1/*
2 * TwinVQ decoder
3 * Copyright (c) 2009 Vitor Sessak
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22#include <math.h>
23#include <stdint.h>
24
25#include "libavutil/channel_layout.h"
26#include "libavutil/float_dsp.h"
27#include "avcodec.h"
28#include "fft.h"
29#include "internal.h"
30#include "lsp.h"
31#include "sinewin.h"
32#include "twinvq.h"
33
34/**
35 * Evaluate a single LPC amplitude spectrum envelope coefficient from the line
36 * spectrum pairs.
37 *
38 * @param lsp a vector of the cosine of the LSP values
39 * @param cos_val cos(PI*i/N) where i is the index of the LPC amplitude
40 * @param order the order of the LSP (and the size of the *lsp buffer). Must
41 *        be a multiple of four.
42 * @return the LPC value
43 *
44 * @todo reuse code from Vorbis decoder: vorbis_floor0_decode
45 */
46static float eval_lpc_spectrum(const float *lsp, float cos_val, int order)
47{
48    int j;
49    float p         = 0.5f;
50    float q         = 0.5f;
51    float two_cos_w = 2.0f * cos_val;
52
53    for (j = 0; j + 1 < order; j += 2 * 2) {
54        // Unroll the loop once since order is a multiple of four
55        q *= lsp[j]     - two_cos_w;
56        p *= lsp[j + 1] - two_cos_w;
57
58        q *= lsp[j + 2] - two_cos_w;
59        p *= lsp[j + 3] - two_cos_w;
60    }
61
62    p *= p * (2.0f - two_cos_w);
63    q *= q * (2.0f + two_cos_w);
64
65    return 0.5 / (p + q);
66}
67
68/**
69 * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
70 */
71static void eval_lpcenv(TwinVQContext *tctx, const float *cos_vals, float *lpc)
72{
73    int i;
74    const TwinVQModeTab *mtab = tctx->mtab;
75    int size_s = mtab->size / mtab->fmode[TWINVQ_FT_SHORT].sub;
76
77    for (i = 0; i < size_s / 2; i++) {
78        float cos_i = tctx->cos_tabs[0][i];
79        lpc[i]              = eval_lpc_spectrum(cos_vals,  cos_i, mtab->n_lsp);
80        lpc[size_s - i - 1] = eval_lpc_spectrum(cos_vals, -cos_i, mtab->n_lsp);
81    }
82}
83
84static void interpolate(float *out, float v1, float v2, int size)
85{
86    int i;
87    float step = (v1 - v2) / (size + 1);
88
89    for (i = 0; i < size; i++) {
90        v2    += step;
91        out[i] = v2;
92    }
93}
94
95static inline float get_cos(int idx, int part, const float *cos_tab, int size)
96{
97    return part ? -cos_tab[size - idx - 1]
98                :  cos_tab[idx];
99}
100
101/**
102 * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
103 * Probably for speed reasons, the coefficients are evaluated as
104 * siiiibiiiisiiiibiiiisiiiibiiiisiiiibiiiis ...
105 * where s is an evaluated value, i is a value interpolated from the others
106 * and b might be either calculated or interpolated, depending on an
107 * unexplained condition.
