, ImageContext *img,
564                                     int x, int y)
565{
566    ImageContext *gimg = &s->image[IMAGE_ROLE_ENTROPY];
567    int group = 0;
568
569    if (gimg->size_reduction > 0) {
570        int group_x = x >> gimg->size_reduction;
571        int group_y = y >> gimg->size_reduction;
572        int g0      = GET_PIXEL_COMP(gimg->frame, group_x, group_y, 1);
573        int g1      = GET_PIXEL_COMP(gimg->frame, group_x, group_y, 2);
574        group       = g0 << 8 | g1;
575    }
576
577    return &img->huffman_groups[group * HUFFMAN_CODES_PER_META_CODE];
578}
579
580static av_always_inline void color_cache_put(ImageContext *img, uint32_t c)
581{
582    uint32_t cache_idx = (0x1E35A7BD * c) >> (32 - img->color_cache_bits);
583    img->color_cache[cache_idx] = c;
584}
585
586static int decode_entropy_coded_image(WebPContext *s, enum ImageRole role,
587                                      int w, int h)
588{
589    ImageContext *img;
590    HuffReader *hg;
591    int i, j, ret, x, y, width;
592
593    img       = &s->image[role];
594    img->role = role;
595
596    if (!img->frame) {
597        img->frame = av_frame_alloc();
598        if (!img->frame)
599            return AVERROR(ENOMEM);
600    }
601
602    img->frame->format = AV_PIX_FMT_ARGB;
603    img->frame->width  = w;
604    img->frame->height = h;
605
606    if (role == IMAGE_ROLE_ARGB && !img->is_alpha_primary) {
607        ThreadFrame pt = { .f = img->frame };
608        ret = ff_thread_get_buffer(s->avctx, &pt, 0);
609    } else
610        ret = av_frame_get_buffer(img->frame, 1);
611    if (ret < 0)
612        return ret;
613
614    if (get_bits1(&s->gb)) {
615        img->color_cache_bits = get_bits(&s->gb, 4);
616        if (img->color_cache_bits < 1 || img->color_cache_bits > 11) {
617            av_log(s->avctx, AV_LOG_ERROR, "invalid color cache bits: %d\n",
618                   img->color_cache_bits);
619            return AVERROR_INVALIDDATA;
620        }
621        img->color_cache = av_mallocz_array(1 << img->color_cache_bits,
622                                            sizeof(*img->color_cache));
623        if (!img->color_cache)
624            return AVERROR(ENOMEM);
625    } else {
626        img->color_cache_bits = 0;
627    }
628
629    img->nb_huffman_groups = 1;
630    if (role == IMAGE_ROLE_ARGB && get_bits1(&s->gb)) {
631        ret = decode_entropy_image(s);
632        if (ret < 0)
633            return ret;
634        img->nb_huffman_groups = s->nb_huffman_groups;
635    }
636    img->huffman_groups = av_mallocz_array(img->nb_huffman_groups *
637                                           HUFFMAN_CODES_PER_META_CODE,
638                                           sizeof(*img->huffman_groups));
639    if (!img->huffman_groups)
640        return AVERROR(ENOMEM);
641
642    for (i = 0; i < img->nb_huffman_groups; i++) {
643        hg = &img->huffman_groups[i * HUFFMAN_CODES_PER_META_CODE];
644        for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; j++) {
645            int alphabet_size = alphabet_sizes[j];
646            if (!j && img->color_cache_bits > 0)
647                alphabet_size += 1 << img->color_cache_bits;
648
649            if (get_bits1(&s->gb)) {
650                read_huffman_code_simple(s, &hg[j]);
651            } else {
652                ret = read_huffman_code_normal(s, &hg[j], alphabet_size);
653                if (ret < 0)
654                    return ret;
655            }
656        }
657    }
658
659    width = img->frame->width;
660    if (role == IMAGE_ROLE_ARGB && s->reduced_width > 0)
661        width = s->reduced_width;
662
663    x = 0; y = 0;
664    while (y < img->frame->height) {
665        int v;
666
667        hg = get_huffman_group(s, img, x, y);
668        v = huff_reader_get_symbol(&hg[HUFF_IDX_GREEN], &s->gb);
669        if (v < NUM_LITERAL_CODES) {
670            /* literal pixel values */
671            uint8_t *p = GET_PIXEL(img->frame, x, y);
672            p[2] = v;
673            p[1] = huff_reader_get_symbol(&hg[HUFF_IDX_RED],   &s->gb);
674            p[3] = huff_reader_get_symbol(&hg[HUFF_IDX_BLUE],  &s->gb);
675            p[0] = huff_reader_get_symbol(&hg[HUFF_IDX_ALPHA], &s->gb);
676            if (img->color_cache_bits)
