1/*
2 * Lagarith lossless decoder
3 * Copyright (c) 2009 Nathan Caldwell <saintdev (at) gmail.com>
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file
24 * Lagarith lossless decoder
25 * @author Nathan Caldwell
26 */
27
28#include <inttypes.h>
29
30#include "avcodec.h"
31#include "get_bits.h"
32#include "mathops.h"
33#include "huffyuvdsp.h"
34#include "lagarithrac.h"
35#include "thread.h"
36
37enum LagarithFrameType {
38    FRAME_RAW           = 1,    /**< uncompressed */
39    FRAME_U_RGB24       = 2,    /**< unaligned RGB24 */
40    FRAME_ARITH_YUY2    = 3,    /**< arithmetic coded YUY2 */
41    FRAME_ARITH_RGB24   = 4,    /**< arithmetic coded RGB24 */
42    FRAME_SOLID_GRAY    = 5,    /**< solid grayscale color frame */
43    FRAME_SOLID_COLOR   = 6,    /**< solid non-grayscale color frame */
44    FRAME_OLD_ARITH_RGB = 7,    /**< obsolete arithmetic coded RGB (no longer encoded by upstream since version 1.1.0) */
45    FRAME_ARITH_RGBA    = 8,    /**< arithmetic coded RGBA */
46    FRAME_SOLID_RGBA    = 9,    /**< solid RGBA color frame */
47    FRAME_ARITH_YV12    = 10,   /**< arithmetic coded YV12 */
48    FRAME_REDUCED_RES   = 11,   /**< reduced resolution YV12 frame */
49};
50
51typedef struct LagarithContext {
52    AVCodecContext *avctx;
53    HuffYUVDSPContext hdsp;
54    int zeros;                  /**< number of consecutive zero bytes encountered */
55    int zeros_rem;              /**< number of zero bytes remaining to output */
56    uint8_t *rgb_planes;
57    int      rgb_planes_allocated;
58    int rgb_stride;
59} LagarithContext;
60
61/**
62 * Compute the 52bit mantissa of 1/(double)denom.
63 * This crazy format uses floats in an entropy coder and we have to match x86
64 * rounding exactly, thus ordinary floats aren't portable enough.
65 * @param denom denominator
66 * @return 52bit mantissa
67 * @see softfloat_mul
68 */
69static uint64_t softfloat_reciprocal(uint32_t denom)
70{
71    int shift = av_log2(denom - 1) + 1;
72    uint64_t ret = (1ULL << 52) / denom;
73    uint64_t err = (1ULL << 52) - ret * denom;
74    ret <<= shift;
75    err <<= shift;
76    err +=  denom / 2;
77    return ret + err / denom;
78}
79
80/**
81 * (uint32_t)(x*f), where f has the given mantissa, and exponent 0
82 * Used in combination with softfloat_reciprocal computes x/(double)denom.
83 * @param x 32bit integer factor
84 * @param mantissa mantissa of f with exponent 0
85 * @return 32bit integer value (x*f)
86 * @see softfloat_reciprocal
87 */
88static uint32_t softfloat_mul(uint32_t x, uint64_t mantissa)
89{
90    uint64_t l = x * (mantissa & 0xffffffff);
91    uint64_t h = x * (mantissa >> 32);
92    h += l >> 32;
93    l &= 0xffffffff;
94    l += 1 << av_log2(h >> 21);
95    h += l >> 32;
96    return h >> 20;
97}
98
99static uint8_t lag_calc_zero_run(int8_t x)
100{
101    return (x << 1) ^ (x >> 7);
102}
103
104static int lag_decode_prob(GetBitContext *gb, uint32_t *value)
105{
106    static const uint8_t series[] = { 1, 2, 3, 5, 8, 13, 21 };
107    int i;
108    int bit     = 0;
109    int bits    = 0;
110    int prevbit = 0;
111    unsigned val;
112
113    for (i = 0; i < 7; i++) {
114        if (prevbit && bit)
115            break;
116        prevbit = bit;
117        bit = get_bits1(gb);
118        if (bit && !prevbit)
119            bits += series[i];
120    }
121    bits--;
122    if (bits < 0 || bits > 31) {
123        *value = 0;
124        return -1;
125    } else if (bits == 0) {
126        *value = 0;
127        return 0;
128    }
129
130    val  = get_bits_long(gb, bits);
131    val |= 1 << bits;
132
133    *value = val - 1;
134
135    return 0;
136}
137
138static int lag_read_prob_header(lag_rac *rac, GetBitContext *gb)
139{
140    int i, j, scale_factor;