108 *
109 * @param step the size of a block "siiiibiiii"
110 * @param in the cosine of the LSP data
111 * @param part is 0 for 0...PI (positive cosine values) and 1 for PI...2PI
112 *        (negative cosine values)
113 * @param size the size of the whole output
114 */
115static inline void eval_lpcenv_or_interp(TwinVQContext *tctx,
116                                         enum TwinVQFrameType ftype,
117                                         float *out, const float *in,
118                                         int size, int step, int part)
119{
120    int i;
121    const TwinVQModeTab *mtab = tctx->mtab;
122    const float *cos_tab      = tctx->cos_tabs[ftype];
123
124    // Fill the 's'
125    for (i = 0; i < size; i += step)
126        out[i] =
127            eval_lpc_spectrum(in,
128                              get_cos(i, part, cos_tab, size),
129                              mtab->n_lsp);
130
131    // Fill the 'iiiibiiii'
132    for (i = step; i <= size - 2 * step; i += step) {
133        if (out[i + step] + out[i - step] > 1.95 * out[i] ||
134            out[i + step]                 >= out[i - step]) {
135            interpolate(out + i - step + 1, out[i], out[i - step], step - 1);
136        } else {
137            out[i - step / 2] =
138                eval_lpc_spectrum(in,
139                                  get_cos(i - step / 2, part, cos_tab, size),
140                                  mtab->n_lsp);
141            interpolate(out + i - step + 1, out[i - step / 2],
142                        out[i - step], step / 2 - 1);
143            interpolate(out + i - step / 2 + 1, out[i],
144                        out[i - step / 2], step / 2 - 1);
145        }
146    }
147
148    interpolate(out + size - 2 * step + 1, out[size - step],
149                out[size - 2 * step], step - 1);
150}
151
152static void eval_lpcenv_2parts(TwinVQContext *tctx, enum TwinVQFrameType ftype,
153                               const float *buf, float *lpc,
154                               int size, int step)
155{
156    eval_lpcenv_or_interp(tctx, ftype, lpc, buf, size / 2, step, 0);
157    eval_lpcenv_or_interp(tctx, ftype, lpc + size / 2, buf, size / 2,
158                          2 * step, 1);
159
160    interpolate(lpc + size / 2 - step + 1, lpc[size / 2],
161                lpc[size / 2 - step], step);
162
163    twinvq_memset_float(lpc + size - 2 * step + 1, lpc[size - 2 * step],
164                        2 * step - 1);
165}
166
167/**
168 * Inverse quantization. Read CB coefficients for cb1 and cb2 from the
169 * bitstream, sum the corresponding vectors and write the result to *out
170 * after permutation.
171 */
172static void dequant(TwinVQContext *tctx, const uint8_t *cb_bits, float *out,
173                    enum TwinVQFrameType ftype,
174                    const int16_t *cb0, const int16_t *cb1, int cb_len)
175{
176    int pos = 0;
177    int i, j;
178
179    for (i = 0; i < tctx->n_div[ftype]; i++) {
180        int tmp0, tmp1;
181        int sign0 = 1;
182        int sign1 = 1;
183        const int16_t *tab0, *tab1;
184        int length = tctx->length[ftype][i >= tctx->length_change[ftype]];
185        int bitstream_second_part = (i >= tctx->bits_main_spec_change[ftype]);
186
187        int bits = tctx->bits_main_spec[0][ftype][bitstream_second_part];
188        tmp0 = *cb_bits++;
189        if (bits == 7) {
190            if (tmp0 & 0x40)
191                sign0 = -1;
192            tmp0 &= 0x3F;
193        }
194
195        bits = tctx->bits_main_spec[1][ftype][bitstream_second_part];
196        tmp1 = *cb_bits++;
197        if (bits == 7) {
198            if (tmp1 & 0x40)
199                sign1 = -1;
200            tmp1 &= 0x3F;
201        }
202
203        tab0 = cb0 + tmp0 * cb_len;
204        tab1 = cb1 + tmp1 * cb_len;
205
206        for (j = 0; j < length; j++)
207            out[tctx->permut[ftype][pos + j]] = sign0 * tab0[j] +
208                                                sign1 * tab1[j];
209
210        pos += length;
211    }
212}
213
214static void dec_gain(TwinVQContext *tctx,
215                     enum TwinVQFrameType ftype, float *out)
216{
217    const TwinVQModeTab   *mtab =  tctx->mtab;
218    const TwinVQFrameData *bits = &tctx->bits[tctx->cur_frame];
219    int i, j;
220    int sub        = mtab->fmode[ftype].sub;
221    float step     = TWINVQ_AMP_MAX     / ((1 << TWINVQ_GAIN_BITS)     - 1);
222    float sub_step = TWINVQ_SUB_AMP_MAX / ((1 << TWINVQ_SUB_GAIN_BITS) - 1);
223
224    if (ftype == TWINVQ_FT_LONG) {
225        for (i = 0; i < tctx->avctx->channels; i++)
226            out[i] = (1.0 / (1 << 13)) *
227                     twinvq_mulawinv(step * 0.5 + step * bits->gain_bits[i],
228                                     TWINVQ_AMP_MAX, TWINVQ_MULAW_MU);
229    } else {
230        for (i = 0; i < tctx->avctx->channels; i++) {
231            float val = (1.0 / (1 << 23)) *
232                        twinvq_mulawinv(step * 0.5 + step * bits->gain_bits[i],
233                                        TWINVQ_AMP_MAX, TWINVQ_MULAW_MU);
234
235            for (j = 0; j < sub; j++)
236                out[i * sub + j] =
237                    val * twinvq_mulawinv(sub_step * 0.5 +
238                                          sub_step * bits->sub_gain_bits[i * sub + j],
239                                          TWINVQ_SUB_AMP_MAX, TWINVQ_MULAW_MU);
240        }
241    }
242}
243
244/**
245 * Rearrange the LSP coefficients so that they have a minimum distance of
246 * min_dist. This function does it exactly as described in section of 3.2.4
247 * of the G.729 specification (but interestingly is different from what the
248 * reference decoder actually does).