677                color_cache_put(img, AV_RB32(p));
678            x++;
679            if (x == width) {
680                x = 0;
681                y++;
682            }
683        } else if (v < NUM_LITERAL_CODES + NUM_LENGTH_CODES) {
684            /* LZ77 backwards mapping */
685            int prefix_code, length, distance, ref_x, ref_y;
686
687            /* parse length and distance */
688            prefix_code = v - NUM_LITERAL_CODES;
689            if (prefix_code < 4) {
690                length = prefix_code + 1;
691            } else {
692                int extra_bits = (prefix_code - 2) >> 1;
693                int offset     = 2 + (prefix_code & 1) << extra_bits;
694                length = offset + get_bits(&s->gb, extra_bits) + 1;
695            }
696            prefix_code = huff_reader_get_symbol(&hg[HUFF_IDX_DIST], &s->gb);
697            if (prefix_code < 4) {
698                distance = prefix_code + 1;
699            } else {
700                int extra_bits = prefix_code - 2 >> 1;
701                int offset     = 2 + (prefix_code & 1) << extra_bits;
702                distance = offset + get_bits(&s->gb, extra_bits) + 1;
703            }
704
705            /* find reference location */
706            if (distance <= NUM_SHORT_DISTANCES) {
707                int xi = lz77_distance_offsets[distance - 1][0];
708                int yi = lz77_distance_offsets[distance - 1][1];
709                distance = FFMAX(1, xi + yi * width);
710            } else {
711                distance -= NUM_SHORT_DISTANCES;
712            }
713            ref_x = x;
714            ref_y = y;
715            if (distance <= x) {
716                ref_x -= distance;
717                distance = 0;
718            } else {
719                ref_x = 0;
720                distance -= x;
721            }
722            while (distance >= width) {
723                ref_y--;
724                distance -= width;
725            }
726            if (distance > 0) {
727                ref_x = width - distance;
728                ref_y--;
729            }
730            ref_x = FFMAX(0, ref_x);
731            ref_y = FFMAX(0, ref_y);
732
733            /* copy pixels
734             * source and dest regions can overlap and wrap lines, so just
735             * copy per-pixel */
736            for (i = 0; i < length; i++) {
737                uint8_t *p_ref = GET_PIXEL(img->frame, ref_x, ref_y);
738                uint8_t *p     = GET_PIXEL(img->frame,     x,     y);
739
740                AV_COPY32(p, p_ref);
741                if (img->color_cache_bits)
742                    color_cache_put(img, AV_RB32(p));
743                x++;
744                ref_x++;
745                if (x == width) {
746                    x = 0;
747                    y++;
748                }
749                if (ref_x == width) {
750                    ref_x = 0;
751                    ref_y++;
752                }
753                if (y == img->frame->height || ref_y == img->frame->height)
754                    break;
755            }
756        } else {
757            /* read from color cache */
758            uint8_t *p = GET_PIXEL(img->frame, x, y);
759            int cache_idx = v - (NUM_LITERAL_CODES + NUM_LENGTH_CODES);
760
761            if (!img->color_cache_bits) {
762                av_log(s->avctx, AV_LOG_ERROR, "color cache not found\n");
763                return AVERROR_INVALIDDATA;
764            }
765            if (cache_idx >= 1 << img->color_cache_bits) {
766                av_log(s->avctx, AV_LOG_ERROR,
767                       "color cache index out-of-bounds\n");
768                return AVERROR_INVALIDDATA;
769            }
770            AV_WB32(p, img->color_cache[cache_idx]);
771            x++;
772            if (x == width) {
773                x = 0;
774                y++;
775            }
776        }
777    }
778
779    return 0;
780}
781
782/* PRED_MODE_BLACK */
783static void inv_predict_0(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
784                          const uint8_t *p_t, const uint8_t *p_tr)
785{
786    AV_WB32(p, 0xFF000000);
787}
788
789/* PRED_MODE_L */
790static void inv_predict_1(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
791                          const uint8_t *p_t, const uint8_t *p_tr)