141    unsigned prob, cumulative_target;
142    unsigned cumul_prob = 0;
143    unsigned scaled_cumul_prob = 0;
144
145    rac->prob[0] = 0;
146    rac->prob[257] = UINT_MAX;
147    /* Read probabilities from bitstream */
148    for (i = 1; i < 257; i++) {
149        if (lag_decode_prob(gb, &rac->prob[i]) < 0) {
150            av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability encountered.\n");
151            return -1;
152        }
153        if ((uint64_t)cumul_prob + rac->prob[i] > UINT_MAX) {
154            av_log(rac->avctx, AV_LOG_ERROR, "Integer overflow encountered in cumulative probability calculation.\n");
155            return -1;
156        }
157        cumul_prob += rac->prob[i];
158        if (!rac->prob[i]) {
159            if (lag_decode_prob(gb, &prob)) {
160                av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability run encountered.\n");
161                return -1;
162            }
163            if (prob > 256 - i)
164                prob = 256 - i;
165            for (j = 0; j < prob; j++)
166                rac->prob[++i] = 0;
167        }
168    }
169
170    if (!cumul_prob) {
171        av_log(rac->avctx, AV_LOG_ERROR, "All probabilities are 0!\n");
172        return -1;
173    }
174
175    /* Scale probabilities so cumulative probability is an even power of 2. */
176    scale_factor = av_log2(cumul_prob);
177
178    if (cumul_prob & (cumul_prob - 1)) {
179        uint64_t mul = softfloat_reciprocal(cumul_prob);
180        for (i = 1; i <= 128; i++) {
181            rac->prob[i] = softfloat_mul(rac->prob[i], mul);
182            scaled_cumul_prob += rac->prob[i];
183        }
184        if (scaled_cumul_prob <= 0) {
185            av_log(rac->avctx, AV_LOG_ERROR, "Scaled probabilities invalid\n");
186            return AVERROR_INVALIDDATA;
187        }
188        for (; i < 257; i++) {
189            rac->prob[i] = softfloat_mul(rac->prob[i], mul);
190            scaled_cumul_prob += rac->prob[i];
191        }
192
193        scale_factor++;
194        cumulative_target = 1 << scale_factor;
195
196        if (scaled_cumul_prob > cumulative_target) {
197            av_log(rac->avctx, AV_LOG_ERROR,
198                   "Scaled probabilities are larger than target!\n");
199            return -1;
200        }
201
202        scaled_cumul_prob = cumulative_target - scaled_cumul_prob;
203
204        for (i = 1; scaled_cumul_prob; i = (i & 0x7f) + 1) {
205            if (rac->prob[i]) {
206                rac->prob[i]++;
207                scaled_cumul_prob--;
208            }
209            /* Comment from reference source:
210             * if (b & 0x80 == 0) {     // order of operations is 'wrong'; it has been left this way
211             *                          // since the compression change is negligible and fixing it
212             *                          // breaks backwards compatibility
213             *      b =- (signed int)b;
214             *      b &= 0xFF;
215             * } else {
216             *      b++;
217             *      b &= 0x7f;
218             * }
219             */
220        }
221    }
222
223    rac->scale = scale_factor;
224
225    /* Fill probability array with cumulative probability for each symbol. */
226    for (i = 1; i < 257; i++)
227        rac->prob[i] += rac->prob[i - 1];
228
229    return 0;
230}
231
232static void add_lag_median_prediction(uint8_t *dst, uint8_t *src1,
233                                      uint8_t *diff, int w, int *left,
234                                      int *left_top)
235{
236    /* This is almost identical to add_hfyu_median_pred in huffyuvdsp.h.
237     * However the &0xFF on the gradient predictor yealds incorrect output
238     * for lagarith.