249 */
250static void rearrange_lsp(int order, float *lsp, float min_dist)
251{
252    int i;
253    float min_dist2 = min_dist * 0.5;
254    for (i = 1; i < order; i++)
255        if (lsp[i] - lsp[i - 1] < min_dist) {
256            float avg = (lsp[i] + lsp[i - 1]) * 0.5;
257
258            lsp[i - 1] = avg - min_dist2;
259            lsp[i]     = avg + min_dist2;
260        }
261}
262
263static void decode_lsp(TwinVQContext *tctx, int lpc_idx1, uint8_t *lpc_idx2,
264                       int lpc_hist_idx, float *lsp, float *hist)
265{
266    const TwinVQModeTab *mtab = tctx->mtab;
267    int i, j;
268
269    const float *cb  = mtab->lspcodebook;
270    const float *cb2 = cb  + (1 << mtab->lsp_bit1) * mtab->n_lsp;
271    const float *cb3 = cb2 + (1 << mtab->lsp_bit2) * mtab->n_lsp;
272
273    const int8_t funny_rounding[4] = {
274        -2,
275        mtab->lsp_split == 4 ? -2 : 1,
276        mtab->lsp_split == 4 ? -2 : 1,
277        0
278    };
279
280    j = 0;
281    for (i = 0; i < mtab->lsp_split; i++) {
282        int chunk_end = ((i + 1) * mtab->n_lsp + funny_rounding[i]) /
283                        mtab->lsp_split;
284        for (; j < chunk_end; j++)
285            lsp[j] = cb[lpc_idx1     * mtab->n_lsp + j] +
286                     cb2[lpc_idx2[i] * mtab->n_lsp + j];
287    }
288
289    rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
290
291    for (i = 0; i < mtab->n_lsp; i++) {
292        float tmp1 = 1.0     - cb3[lpc_hist_idx * mtab->n_lsp + i];
293        float tmp2 = hist[i] * cb3[lpc_hist_idx * mtab->n_lsp + i];
294        hist[i] = lsp[i];
295        lsp[i]  = lsp[i] * tmp1 + tmp2;
296    }
297
298    rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
299    rearrange_lsp(mtab->n_lsp, lsp, 0.000095);
300    ff_sort_nearly_sorted_floats(lsp, mtab->n_lsp);
301}
302
303static void dec_lpc_spectrum_inv(TwinVQContext *tctx, float *lsp,
304                                 enum TwinVQFrameType ftype, float *lpc)
305{
306    int i;
307    int size = tctx->mtab->size / tctx->mtab->fmode[ftype].sub;
308
309    for (i = 0; i < tctx->mtab->n_lsp; i++)
310        lsp[i] = 2 * cos(lsp[i]);
311
312    switch (ftype) {
313    case TWINVQ_FT_LONG:
314        eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 8);
315        break;
316    case TWINVQ_FT_MEDIUM:
317        eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 2);
318        break;
319    case TWINVQ_FT_SHORT:
320        eval_lpcenv(tctx, lsp, lpc);
321        break;
322    }
323}
324
325static const uint8_t wtype_to_wsize[] = { 0, 0, 2, 2, 2, 1, 0, 1, 1 };
326
327static void imdct_and_window(TwinVQContext *tctx, enum TwinVQFrameType ftype,
328                             int wtype, float *in, float *prev, int ch)
329{
330    FFTContext *mdct = &tctx->mdct_ctx[ftype];
331    const TwinVQModeTab *mtab = tctx->mtab;
332    int bsize = mtab->size / mtab->fmode[ftype].sub;
333    int size  = mtab->size;
334    float *buf1 = tctx->tmp_buf;
335    int j, first_wsize, wsize; // Window size
336    float *out  = tctx->curr_frame + 2 * ch * mtab->size;
337    float *out2 = out;
338    float *prev_buf;
339    int types_sizes[] = {