792{
793    AV_COPY32(p, p_l);
794}
795
796/* PRED_MODE_T */
797static void inv_predict_2(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
798                          const uint8_t *p_t, const uint8_t *p_tr)
799{
800    AV_COPY32(p, p_t);
801}
802
803/* PRED_MODE_TR */
804static void inv_predict_3(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
805                          const uint8_t *p_t, const uint8_t *p_tr)
806{
807    AV_COPY32(p, p_tr);
808}
809
810/* PRED_MODE_TL */
811static void inv_predict_4(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
812                          const uint8_t *p_t, const uint8_t *p_tr)
813{
814    AV_COPY32(p, p_tl);
815}
816
817/* PRED_MODE_AVG_T_AVG_L_TR */
818static void inv_predict_5(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
819                          const uint8_t *p_t, const uint8_t *p_tr)
820{
821    p[0] = p_t[0] + (p_l[0] + p_tr[0] >> 1) >> 1;
822    p[1] = p_t[1] + (p_l[1] + p_tr[1] >> 1) >> 1;
823    p[2] = p_t[2] + (p_l[2] + p_tr[2] >> 1) >> 1;
824    p[3] = p_t[3] + (p_l[3] + p_tr[3] >> 1) >> 1;
825}
826
827/* PRED_MODE_AVG_L_TL */
828static void inv_predict_6(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
829                          const uint8_t *p_t, const uint8_t *p_tr)
830{
831    p[0] = p_l[0] + p_tl[0] >> 1;
832    p[1] = p_l[1] + p_tl[1] >> 1;
833    p[2] = p_l[2] + p_tl[2] >> 1;
834    p[3] = p_l[3] + p_tl[3] >> 1;
835}
836
837/* PRED_MODE_AVG_L_T */
838static void inv_predict_7(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
839                          const uint8_t *p_t, const uint8_t *p_tr)
840{
841    p[0] = p_l[0] + p_t[0] >> 1;
842    p[1] = p_l[1] + p_t[1] >> 1;
843    p[2] = p_l[2] + p_t[2] >> 1;
844    p[3] = p_l[3] + p_t[3] >> 1;
845}
846
847/* PRED_MODE_AVG_TL_T */
848static void inv_predict_8(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
849                          const uint8_t *p_t, const uint8_t *p_tr)
850{
851    p[0] = p_tl[0] + p_t[0] >> 1;
852    p[1] = p_tl[1] + p_t[1] >> 1;
853    p[2] = p_tl[2] + p_t[2] >> 1;
854    p[3] = p_tl[3] + p_t[3] >> 1;
855}
856
857/* PRED_MODE_AVG_T_TR */
858static void inv_predict_9(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
859                          const uint8_t *p_t, const uint8_t *p_tr)
860{
861    p[0] = p_t[0] + p_tr[0] >> 1;
862    p[1] = p_t[1] + p_tr[1] >> 1;
863    p[2] = p_t[2] + p_tr[2] >> 1;
864    p[3] = p_t[3] + p_tr[3] >> 1;
865}
866
867/* PRED_MODE_AVG_AVG_L_TL_AVG_T_TR */
868static void inv_predict_10(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
869                           const uint8_t *p_t, const uint8_t *p_tr)
870{
871    p[0] = (p_l[0] + p_tl[0] >> 1) + (p_t[0] + p_tr[0] >> 1) >> 1;
872    p[1] = (p_l[1] + p_tl[1] >> 1) + (p_t[1] + p_tr[1] >> 1) >> 1;
873    p[2] = (p_l[2] + p_tl[2] >> 1) + (p_t[2] + p_tr[2] >> 1) >> 1;
874    p[3] = (p_l[3] + p_tl[3] >> 1) + (p_t[3] + p_tr[3] >> 1) >> 1;
875}
876
877/* PRED_MODE_SELECT */
878static void inv_predict_11(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
879                           const uint8_t *p_t, const uint8_t *p_tr)
880{
881    int diff = (FFABS(p_l[0] - p_tl[0]) - FFABS(p_t[0] - p_tl[0])) +
882               (FFABS(p_l[1] - p_tl[1]) - FFABS(p_t[1] - p_tl[1])) +
883               (FFABS(p_l[2] - p_tl[2]) - FFABS(p_t[2] - p_tl[2])) +
884               (FFABS(p_l[3] - p_tl[3]) - FFABS(p_t[3] - p_tl[3]));
885    if (diff <= 0)
886        AV_COPY32(p, p_t);
887    else
888        AV_COPY32(p, p_l);
889}
890
891/* PRED_MODE_ADD_SUBTRACT_FULL */
892static void inv_predict_12(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
893                           const uint8_t *p_t, const uint8_t *p_tr)
894{
895    p[0] = av_clip_uint8(p_l[0] + p_t[0] - p_tl[0]);
896    p[1] = av_clip_uint8(p_l[1] + p_t[1] - p_tl[1]);
897    p[2] = av_clip_uint8(p_l[2] + p_t[2] - p_tl[2]);
898    p[3] = av_clip_uint8(p_l[3] + p_t[3] - p_tl[3]);
899}
900
901static av_always_inline uint8_t clamp_add_subtract_half(int a, int b, int c)
902{
903    int d = a + b >> 1;
904    return av_clip_uint8(d + (d - c) / 2);
905}
906
907/* PRED_MODE_ADD_SUBTRACT_HALF */
908static void inv_predict_13(uint8_t *p, const uint8_t *p_l, const uint8_t *p_tl,