239     */
240    int i;
241    uint8_t l, lt;
242
243    l  = *left;
244    lt = *left_top;
245
246    for (i = 0; i < w; i++) {
247        l = mid_pred(l, src1[i], l + src1[i] - lt) + diff[i];
248        lt = src1[i];
249        dst[i] = l;
250    }
251
252    *left     = l;
253    *left_top = lt;
254}
255
256static void lag_pred_line(LagarithContext *l, uint8_t *buf,
257                          int width, int stride, int line)
258{
259    int L, TL;
260
261    if (!line) {
262        /* Left prediction only for first line */
263        L = l->hdsp.add_hfyu_left_pred(buf, buf, width, 0);
264    } else {
265        /* Left pixel is actually prev_row[width] */
266        L = buf[width - stride - 1];
267
268        if (line == 1) {
269            /* Second line, left predict first pixel, the rest of the line is median predicted
270             * NOTE: In the case of RGB this pixel is top predicted */
271            TL = l->avctx->pix_fmt == AV_PIX_FMT_YUV420P ? buf[-stride] : L;
272        } else {
273            /* Top left is 2 rows back, last pixel */
274            TL = buf[width - (2 * stride) - 1];
275        }
276
277        add_lag_median_prediction(buf, buf - stride, buf,
278                                  width, &L, &TL);
279    }
280}
281
282static void lag_pred_line_yuy2(LagarithContext *l, uint8_t *buf,
283                               int width, int stride, int line,
284                               int is_luma)
285{
286    int L, TL;
287
288    if (!line) {
289        L= buf[0];
290        if (is_luma)
291            buf[0] = 0;
292        l->hdsp.add_hfyu_left_pred(buf, buf, width, 0);
293        if (is_luma)
294            buf[0] = L;
295        return;
296    }
297    if (line == 1) {
298        const int HEAD = is_luma ? 4 : 2;
299        int i;
300
301        L  = buf[width - stride - 1];
302        TL = buf[HEAD  - stride - 1];
303        for (i = 0; i < HEAD; i++) {
304            L += buf[i];
305            buf[i] = L;
306        }
307        for (; i < width; i++) {
308            L      = mid_pred(L & 0xFF, buf[i - stride], (L + buf[i - stride] - TL) & 0xFF) + buf[i];
309            TL     = buf[i - stride];
310            buf[i] = L;
311        }
312    } else {
313        TL = buf[width - (2 * stride) - 1];
314        L  = buf[width - stride - 1];
315        l->hdsp.add_hfyu_median_pred(buf, buf - stride, buf, width, &L, &TL);
316    }
317}
318
319static int lag_decode_line(LagarithContext *l, lag_rac *rac,
320                           uint8_t *dst, int width, int stride,
321                           int esc_count)
322{
323    int i = 0;
324    int ret = 0;
325
326    if (!esc_count)
327        esc_count = -1;
328
329    /* Output any zeros remaining from the previous run */
330handle_zeros:
331    if (l->zeros_rem) {
332        int count = FFMIN(l->zeros_rem, width - i);
333        memset(dst + i, 0, count);
334        i += count;
335        l->zeros_rem -= count;
336    }
337
338    while (i < width) {
339        dst[i] = lag_get_rac(rac);
340        ret++;
341
342        if (dst[i])
343            l->zeros = 0;
344        else
345            l->zeros++;
346
347        i++;
348        if (l->zeros == esc_count) {
349            int index = lag_get_rac(rac);
350            ret++;
351
352            l->zeros = 0;
353
354            l->zeros_rem = lag_calc_zero_run(index);
355            goto handle_zeros;
356        }
357    }
358    return ret;
359}
360
361static int lag_decode_zero_run_line(LagarithContext *l, uint8_t *dst,
362                                    const uint8_t *src, const uint8_t *src_end,
363                                    int width, int esc_count)
364{
365    int i = 0;
366    int count;
367    uint8_t zero_run = 0;
368    const uint8_t *src_start = src;
369    uint8_t mask1 = -(esc_count < 2);
370    uint8_t mask2 = -(esc_count < 3);
371    uint8_t *end = dst + (width - 2);
372
373    avpriv_request_sample(l->avctx, "zero_run_line");
374
375    memset(dst, 0, width);
376
377output_zeros:
378    if (l->zeros_rem) {
379        count = FFMIN(l->zeros_rem, width - i);
380        if (end - dst < count) {
381            av_log(l->avctx, AV_LOG_ERROR, "Too many zeros remaining.\n");
382            return AVERROR_INVALIDDATA;
383        }
384