340        mtab->size /  mtab->fmode[TWINVQ_FT_LONG].sub,
341        mtab->size /  mtab->fmode[TWINVQ_FT_MEDIUM].sub,
342        mtab->size / (mtab->fmode[TWINVQ_FT_SHORT].sub * 2),
343    };
344
345    wsize       = types_sizes[wtype_to_wsize[wtype]];
346    first_wsize = wsize;
347    prev_buf    = prev + (size - bsize) / 2;
348
349    for (j = 0; j < mtab->fmode[ftype].sub; j++) {
350        int sub_wtype = ftype == TWINVQ_FT_MEDIUM ? 8 : wtype;
351
352        if (!j && wtype == 4)
353            sub_wtype = 4;
354        else if (j == mtab->fmode[ftype].sub - 1 && wtype == 7)
355            sub_wtype = 7;
356
357        wsize = types_sizes[wtype_to_wsize[sub_wtype]];
358
359        mdct->imdct_half(mdct, buf1 + bsize * j, in + bsize * j);
360
361        tctx->fdsp.vector_fmul_window(out2, prev_buf + (bsize - wsize) / 2,
362                                      buf1 + bsize * j,
363                                      ff_sine_windows[av_log2(wsize)],
364                                      wsize / 2);
365        out2 += wsize;
366
367        memcpy(out2, buf1 + bsize * j + wsize / 2,
368               (bsize - wsize / 2) * sizeof(float));
369
370        out2 += ftype == TWINVQ_FT_MEDIUM ? (bsize - wsize) / 2 : bsize - wsize;
371
372        prev_buf = buf1 + bsize * j + bsize / 2;
373    }
374
375    tctx->last_block_pos[ch] = (size + first_wsize) / 2;
376}
377
378static void imdct_output(TwinVQContext *tctx, enum TwinVQFrameType ftype,
379                         int wtype, float **out, int offset)
380{
381    const TwinVQModeTab *mtab = tctx->mtab;
382    float *prev_buf           = tctx->prev_frame + tctx->last_block_pos[0];
383    int size1, size2, i;
384    float *out1, *out2;
385
386    for (i = 0; i < tctx->avctx->channels; i++)
387        imdct_and_window(tctx, ftype, wtype,
388                         tctx->spectrum + i * mtab->size,
389                         prev_buf + 2 * i * mtab->size,
390                         i);
391
392    if (!out)
393        return;
394
395    size2 = tctx->last_block_pos[0];
396    size1 = mtab->size - size2;
397
398    out1 = &out[0][0] + offset;
399    memcpy(out1,         prev_buf,         size1 * sizeof(*out1));
400    memcpy(out1 + size1, tctx->curr_frame, size2 * sizeof(*out1));
401
402    if (tctx->avctx->channels == 2) {
403        out2 = &out[1][0] + offset;
404        memcpy(out2, &prev_buf[2 * mtab->size],
405               size1 * sizeof(*out2));
406        memcpy(out2 + size1, &tctx->curr_frame[2 * mtab->size],
407               size2 * sizeof(*out2));
408        tctx->fdsp.butterflies_float(out1, out2, mtab->size);
409    }
410}
411
412static void read_and_decode_spectrum(TwinVQContext *tctx, float *out,
413                                     enum TwinVQFrameType ftype)
414{
415    const TwinVQModeTab *mtab = tctx->mtab;
416    TwinVQFrameData *bits     = &tctx->bits[tctx->cur_frame];
417    int channels              = tctx->avctx->channels;
418    int sub        = mtab->fmode[ftype].sub;
419    int block_size = mtab->size / sub;
420    float gain[TWINVQ_CHANNELS_MAX * TWINVQ_SUBBLOCKS_MAX];
421    float ppc_shape[TWINVQ_PPC_SHAPE_LEN_MAX * TWINVQ_CHANNELS_MAX * 4];