909                           const uint8_t *p_t, const uint8_t *p_tr)
910{
911    p[0] = clamp_add_subtract_half(p_l[0], p_t[0], p_tl[0]);
912    p[1] = clamp_add_subtract_half(p_l[1], p_t[1], p_tl[1]);
913    p[2] = clamp_add_subtract_half(p_l[2], p_t[2], p_tl[2]);
914    p[3] = clamp_add_subtract_half(p_l[3], p_t[3], p_tl[3]);
915}
916
917typedef void (*inv_predict_func)(uint8_t *p, const uint8_t *p_l,
918                                 const uint8_t *p_tl, const uint8_t *p_t,
919                                 const uint8_t *p_tr);
920
921static const inv_predict_func inverse_predict[14] = {
922    inv_predict_0,  inv_predict_1,  inv_predict_2,  inv_predict_3,
923    inv_predict_4,  inv_predict_5,  inv_predict_6,  inv_predict_7,
924    inv_predict_8,  inv_predict_9,  inv_predict_10, inv_predict_11,
925    inv_predict_12, inv_predict_13,
926};
927
928static void inverse_prediction(AVFrame *frame, enum PredictionMode m, int x, int y)
929{
930    uint8_t *dec, *p_l, *p_tl, *p_t, *p_tr;
931    uint8_t p[4];
932
933    dec  = GET_PIXEL(frame, x,     y);
934    p_l  = GET_PIXEL(frame, x - 1, y);
935    p_tl = GET_PIXEL(frame, x - 1, y - 1);
936    p_t  = GET_PIXEL(frame, x,     y - 1);
937    if (x == frame->width - 1)
938        p_tr = GET_PIXEL(frame, 0, y);
939    else
940        p_tr = GET_PIXEL(frame, x + 1, y - 1);
941
942    inverse_predict[m](p, p_l, p_tl, p_t, p_tr);
943
944    dec[0] += p[0];
945    dec[1] += p[1];
946    dec[2] += p[2];
947    dec[3] += p[3];
948}
949
950static int apply_predictor_transform(WebPContext *s)
951{
952    ImageContext *img  = &s->image[IMAGE_ROLE_ARGB];
953    ImageContext *pimg = &s->image[IMAGE_ROLE_PREDICTOR];
954    int x, y;
955
956    for (y = 0; y < img->frame->height; y++) {
957        for (x = 0; x < img->frame->width; x++) {
958            int tx = x >> pimg->size_reduction;
959            int ty = y >> pimg->size_reduction;
960            enum PredictionMode m = GET_PIXEL_COMP(pimg->frame, tx, ty, 2);
961
962            if (x == 0) {
963                if (y == 0)
964                    m = PRED_MODE_BLACK;
965                else
966                    m = PRED_MODE_T;
967            } else if (y == 0)
968                m = PRED_MODE_L;
969
970            if (m > 13) {
971                av_log(s->avctx, AV_LOG_ERROR,
972                       "invalid predictor mode: %d\n", m);
973                return AVERROR_INVALIDDATA;
974            }
975            inverse_prediction(img->frame, m, x, y);
976        }
977    }
978    return 0;
979}
980
981static av_always_inline uint8_t color_transform_delta(uint8_t color_pred,
982                                                      uint8_t color)
983{
984    return (int)ff_u8_to_s8(color_pred) * ff_u8_to_s8(color) >> 5;
985}
986
987static int apply_color_transform(WebPContext *s)
988{
989    ImageContext *img, *cimg;
990    int x, y, cx, cy;
991    uint8_t *p, *cp;
992
993    img  = &s->image[IMAGE_ROLE_ARGB];
994    cimg = &s->image[IMAGE_ROLE_COLOR_TRANSFORM];
995
996    for (y = 0; y < img->frame->height; y++) {
997        for (x = 0; x < img->frame->width; x++) {
998            cx = x >> cimg->size_reduction;
999            cy = y >> cimg->size_reduction;
1000            cp = GET_PIXEL(cimg->frame, cx, cy);
1001            p  = GET_PIXEL(img->frame,   x,  y);
1002
1003            p[1] += color_transform_delta(cp[3], p[2]);
1004            p[3] += color_transform_delta(cp[2], p[2]) +
1005                    color_transform_delta(cp[1], p[1]);
1006        }
1007    }
1008    return 0;
1009}
1010
1011static int apply_subtract_green_transform(WebPContext *s)
1012{
1013    int x, y;
1014    ImageContext *img = &s->image[IMAGE_ROLE_ARGB];
1015
1016    for (y = 0; y < img->frame->height; y++) {
1017        for (x = 0; x < img->frame->width; x++) {
1018            uint8_t *p = GET_PIXEL(img->frame, x, y);
1019            p[1] += p[2];
1020            p[3] += p[2];
1021        }
1022    }
1023    return 0;
1024}
1025
1026static int apply_color_indexing_transform(WebPContext *s)
1027{
1028    ImageContext *img;
1029    ImageContext *pal;
1030    int i, x, y;
1031    uint8_t *p;
1032
1033    img = &s->image[IMAGE_ROLE_ARGB];
1034    pal = &s->image[IMAGE_ROLE_COLOR_INDEXING];
1035
1036    if (pal->size_reduction > 0) {