385        memset(dst, 0, count);
386        l->zeros_rem -= count;
387        dst += count;
388    }
389
390    while (dst < end) {
391        i = 0;
392        while (!zero_run && dst + i < end) {
393            i++;
394            if (i+2 >= src_end - src)
395                return AVERROR_INVALIDDATA;
396            zero_run =
397                !(src[i] | (src[i + 1] & mask1) | (src[i + 2] & mask2));
398        }
399        if (zero_run) {
400            zero_run = 0;
401            i += esc_count;
402            memcpy(dst, src, i);
403            dst += i;
404            l->zeros_rem = lag_calc_zero_run(src[i]);
405
406            src += i + 1;
407            goto output_zeros;
408        } else {
409            memcpy(dst, src, i);
410            src += i;
411            dst += i;
412        }
413    }
414    return  src - src_start;
415}
416
417
418
419static int lag_decode_arith_plane(LagarithContext *l, uint8_t *dst,
420                                  int width, int height, int stride,
421                                  const uint8_t *src, int src_size)
422{
423    int i = 0;
424    int read = 0;
425    uint32_t length;
426    uint32_t offset = 1;
427    int esc_count;
428    GetBitContext gb;
429    lag_rac rac;
430    const uint8_t *src_end = src + src_size;
431    int ret;
432
433    rac.avctx = l->avctx;
434    l->zeros = 0;
435
436    if(src_size < 2)
437        return AVERROR_INVALIDDATA;
438
439    esc_count = src[0];
440    if (esc_count < 4) {
441        length = width * height;
442        if(src_size < 5)
443            return AVERROR_INVALIDDATA;
444        if (esc_count && AV_RL32(src + 1) < length) {
445            length = AV_RL32(src + 1);
446            offset += 4;
447        }
448
449        if ((ret = init_get_bits8(&gb, src + offset, src_size - offset)) < 0)
450            return ret;
451
452        if (lag_read_prob_header(&rac, &gb) < 0)
453            return -1;
454
455        ff_lag_rac_init(&rac, &gb, length - stride);
456
457        for (i = 0; i < height; i++)
458            read += lag_decode_line(l, &rac, dst + (i * stride), width,
459                                    stride, esc_count);
460
461        if (read > length)
462            av_log(l->avctx, AV_LOG_WARNING,
463                   "Output more bytes than length (%d of %"PRIu32")\n", read,
464                   length);
465    } else if (esc_count < 8) {
466        esc_count -= 4;
467        src ++;
468        src_size --;
469        if (esc_count > 0) {
470            /* Zero run coding only, no range coding. */
471            for (i = 0; i < height; i++) {
472                int res = lag_decode_zero_run_line(l, dst + (i * stride), src,
473                                                   src_end, width, esc_count);
474                if (res < 0)
475                    return res;
476                src += res;
477            }
478        } else {
479            if (src_size < width * height)
480                return AVERROR_INVALIDDATA; // buffer not big enough
481            /* Plane is stored uncompressed */
482            for (i = 0; i < height; i++) {
483                memcpy(dst + (i * stride), src, width);
484                src += width;
485            }
486        }
487    } else if (esc_count == 0xff) {
488        /* Plane is a solid run of given value */
489        for (i = 0; i < height; i++)
490            memset(dst + i * stride, src[1], width);
491        /* Do not apply prediction.
492           Note: memset to 0 above, setting first value to src[1]
493           and applying prediction gives the same result. */
494        return 0;
495    } else {
496        av_log(l->avctx, AV_LOG_ERROR,
497               "Invalid zero run escape code! (%#x)\n", esc_count);
498        return -1;
499    }
500
501    if (l->avctx->pix_fmt != AV_PIX_FMT_YUV422P) {
502        for (i = 0; i < height; i++) {
503            lag_pred_line(l, dst, width, stride, i);
504            dst += stride;
505        }
506    } else {
507        for (i = 0; i < height; i++) {
508            lag_pred_line_yuy2(l, dst, width, stride, i,
509                               width == l->avctx->width);
510            dst += stride;
511        }
512    }
513
514    return 0;
515}
516
517/**
518 * Decode a frame.