422
423    int i, j;
424
425    dequant(tctx, bits->main_coeffs, out, ftype,
426            mtab->fmode[ftype].cb0, mtab->fmode[ftype].cb1,
427            mtab->fmode[ftype].cb_len_read);
428
429    dec_gain(tctx, ftype, gain);
430
431    if (ftype == TWINVQ_FT_LONG) {
432        int cb_len_p = (tctx->n_div[3] + mtab->ppc_shape_len * channels - 1) /
433                       tctx->n_div[3];
434        dequant(tctx, bits->ppc_coeffs, ppc_shape,
435                TWINVQ_FT_PPC, mtab->ppc_shape_cb,
436                mtab->ppc_shape_cb + cb_len_p * TWINVQ_PPC_SHAPE_CB_SIZE,
437                cb_len_p);
438    }
439
440    for (i = 0; i < channels; i++) {
441        float *chunk = out + mtab->size * i;
442        float lsp[TWINVQ_LSP_COEFS_MAX];
443
444        for (j = 0; j < sub; j++) {
445            tctx->dec_bark_env(tctx, bits->bark1[i][j],
446                               bits->bark_use_hist[i][j], i,
447                               tctx->tmp_buf, gain[sub * i + j], ftype);
448
449            tctx->fdsp.vector_fmul(chunk + block_size * j,
450                                   chunk + block_size * j,
451                                   tctx->tmp_buf, block_size);
452        }
453
454        if (ftype == TWINVQ_FT_LONG)
455            tctx->decode_ppc(tctx, bits->p_coef[i], bits->g_coef[i],
456                             ppc_shape + i * mtab->ppc_shape_len, chunk);
457
458        decode_lsp(tctx, bits->lpc_idx1[i], bits->lpc_idx2[i],
459                   bits->lpc_hist_idx[i], lsp, tctx->lsp_hist[i]);
460
461        dec_lpc_spectrum_inv(tctx, lsp, ftype, tctx->tmp_buf);
462
463        for (j = 0; j < mtab->fmode[ftype].sub; j++) {
464            tctx->fdsp.vector_fmul(chunk, chunk, tctx->tmp_buf, block_size);
465            chunk += block_size;
466        }
467    }
468}
469
470const enum TwinVQFrameType ff_twinvq_wtype_to_ftype_table[] = {
471    TWINVQ_FT_LONG,   TWINVQ_FT_LONG, TWINVQ_FT_SHORT, TWINVQ_FT_LONG,
472    TWINVQ_FT_MEDIUM, TWINVQ_FT_LONG, TWINVQ_FT_LONG,  TWINVQ_FT_MEDIUM,
473    TWINVQ_FT_MEDIUM
474};
475
476int ff_twinvq_decode_frame(AVCodecContext *avctx, void *data,
477                           int *got_frame_ptr, AVPacket *avpkt)
478{
479    AVFrame *frame     = data;
480    const uint8_t *buf = avpkt->data;
481    int buf_size       = avpkt->size;
482    TwinVQContext *tctx = avctx->priv_data;
483    const TwinVQModeTab *mtab = tctx->mtab;
484    float **out = NULL;
485    int ret;
486
487    /* get output buffer */
488    if (tctx->discarded_packets >= 2) {
489        frame->nb_samples = mtab->size * tctx->frames_per_packet;
490        if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
491            return ret;
492        out = (float **)frame->extended_data;
493    }
494
495    if (buf_size < avctx->block_align) {
496        av_log(avctx, AV_LOG_ERROR,
497               "Frame too small (%d bytes). Truncated file?\n", buf_size);
498        return AVERROR(EINVAL);
499    }
500
501    if ((ret = tctx->read_bitstream(avctx, tctx, buf, buf_size)) < 0)
502        return ret;
503
504    for (tctx->cur_frame = 0; tctx->cur_frame < tctx->frames_per_packet;