1037        GetBitContext gb_g;
1038        uint8_t *line;
1039        int pixel_bits = 8 >> pal->size_reduction;
1040
1041        line = av_malloc(img->frame->linesize[0]);
1042        if (!line)
1043            return AVERROR(ENOMEM);
1044
1045        for (y = 0; y < img->frame->height; y++) {
1046            p = GET_PIXEL(img->frame, 0, y);
1047            memcpy(line, p, img->frame->linesize[0]);
1048            init_get_bits(&gb_g, line, img->frame->linesize[0] * 8);
1049            skip_bits(&gb_g, 16);
1050            i = 0;
1051            for (x = 0; x < img->frame->width; x++) {
1052                p    = GET_PIXEL(img->frame, x, y);
1053                p[2] = get_bits(&gb_g, pixel_bits);
1054                i++;
1055                if (i == 1 << pal->size_reduction) {
1056                    skip_bits(&gb_g, 24);
1057                    i = 0;
1058                }
1059            }
1060        }
1061        av_free(line);
1062    }
1063
1064    for (y = 0; y < img->frame->height; y++) {
1065        for (x = 0; x < img->frame->width; x++) {
1066            p = GET_PIXEL(img->frame, x, y);
1067            i = p[2];
1068            if (i >= pal->frame->width) {
1069                AV_WB32(p, 0x00000000);
1070            } else {
1071                const uint8_t *pi = GET_PIXEL(pal->frame, i, 0);
1072                AV_COPY32(p, pi);
1073            }
1074        }
1075    }
1076
1077    return 0;
1078}
1079
1080static int vp8_lossless_decode_frame(AVCodecContext *avctx, AVFrame *p,
1081                                     int *got_frame, uint8_t *data_start,
1082                                     unsigned int data_size, int is_alpha_chunk)
1083{
1084    WebPContext *s = avctx->priv_data;
1085    int w, h, ret, i;
1086
1087    if (!is_alpha_chunk) {
1088        s->lossless = 1;
1089        avctx->pix_fmt = AV_PIX_FMT_ARGB;
1090    }
1091
1092    ret = init_get_bits(&s->gb, data_start, data_size * 8);
1093    if (ret < 0)
1094        return ret;
1095
1096    if (!is_alpha_chunk) {
1097        if (get_bits(&s->gb, 8) != 0x2F) {
1098            av_log(avctx, AV_LOG_ERROR, "Invalid WebP Lossless signature\n");
1099            return AVERROR_INVALIDDATA;
1100        }
1101
1102        w = get_bits(&s->gb, 14) + 1;
1103        h = get_bits(&s->gb, 14) + 1;
1104        if (s->width && s->width != w) {
1105            av_log(avctx, AV_LOG_WARNING, "Width mismatch. %d != %d\n",
1106                   s->width, w);
1107        }
1108        s->width = w;
1109        if (s->height && s->height != h) {
1110            av_log(avctx, AV_LOG_WARNING, "Height mismatch. %d != %d\n",
1111                   s->width, w);
1112        }
1113        s->height = h;
1114
1115        ret = ff_set_dimensions(avctx, s->width, s->height);
1116        if (ret < 0)
1117            return ret;
1118
1119        s->has_alpha = get_bits1(&s->gb);
1120
1121        if (get_bits(&s->gb, 3) != 0x0) {
1122            av_log(avctx, AV_LOG_ERROR, "Invalid WebP Lossless version\n");
1123            return AVERROR_INVALIDDATA;
1124        }
1125    } else {
1126        if (!s->width || !s->height)
1127            return AVERROR_BUG;
1128        w = s->width;
1129        h = s->height;
1130    }
1131
1132    /* parse transformations */
1133    s->nb_transforms = 0;
1134    s->reduced_width = 0;
1135    while (get_bits1(&s->gb)) {
1136        enum TransformType transform = get_bits(&s->gb, 2);
1137        s->transforms[s->nb_transforms++] = transform;
1138        switch (transform) {
1139        case PREDICTOR_TRANSFORM:
1140            ret = parse_transform_predictor(s);
1141            break;
1142        case COLOR_TRANSFORM:
1143            ret = parse_transform_color(s);
1144            break;
1145        case COLOR_INDEXING_TRANSFORM:
1146            ret = parse_transform_color_indexing(s);
1147            break;
1148        }
1149        if (ret < 0)
1150            goto free_and_return;
1151    }
1152
1153    /* decode primary image */
1154    s->image[IMAGE_ROLE_ARGB].frame = p;
1155    if (is_alpha_chunk)
1156        s->image[IMAGE_ROLE_ARGB].is_alpha_primary = 1;
1157    ret = decode_entropy_coded_image(s, IMAGE_ROLE_ARGB, w, h);
1158    if (ret < 0)
1159        goto free_and_return;
1160
1161    /* apply transformations */