519 * @param avctx codec context
520 * @param data output AVFrame
521 * @param data_size size of output data or 0 if no picture is returned
522 * @param avpkt input packet
523 * @return number of consumed bytes on success or negative if decode fails
524 */
525static int lag_decode_frame(AVCodecContext *avctx,
526                            void *data, int *got_frame, AVPacket *avpkt)
527{
528    const uint8_t *buf = avpkt->data;
529    unsigned int buf_size = avpkt->size;
530    LagarithContext *l = avctx->priv_data;
531    ThreadFrame frame = { .f = data };
532    AVFrame *const p  = data;
533    uint8_t frametype = 0;
534    uint32_t offset_gu = 0, offset_bv = 0, offset_ry = 9;
535    uint32_t offs[4];
536    uint8_t *srcs[4], *dst;
537    int i, j, planes = 3;
538    int ret;
539
540    p->key_frame = 1;
541
542    frametype = buf[0];
543
544    offset_gu = AV_RL32(buf + 1);
545    offset_bv = AV_RL32(buf + 5);
546
547    switch (frametype) {
548    case FRAME_SOLID_RGBA:
549        avctx->pix_fmt = AV_PIX_FMT_RGB32;
550    case FRAME_SOLID_GRAY:
551        if (frametype == FRAME_SOLID_GRAY)
552            if (avctx->bits_per_coded_sample == 24) {
553                avctx->pix_fmt = AV_PIX_FMT_RGB24;
554            } else {
555                avctx->pix_fmt = AV_PIX_FMT_0RGB32;
556                planes = 4;
557            }
558
559        if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
560            return ret;
561
562        dst = p->data[0];
563        if (frametype == FRAME_SOLID_RGBA) {
564        for (j = 0; j < avctx->height; j++) {
565            for (i = 0; i < avctx->width; i++)
566                AV_WN32(dst + i * 4, offset_gu);
567            dst += p->linesize[0];
568        }
569        } else {
570            for (j = 0; j < avctx->height; j++) {
571                memset(dst, buf[1], avctx->width * planes);
572                dst += p->linesize[0];
573            }
574        }
575        break;
576    case FRAME_SOLID_COLOR:
577        if (avctx->bits_per_coded_sample == 24) {
578            avctx->pix_fmt = AV_PIX_FMT_RGB24;
579        } else {
580            avctx->pix_fmt = AV_PIX_FMT_RGB32;
581            offset_gu |= 0xFFU << 24;
582        }
583
584        if ((ret = ff_thread_get_buffer(avctx, &frame,0)) < 0)
585            return ret;
586
587        dst = p->data[0];
588        for (j = 0; j < avctx->height; j++) {
589            for (i = 0; i < avctx->width; i++)
590                if (avctx->bits_per_coded_sample == 24) {
591                    AV_WB24(dst + i * 3, offset_gu);
592                } else {
593                    AV_WN32(dst + i * 4, offset_gu);
594                }
595            dst += p->linesize[0];
596        }
597        break;
598    case FRAME_ARITH_RGBA:
599        avctx->pix_fmt = AV_PIX_FMT_RGB32;
600        planes = 4;
601        offset_ry += 4;
602        offs[3] = AV_RL32(buf + 9);
603    case FRAME_ARITH_RGB24:
604    case FRAME_U_RGB24:
605        if (frametype == FRAME_ARITH_RGB24 || frametype == FRAME_U_RGB24)
606            avctx->pix_fmt = AV_PIX_FMT_RGB24;
607
608        if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
609            return ret;
610
611        offs[0] = offset_bv;
612        offs[1] = offset_gu;
613        offs[2] = offset_ry;
614
615        l->rgb_stride = FFALIGN(avctx->width, 16);
616        av_fast_malloc(&l->rgb_planes, &l->rgb_planes_allocated,
617                       l->rgb_stride * avctx->height * planes + 1);
618        if (!l->rgb_planes) {
619            av_log(avctx, AV_LOG_ERROR, "cannot allocate temporary buffer\n");
620            return AVERROR(ENOMEM);
621        }
622        for (i = 0; i < planes; i++)
623            srcs[i] = l->rgb_planes + (i + 1) * l->rgb_stride * avctx->height - l->rgb_stride;
624        for (i = 0; i < planes; i++)
625            if (buf_size <= offs[i]) {
626                av_log(avctx, AV_LOG_ERROR,
627                        "Invalid frame offsets\n");
628                return AVERROR_INVALIDDATA;
629            }
630
631        for (i = 0; i < planes; i++)
632            lag_decode_arith_plane(l, srcs[i],
633                                   avctx->width, avctx->height,
634                                   -l->rgb_stride, buf + offs[i],
635                                   buf_size - offs[i]);
636        dst = p->data[0];