505         tctx->cur_frame++) {
506        read_and_decode_spectrum(tctx, tctx->spectrum,
507                                 tctx->bits[tctx->cur_frame].ftype);
508
509        imdct_output(tctx, tctx->bits[tctx->cur_frame].ftype,
510                     tctx->bits[tctx->cur_frame].window_type, out,
511                     tctx->cur_frame * mtab->size);
512
513        FFSWAP(float *, tctx->curr_frame, tctx->prev_frame);
514    }
515
516    if (tctx->discarded_packets < 2) {
517        tctx->discarded_packets++;
518        *got_frame_ptr = 0;
519        return buf_size;
520    }
521
522    *got_frame_ptr = 1;
523
524    // VQF can deliver packets 1 byte greater than block align
525    if (buf_size == avctx->block_align + 1)
526        return buf_size;
527    return avctx->block_align;
528}
529
530/**
531 * Init IMDCT and windowing tables
532 */
533static av_cold int init_mdct_win(TwinVQContext *tctx)
534{
535    int i, j, ret;
536    const TwinVQModeTab *mtab = tctx->mtab;
537    int size_s = mtab->size / mtab->fmode[TWINVQ_FT_SHORT].sub;
538    int size_m = mtab->size / mtab->fmode[TWINVQ_FT_MEDIUM].sub;
539    int channels = tctx->avctx->channels;
540    float norm = channels == 1 ? 2.0 : 1.0;
541
542    for (i = 0; i < 3; i++) {
543        int bsize = tctx->mtab->size / tctx->mtab->fmode[i].sub;
544        if ((ret = ff_mdct_init(&tctx->mdct_ctx[i], av_log2(bsize) + 1, 1,
545                                -sqrt(norm / bsize) / (1 << 15))))
546            return ret;
547    }
548
549    FF_ALLOC_OR_GOTO(tctx->avctx, tctx->tmp_buf,
550                     mtab->size * sizeof(*tctx->tmp_buf), alloc_fail);
551
552    FF_ALLOC_OR_GOTO(tctx->avctx, tctx->spectrum,
553                     2 * mtab->size * channels * sizeof(*tctx->spectrum),
554                     alloc_fail);
555    FF_ALLOC_OR_GOTO(tctx->avctx, tctx->curr_frame,
556                     2 * mtab->size * channels * sizeof(*tctx->curr_frame),
557                     alloc_fail);
558    FF_ALLOC_OR_GOTO(tctx->avctx, tctx->prev_frame,
559                     2 * mtab->size * channels * sizeof(*tctx->prev_frame),
560                     alloc_fail);
561
562    for (i = 0; i < 3; i++) {
563        int m       = 4 * mtab->size / mtab->fmode[i].sub;
564        double freq = 2 * M_PI / m;
565        FF_ALLOC_OR_GOTO(tctx->avctx, tctx->cos_tabs[i],
566                         (m / 4) * sizeof(*tctx->cos_tabs[i]), alloc_fail);
567
568        for (j = 0; j <= m / 8; j++)
569            tctx->cos_tabs[i][j] = cos((2 * j + 1) * freq);
570        for (j = 1; j < m / 8; j++)
571            tctx->cos_tabs[i][m / 4 - j] = tctx->cos_tabs[i][j];
572    }
573
574    ff_init_ff_sine_windows(av_log2(size_m));
575    ff_init_ff_sine_windows(av_log2(size_s / 2));
576    ff_init_ff_sine_windows(av_log2(mtab->size));
577
578    return 0;
579
580alloc_fail:
581    return AVERROR(ENOMEM);
582}
583
584/**
585 * Interpret the data as if it were a num_blocks x line_len[0] matrix and for
586 * each line do a cyclic permutation, i.e.
587 * abcdefghijklm -> defghijklmabc
588 * where the amount to be shifted is evaluated depending on the column.