1162    for (i = s->nb_transforms - 1; i >= 0; i--) {
1163        switch (s->transforms[i]) {
1164        case PREDICTOR_TRANSFORM:
1165            ret = apply_predictor_transform(s);
1166            break;
1167        case COLOR_TRANSFORM:
1168            ret = apply_color_transform(s);
1169            break;
1170        case SUBTRACT_GREEN:
1171            ret = apply_subtract_green_transform(s);
1172            break;
1173        case COLOR_INDEXING_TRANSFORM:
1174            ret = apply_color_indexing_transform(s);
1175            break;
1176        }
1177        if (ret < 0)
1178            goto free_and_return;
1179    }
1180
1181    *got_frame   = 1;
1182    p->pict_type = AV_PICTURE_TYPE_I;
1183    p->key_frame = 1;
1184    ret          = data_size;
1185
1186free_and_return:
1187    for (i = 0; i < IMAGE_ROLE_NB; i++)
1188        image_ctx_free(&s->image[i]);
1189
1190    return ret;
1191}
1192
1193static void alpha_inverse_prediction(AVFrame *frame, enum AlphaFilter m)
1194{
1195    int x, y, ls;
1196    uint8_t *dec;
1197
1198    ls = frame->linesize[3];
1199
1200    /* filter first row using horizontal filter */
1201    dec = frame->data[3] + 1;
1202    for (x = 1; x < frame->width; x++, dec++)
1203        *dec += *(dec - 1);
1204
1205    /* filter first column using vertical filter */
1206    dec = frame->data[3] + ls;
1207    for (y = 1; y < frame->height; y++, dec += ls)
1208        *dec += *(dec - ls);
1209
1210    /* filter the rest using the specified filter */
1211    switch (m) {
1212    case ALPHA_FILTER_HORIZONTAL:
1213        for (y = 1; y < frame->height; y++) {
1214            dec = frame->data[3] + y * ls + 1;
1215            for (x = 1; x < frame->width; x++, dec++)
1216                *dec += *(dec - 1);
1217        }
1218        break;
1219    case ALPHA_FILTER_VERTICAL:
1220        for (y = 1; y < frame->height; y++) {
1221            dec = frame->data[3] + y * ls + 1;
1222            for (x = 1; x < frame->width; x++, dec++)
1223                *dec += *(dec - ls);
1224        }
1225        break;
1226    case ALPHA_FILTER_GRADIENT:
1227        for (y = 1; y < frame->height; y++) {
1228            dec = frame->data[3] + y * ls + 1;
1229            for (x = 1; x < frame->width; x++, dec++)
1230                dec[0] += av_clip_uint8(*(dec - 1) + *(dec - ls) - *(dec - ls - 1));
1231        }
1232        break;
1233    }
1234}
1235
1236static int vp8_lossy_decode_alpha(AVCodecContext *avctx, AVFrame *p,
1237                                  uint8_t *data_start,
1238                                  unsigned int data_size)
1239{
1240    WebPContext *s = avctx->priv_data;
1241    int x, y, ret;
1242
1243    if (s->alpha_compression == ALPHA_COMPRESSION_NONE) {
1244        GetByteContext gb;
1245
1246        bytestream2_init(&gb, data_start, data_size);
1247        for (y = 0; y < s->height; y++)
1248            bytestream2_get_buffer(&gb, p->data[3] + p->linesize[3] * y,
1249                                   s->width);
1250    } else if (s->alpha_compression == ALPHA_COMPRESSION_VP8L) {
1251        uint8_t *ap, *pp;
1252        int alpha_got_frame = 0;
1253
1254        s->alpha_frame = av_frame_alloc();
1255        if (!s->alpha_frame)
1256            return AVERROR(ENOMEM);
1257
1258        ret = vp8_lossless_decode_frame(avctx, s->alpha_frame, &alpha_got_frame,
1259                                        data_start, data_size, 1);
1260        if (ret < 0) {
1261            av_frame_free(&s->alpha_frame);
1262            return ret;
1263        }
1264        if (!alpha_got_frame) {
1265            av_frame_free(&s->alpha_frame);
1266            return AVERROR_INVALIDDATA;
1267        }
1268
1269        /* copy green component of alpha image to alpha plane of primary image */
1270        for (y = 0; y < s->height; y++) {
1271            ap = GET_PIXEL(s->alpha_frame, 0, y) + 2;
1272            pp = p->data[3] + p->linesize[3] * y;
1273            for (x = 0; x < s->width; x++) {
1274                *pp = *ap;
1275                pp++;
1276                ap += 4;
1277            }
1278        }
1279        av_frame_free(&s->alpha_frame);
1280    }
1281
1282    /* apply alpha filtering */
1283    if (s->alpha_filter)
1284        alpha_inverse_prediction(p, s->alpha_filter);
1285
1286    return 0;