637        for (i = 0; i < planes; i++)
638            srcs[i] = l->rgb_planes + i * l->rgb_stride * avctx->height;
639        for (j = 0; j < avctx->height; j++) {
640            for (i = 0; i < avctx->width; i++) {
641                uint8_t r, g, b, a;
642                r = srcs[0][i];
643                g = srcs[1][i];
644                b = srcs[2][i];
645                r += g;
646                b += g;
647                if (frametype == FRAME_ARITH_RGBA) {
648                    a = srcs[3][i];
649                    AV_WN32(dst + i * 4, MKBETAG(a, r, g, b));
650                } else {
651                    dst[i * 3 + 0] = r;
652                    dst[i * 3 + 1] = g;
653                    dst[i * 3 + 2] = b;
654                }
655            }
656            dst += p->linesize[0];
657            for (i = 0; i < planes; i++)
658                srcs[i] += l->rgb_stride;
659        }
660        break;
661    case FRAME_ARITH_YUY2:
662        avctx->pix_fmt = AV_PIX_FMT_YUV422P;
663
664        if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
665            return ret;
666
667        if (offset_ry >= buf_size ||
668            offset_gu >= buf_size ||
669            offset_bv >= buf_size) {
670            av_log(avctx, AV_LOG_ERROR,
671                   "Invalid frame offsets\n");
672            return AVERROR_INVALIDDATA;
673        }
674
675        lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
676                               p->linesize[0], buf + offset_ry,
677                               buf_size - offset_ry);
678        lag_decode_arith_plane(l, p->data[1], avctx->width / 2,
679                               avctx->height, p->linesize[1],
680                               buf + offset_gu, buf_size - offset_gu);
681        lag_decode_arith_plane(l, p->data[2], avctx->width / 2,
682                               avctx->height, p->linesize[2],
683                               buf + offset_bv, buf_size - offset_bv);
684        break;
685    case FRAME_ARITH_YV12:
686        avctx->pix_fmt = AV_PIX_FMT_YUV420P;
687
688        if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
689            return ret;
690        if (buf_size <= offset_ry || buf_size <= offset_gu || buf_size <= offset_bv) {
691            return AVERROR_INVALIDDATA;
692        }
693
694        if (offset_ry >= buf_size ||
695            offset_gu >= buf_size ||
696            offset_bv >= buf_size) {
697            av_log(avctx, AV_LOG_ERROR,
698                   "Invalid frame offsets\n");
699            return AVERROR_INVALIDDATA;
700        }
701
702        lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
703                               p->linesize[0], buf + offset_ry,
704                               buf_size - offset_ry);
705        lag_decode_arith_plane(l, p->data[2], avctx->width / 2,
706                               avctx->height / 2, p->linesize[2],
707                               buf + offset_gu, buf_size - offset_gu);
708        lag_decode_arith_plane(l, p->data[1], avctx->width / 2,
709                               avctx->height / 2, p->linesize[1],
710                               buf + offset_bv, buf_size - offset_bv);
711        break;
712    default:
713        av_log(avctx, AV_LOG_ERROR,
714               "Unsupported Lagarith frame type: %#"PRIx8"\n", frametype);
715        return AVERROR_PATCHWELCOME;
716    }
717
718    *got_frame = 1;
719
720    return buf_size;
721}
722
723static av_cold int lag_decode_init(AVCodecContext *avctx)
724{
725    LagarithContext *l = avctx->priv_data;
726    l->avctx = avctx;
727
728    ff_huffyuvdsp_init(&l->hdsp);
729
730    return 0;
731}
732
733static av_cold int lag_decode_end(AVCodecContext *avctx)
734{
735    LagarithContext *l = avctx->priv_data;
736
737    av_freep(&l->rgb_planes);
738
739    return 0;
740}
741
742AVCodec ff_lagarith_decoder = {
743    .name           = "lagarith",
744    .long_name      = NULL_IF_CONFIG_SMALL("Lagarith lossless"),
745    .type           = AVMEDIA_TYPE_VIDEO,
746    .id             = AV_CODEC_ID_LAGARITH,
747    .priv_data_size = sizeof(LagarithContext),
748    .init           = lag_decode_init,
749    .close          = lag_decode_end,
750    .decode         = lag_decode_frame,
751    .capabilities   = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS,
752};
753