589 */
590static void permutate_in_line(int16_t *tab, int num_vect, int num_blocks,
591                              int block_size,
592                              const uint8_t line_len[2], int length_div,
593                              enum TwinVQFrameType ftype)
594{
595    int i, j;
596
597    for (i = 0; i < line_len[0]; i++) {
598        int shift;
599
600        if (num_blocks == 1                                    ||
601            (ftype == TWINVQ_FT_LONG && num_vect % num_blocks) ||
602            (ftype != TWINVQ_FT_LONG && num_vect & 1)          ||
603            i == line_len[1]) {
604            shift = 0;
605        } else if (ftype == TWINVQ_FT_LONG) {
606            shift = i;
607        } else
608            shift = i * i;
609
610        for (j = 0; j < num_vect && (j + num_vect * i < block_size * num_blocks); j++)
611            tab[i * num_vect + j] = i * num_vect + (j + shift) % num_vect;
612    }
613}
614
615/**
616 * Interpret the input data as in the following table:
617 *
618 * @verbatim
619 *
620 * abcdefgh
621 * ijklmnop
622 * qrstuvw
623 * x123456
624 *
625 * @endverbatim
626 *
627 * and transpose it, giving the output
628 * aiqxbjr1cks2dlt3emu4fvn5gow6hp
629 */
630static void transpose_perm(int16_t *out, int16_t *in, int num_vect,
631                           const uint8_t line_len[2], int length_div)
632{
633    int i, j;
634    int cont = 0;
635
636    for (i = 0; i < num_vect; i++)
637        for (j = 0; j < line_len[i >= length_div]; j++)
638            out[cont++] = in[j * num_vect + i];
639}
640
641static void linear_perm(int16_t *out, int16_t *in, int n_blocks, int size)
642{
643    int block_size = size / n_blocks;
644    int i;
645
646    for (i = 0; i < size; i++)
647        out[i] = block_size * (in[i] % n_blocks) + in[i] / n_blocks;
648}
649
650static av_cold void construct_perm_table(TwinVQContext *tctx,
651                                         enum TwinVQFrameType ftype)
652{
653    int block_size, size;
654    const TwinVQModeTab *mtab = tctx->mtab;
655    int16_t *tmp_perm = (int16_t *)tctx->tmp_buf;
656
657    if (ftype == TWINVQ_FT_PPC) {
658        size       = tctx->avctx->channels;
659        block_size = mtab->ppc_shape_len;
660    } else {
661        size       = tctx->avctx->channels * mtab->fmode[ftype].sub;
662        block_size = mtab->size / mtab->fmode[ftype].sub;
663    }
664
665    permutate_in_line(tmp_perm, tctx->n_div[ftype], size,
666                      block_size, tctx->length[ftype],
667                      tctx->length_change[ftype], ftype);
668
669    transpose_perm(tctx->permut[ftype], tmp_perm, tctx->n_div[ftype],
670                   tctx->length[ftype], tctx->length_change[ftype]);
671
672    linear_perm(tctx->permut[ftype], tctx->permut[ftype], size,
673                size * block_size);
674}
675
676static av_cold void init_bitstream_params(TwinVQContext *tctx)
677{
678    const TwinVQModeTab *mtab = tctx->mtab;
679    int n_ch                  = tctx->avctx->channels;
680    int total_fr_bits         = tctx->avctx->bit_rate * mtab->size /
681                                tctx->avctx->sample_rate;
682
683    int lsp_bits_per_block = n_ch * (mtab->lsp_bit0 + mtab->lsp_bit1 +
684                                     mtab->lsp_split * mtab->lsp_bit2);
685
686    int ppc_bits = n_ch * (mtab->pgain_bit + mtab->ppc_shape_bit +
687                           mtab->ppc_period_bit);
688
689    int bsize_no_main_cb[3], bse_bits[3], i;
690    enum TwinVQFrameType frametype;
691
692    for (i = 0; i < 3; i++)
693        // +1 for history usage switch
694        bse_bits[i] = n_ch *
695                      (mtab->fmode[i].bark_n_coef *
696                       mtab->fmode[i].bark_n_bit + 1);
697
698    bsize_no_main_cb[2] = bse_bits[2] + lsp_bits_per_block + ppc_bits +
699                          TWINVQ_WINDOW_TYPE_BITS + n_ch * TWINVQ_GAIN_BITS;
700
701    for (i = 0; i < 2; i++)
702        bsize_no_main_cb[i] =
703            lsp_bits_per_block + n_ch * TWINVQ_GAIN_BITS +