1287}
1288
1289static int vp8_lossy_decode_frame(AVCodecContext *avctx, AVFrame *p,
1290                                  int *got_frame, uint8_t *data_start,
1291                                  unsigned int data_size)
1292{
1293    WebPContext *s = avctx->priv_data;
1294    AVPacket pkt;
1295    int ret;
1296
1297    if (!s->initialized) {
1298        ff_vp8_decode_init(avctx);
1299        s->initialized = 1;
1300        if (s->has_alpha)
1301            avctx->pix_fmt = AV_PIX_FMT_YUVA420P;
1302    }
1303    s->lossless = 0;
1304
1305    if (data_size > INT_MAX) {
1306        av_log(avctx, AV_LOG_ERROR, "unsupported chunk size\n");
1307        return AVERROR_PATCHWELCOME;
1308    }
1309
1310    av_init_packet(&pkt);
1311    pkt.data = data_start;
1312    pkt.size = data_size;
1313
1314    ret = ff_vp8_decode_frame(avctx, p, got_frame, &pkt);
1315    if (s->has_alpha) {
1316        ret = vp8_lossy_decode_alpha(avctx, p, s->alpha_data,
1317                                     s->alpha_data_size);
1318        if (ret < 0)
1319            return ret;
1320    }
1321    return ret;
1322}
1323
1324static int webp_decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
1325                             AVPacket *avpkt)
1326{
1327    AVFrame * const p = data;
1328    WebPContext *s = avctx->priv_data;
1329    GetByteContext gb;
1330    int ret;
1331    uint32_t chunk_type, chunk_size;
1332    int vp8x_flags = 0;
1333
1334    s->avctx     = avctx;
1335    s->width     = 0;
1336    s->height    = 0;
1337    *got_frame   = 0;
1338    s->has_alpha = 0;
1339    s->has_exif  = 0;
1340    bytestream2_init(&gb, avpkt->data, avpkt->size);
1341
1342    if (bytestream2_get_bytes_left(&gb) < 12)
1343        return AVERROR_INVALIDDATA;
1344
1345    if (bytestream2_get_le32(&gb) != MKTAG('R', 'I', 'F', 'F')) {
1346        av_log(avctx, AV_LOG_ERROR, "missing RIFF tag\n");
1347        return AVERROR_INVALIDDATA;
1348    }
1349
1350    chunk_size = bytestream2_get_le32(&gb);
1351    if (bytestream2_get_bytes_left(&gb) < chunk_size)
1352        return AVERROR_INVALIDDATA;
1353
1354    if (bytestream2_get_le32(&gb) != MKTAG('W', 'E', 'B', 'P')) {
1355        av_log(avctx, AV_LOG_ERROR, "missing WEBP tag\n");
1356        return AVERROR_INVALIDDATA;
1357    }
1358
1359    av_dict_free(&s->exif_metadata);
1360    while (bytestream2_get_bytes_left(&gb) > 0) {
1361        char chunk_str[5] = { 0 };
1362
1363        chunk_type = bytestream2_get_le32(&gb);
1364        chunk_size = bytestream2_get_le32(&gb);
1365        if (chunk_size == UINT32_MAX)
1366            return AVERROR_INVALIDDATA;
1367        chunk_size += chunk_size & 1;
1368
1369        if (bytestream2_get_bytes_left(&gb) < chunk_size)
1370            return AVERROR_INVALIDDATA;
1371
1372        switch (chunk_type) {
1373        case MKTAG('V', 'P', '8', ' '):
1374            if (!*got_frame) {
1375                ret = vp8_lossy_decode_frame(avctx, p, got_frame,
1376                                             avpkt->data + bytestream2_tell(&gb),
1377                                             chunk_size);
1378                if (ret < 0)
1379                    return ret;
1380            }
1381            bytestream2_skip(&gb, chunk_size);
1382            break;
1383        case MKTAG('V', 'P', '8', 'L'):
1384            if (!*got_frame) {
1385                ret = vp8_lossless_decode_frame(avctx, p, got_frame,
1386                                                avpkt->data + bytestream2_tell(&gb),
1387                                                chunk_size, 0);
1388                if (ret < 0)
1389                    return ret;
1390            }
1391            bytestream2_skip(&gb, chunk_size);
1392            break;
1393        case MKTAG('V', 'P', '8', 'X'):
1394            vp8x_flags = bytestream2_get_byte(&gb);
1395            bytestream2_skip(&gb, 3);
1396            s->width  = bytestream2_get_le24(&gb) + 1;
1397            s->height = bytestream2_get_le24(&gb) + 1;
1398            ret = av_image_check_size(s->width, s->height, 0, avctx);
1399            if (ret < 0)
1400                return ret;
1401            break;
1402        case MKTAG('A', 'L', 'P', 'H'): {
1403            int alpha_header, filter_m, compression;
1404