704            TWINVQ_WINDOW_TYPE_BITS +
705            mtab->fmode[i].sub * (bse_bits[i] + n_ch * TWINVQ_SUB_GAIN_BITS);
706
707    if (tctx->codec == TWINVQ_CODEC_METASOUND && !tctx->is_6kbps) {
708        bsize_no_main_cb[1] += 2;
709        bsize_no_main_cb[2] += 2;
710    }
711
712    // The remaining bits are all used for the main spectrum coefficients
713    for (i = 0; i < 4; i++) {
714        int bit_size, vect_size;
715        int rounded_up, rounded_down, num_rounded_down, num_rounded_up;
716        if (i == 3) {
717            bit_size  = n_ch * mtab->ppc_shape_bit;
718            vect_size = n_ch * mtab->ppc_shape_len;
719        } else {
720            bit_size  = total_fr_bits - bsize_no_main_cb[i];
721            vect_size = n_ch * mtab->size;
722        }
723
724        tctx->n_div[i] = (bit_size + 13) / 14;
725
726        rounded_up                     = (bit_size + tctx->n_div[i] - 1) /
727                                         tctx->n_div[i];
728        rounded_down                   = (bit_size) / tctx->n_div[i];
729        num_rounded_down               = rounded_up * tctx->n_div[i] - bit_size;
730        num_rounded_up                 = tctx->n_div[i] - num_rounded_down;
731        tctx->bits_main_spec[0][i][0]  = (rounded_up + 1)   / 2;
732        tctx->bits_main_spec[1][i][0]  =  rounded_up        / 2;
733        tctx->bits_main_spec[0][i][1]  = (rounded_down + 1) / 2;
734        tctx->bits_main_spec[1][i][1]  =  rounded_down      / 2;
735        tctx->bits_main_spec_change[i] = num_rounded_up;
736
737        rounded_up             = (vect_size + tctx->n_div[i] - 1) /
738                                 tctx->n_div[i];
739        rounded_down           = (vect_size) / tctx->n_div[i];
740        num_rounded_down       = rounded_up * tctx->n_div[i] - vect_size;
741        num_rounded_up         = tctx->n_div[i] - num_rounded_down;
742        tctx->length[i][0]     = rounded_up;
743        tctx->length[i][1]     = rounded_down;
744        tctx->length_change[i] = num_rounded_up;
745    }
746
747    for (frametype = TWINVQ_FT_SHORT; frametype <= TWINVQ_FT_PPC; frametype++)
748        construct_perm_table(tctx, frametype);
749}
750
751av_cold int ff_twinvq_decode_close(AVCodecContext *avctx)
752{
753    TwinVQContext *tctx = avctx->priv_data;
754    int i;
755
756    for (i = 0; i < 3; i++) {
757        ff_mdct_end(&tctx->mdct_ctx[i]);
758        av_free(tctx->cos_tabs[i]);
759    }
760
761    av_free(tctx->curr_frame);
762    av_free(tctx->spectrum);
763    av_free(tctx->prev_frame);
764    av_free(tctx->tmp_buf);
765
766    return 0;
767}
768
769av_cold int ff_twinvq_decode_init(AVCodecContext *avctx)
770{
771    int ret;
772    TwinVQContext *tctx = avctx->priv_data;
773
774    tctx->avctx       = avctx;
775    avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
776
777    if (!avctx->block_align) {
778        avctx->block_align = tctx->frame_size + 7 >> 3;
779    } else if (avctx->block_align * 8 < tctx->frame_size) {
780        av_log(avctx, AV_LOG_ERROR, "Block align is %d bits, expected %d\n",
781               avctx->block_align * 8, tctx->frame_size);
782        return AVERROR_INVALIDDATA;
783    }
784    tctx->frames_per_packet = avctx->block_align * 8 / tctx->frame_size;
785    if (tctx->frames_per_packet > TWINVQ_MAX_FRAMES_PER_PACKET) {
786        av_log(avctx, AV_LOG_ERROR, "Too many frames per packet (%d)\n",
787               tctx->frames_per_packet);
788        return AVERROR_INVALIDDATA;
789    }
790
791    avpriv_float_dsp_init(&tctx->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
792    if ((ret = init_mdct_win(tctx))) {
793        av_log(avctx, AV_LOG_ERROR, "Error initializing MDCT\n");
794        ff_twinvq_decode_close(avctx);
795        return ret;
796    }
797    init_bitstream_params(tctx);
798
799    twinvq_memset_float(tctx->bark_hist[0][0], 0.1,
800                        FF_ARRAY_ELEMS(tctx->bark_hist));
801
802    return 0;
803}
804