1405            if (!(vp8x_flags & VP8X_FLAG_ALPHA)) {
1406                av_log(avctx, AV_LOG_WARNING,
1407                       "ALPHA chunk present, but alpha bit not set in the "
1408                       "VP8X header\n");
1409            }
1410            if (chunk_size == 0) {
1411                av_log(avctx, AV_LOG_ERROR, "invalid ALPHA chunk size\n");
1412                return AVERROR_INVALIDDATA;
1413            }
1414            alpha_header       = bytestream2_get_byte(&gb);
1415            s->alpha_data      = avpkt->data + bytestream2_tell(&gb);
1416            s->alpha_data_size = chunk_size - 1;
1417            bytestream2_skip(&gb, s->alpha_data_size);
1418
1419            filter_m    = (alpha_header >> 2) & 0x03;
1420            compression =  alpha_header       & 0x03;
1421
1422            if (compression > ALPHA_COMPRESSION_VP8L) {
1423                av_log(avctx, AV_LOG_VERBOSE,
1424                       "skipping unsupported ALPHA chunk\n");
1425            } else {
1426                s->has_alpha         = 1;
1427                s->alpha_compression = compression;
1428                s->alpha_filter      = filter_m;
1429            }
1430
1431            break;
1432        }
1433        case MKTAG('E', 'X', 'I', 'F'): {
1434            int le, ifd_offset, exif_offset = bytestream2_tell(&gb);
1435            GetByteContext exif_gb;
1436
1437            if (s->has_exif) {
1438                av_log(avctx, AV_LOG_VERBOSE, "Ignoring extra EXIF chunk\n");
1439                goto exif_end;
1440            }
1441            if (!(vp8x_flags & VP8X_FLAG_EXIF_METADATA))
1442                av_log(avctx, AV_LOG_WARNING,
1443                       "EXIF chunk present, but Exif bit not set in the "
1444                       "VP8X header\n");
1445
1446            s->has_exif = 1;
1447            bytestream2_init(&exif_gb, avpkt->data + exif_offset,
1448                             avpkt->size - exif_offset);
1449            if (ff_tdecode_header(&exif_gb, &le, &ifd_offset) < 0) {
1450                av_log(avctx, AV_LOG_ERROR, "invalid TIFF header "
1451                       "in Exif data\n");
1452                goto exif_end;
1453            }
1454
1455            bytestream2_seek(&exif_gb, ifd_offset, SEEK_SET);
1456            if (avpriv_exif_decode_ifd(avctx, &exif_gb, le, 0, &s->exif_metadata) < 0) {
1457                av_log(avctx, AV_LOG_ERROR, "error decoding Exif data\n");
1458                goto exif_end;
1459            }
1460
1461            av_dict_copy(avpriv_frame_get_metadatap(data), s->exif_metadata, 0);
1462
1463exif_end:
1464            av_dict_free(&s->exif_metadata);
1465            bytestream2_skip(&gb, chunk_size);
1466            break;
1467        }
1468        case MKTAG('I', 'C', 'C', 'P'):
1469        case MKTAG('A', 'N', 'I', 'M'):
1470        case MKTAG('A', 'N', 'M', 'F'):
1471        case MKTAG('X', 'M', 'P', ' '):
1472            AV_WL32(chunk_str, chunk_type);
1473            av_log(avctx, AV_LOG_VERBOSE, "skipping unsupported chunk: %s\n",
1474                   chunk_str);
1475            bytestream2_skip(&gb, chunk_size);
1476            break;
1477        default:
1478            AV_WL32(chunk_str, chunk_type);
1479            av_log(avctx, AV_LOG_VERBOSE, "skipping unknown chunk: %s\n",
1480                   chunk_str);
1481            bytestream2_skip(&gb, chunk_size);
1482            break;
1483        }
1484    }
1485
1486    if (!*got_frame) {
1487        av_log(avctx, AV_LOG_ERROR, "image data not found\n");
1488        return AVERROR_INVALIDDATA;
1489    }
1490
1491    return avpkt->size;
1492}
1493
1494static av_cold int webp_decode_close(AVCodecContext *avctx)
1495{
1496    WebPContext *s = avctx->priv_data;
1497
1498    if (s->initialized)
1499        return ff_vp8_decode_free(avctx);
1500
1501    return 0;
1502}
1503
1504AVCodec ff_webp_decoder = {
1505    .name           = "webp",
1506    .long_name      = NULL_IF_CONFIG_SMALL("WebP image"),
1507    .type           = AVMEDIA_TYPE_VIDEO,
1508    .id             = AV_CODEC_ID_WEBP,
1509    .priv_data_size = sizeof(WebPContext),
1510    .decode         = webp_decode_frame,
1511    .close          = webp_decode_close,
1512    .capabilities   = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS,
1513};
1514