1/*
2 * G.729, G729 Annex D postfilter
3 * Copyright (c) 2008 Vladimir Voroshilov
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21#include <inttypes.h>
22#include <limits.h>
23
24#include "avcodec.h"
25#include "g729.h"
26#include "acelp_pitch_delay.h"
27#include "g729postfilter.h"
28#include "celp_math.h"
29#include "acelp_filters.h"
30#include "acelp_vectors.h"
31#include "celp_filters.h"
32
33#define FRAC_BITS 15
34#include "mathops.h"
35
36/**
37 * short interpolation filter (of length 33, according to spec)
38 * for computing signal with non-integer delay
39 */
40static const int16_t ff_g729_interp_filt_short[(ANALYZED_FRAC_DELAYS+1)*SHORT_INT_FILT_LEN] = {
41      0, 31650, 28469, 23705, 18050, 12266,  7041,  2873,
42      0, -1597, -2147, -1992, -1492,  -933,  -484,  -188,
43};
44
45/**
46 * long interpolation filter (of length 129, according to spec)
47 * for computing signal with non-integer delay
48 */
49static const int16_t ff_g729_interp_filt_long[(ANALYZED_FRAC_DELAYS+1)*LONG_INT_FILT_LEN] = {
50   0, 31915, 29436, 25569, 20676, 15206,  9639,  4439,
51   0, -3390, -5579, -6549, -6414, -5392, -3773, -1874,
52   0,  1595,  2727,  3303,  3319,  2850,  2030,  1023,
53   0,  -887, -1527, -1860, -1876, -1614, -1150,  -579,
54   0,   501,   859,  1041,  1044,   892,   631,   315,
55   0,  -266,  -453,  -543,  -538,  -455,  -317,  -156,
56   0,   130,   218,   258,   253,   212,   147,    72,
57   0,   -59,  -101,  -122,  -123,  -106,   -77,   -40,
58};
59
60/**
61 * formant_pp_factor_num_pow[i] = FORMANT_PP_FACTOR_NUM^(i+1)
62 */
63static const int16_t formant_pp_factor_num_pow[10]= {
64  /* (0.15) */
65  18022, 9912, 5451, 2998, 1649, 907, 499, 274, 151, 83
66};
67
68/**
69 * formant_pp_factor_den_pow[i] = FORMANT_PP_FACTOR_DEN^(i+1)
70 */
71static const int16_t formant_pp_factor_den_pow[10] = {
72  /* (0.15) */
73  22938, 16057, 11240, 7868, 5508, 3856, 2699, 1889, 1322, 925
74};
75
76/**
77 * \brief Residual signal calculation (4.2.1 if G.729)
78 * \param out [out] output data filtered through A(z/FORMANT_PP_FACTOR_NUM)
79 * \param filter_coeffs (3.12) A(z/FORMANT_PP_FACTOR_NUM) filter coefficients
80 * \param in input speech data to process
81 * \param subframe_size size of one subframe
82 *
83 * \note in buffer must contain 10 items of previous speech data before top of the buffer
84 * \remark It is safe to pass the same buffer for input and output.
85 */
86static void residual_filter(int16_t* out, const int16_t* filter_coeffs, const int16_t* in,
87                            int subframe_size)
88{
89    int i, n;
90
91    for (n = subframe_size - 1; n >= 0; n--) {
92        int sum = 0x800;
93        for (i = 0; i < 10; i++)
94            sum += filter_coeffs[i] * in[n - i - 1];
95
96        out[n] = in[n] + (sum >> 12);
97    }
98}
99
100/**
101 * \brief long-term postfilter (4.2.1)
102 * \param dsp initialized DSP context
103 * \param pitch_delay_int integer part of the pitch delay in the first subframe
104 * \param residual filtering input data
105 * \param residual_filt [out] speech signal with applied A(z/FORMANT_PP_FACTOR_NUM) filter
106 * \param subframe_size size of subframe
107 *
108 * \return 0 if long-term prediction gain is less than 3dB, 1 -  otherwise
109 */
110static int16_t long_term_filter(AudioDSPContext *adsp, int pitch_delay_int,
111                                const int16_t* residual, int16_t *residual_filt,
112                                int subframe_size)
113{
114    int i, k, tmp, tmp2;
115    int sum;
116    int L_temp0;
117    int L_temp1;
118    int64_t L64_temp0;
119    int64_t L64_temp1;
120    int16_t shift;
121    int corr_int_num, corr_int_den;
122
123    int ener;
124    int16_t sh_ener;
125
126    int16_t gain_num,gain_den; //selected signal's gain numerator and denominator
127    int16_t sh_gain_num, sh_gain_den;
128    int gain_num_square;
129
130    int16_t gain_long_num,gain_long_den; //filtered through long interpolation filter signal's gain numerator and denominator
131    int16_t sh_gain_long_num, sh_gain_long_den;
132
133    int16_t best_delay_int, best_delay_frac;
134
135    int16_t delayed_signal_offset;
136    int lt_filt_factor_a, lt_filt_factor_b;
137
138    int16_t * selected_signal;
139    const int16_t * selected_signal_const; //Necessary to avoid compiler warning
140
141    int16_t sig_scaled[SUBFRAME_SIZE + RES_PREV_DATA_SIZE];
142    int16_t delayed_signal[ANALYZED_FRAC_DELAYS][SUBFRAME_SIZE+1];
143    int corr_den[ANALYZED_FRAC_DELAYS][2];
144
145    tmp = 0;
146    for(i=0; i<subframe_size + RES_PREV_DATA_SIZE; i++)
147        tmp |= FFABS(residual[i]);
148
149    if(!tmp)
150        shift = 3;
151    else
152        shift = av_log2(tmp) - 11;
153
154    if (shift > 0)
155        for (i = 0; i < subframe_size + RES_PREV_DATA_SIZE; i++)
156            sig_scaled[i] = residual[i] >> shift;
157    else
158        for (i = 0; i < subframe_size + RES_PREV_DATA_SIZE; i++)
159            sig_scaled[i] = residual[i] << -shift;
160
161    /* Start of best delay searching code */
162    gain_num = 0;
163
164    ener = adsp->scalarproduct_int16(sig_scaled + RES_PREV_DATA_SIZE,
165                                    sig_scaled + RES_PREV_DATA_SIZE,
166                                    subframe_size);
167    if (ener) {
168        sh_ener = FFMAX(av_log2(ener) - 14, 0);
169        ener >>= sh_ener;
170        /* Search for best pitch delay.
171
172                       sum{ r(n) * r(k,n) ] }^2
173           R'(k)^2 := -------------------------
174                       sum{ r(k,n) * r(k,n) }
175
176
177           R(T)    :=  sum{ r(n) * r(n-T) ] }
178
179
180           where
181           r(n-T) is integer delayed signal with delay T
182           r(k,n) is non-integer delayed signal with integer delay best_delay
183           and fractional delay k */
184
185        /* Find integer delay best_delay which maximizes correlation R(T).
186
187           This is also equals to numerator of R'(0),
188           since the fine search (second step) is done with 1/8
189           precision around best_delay. */
190        corr_int_num = 0;
191        best_delay_int = pitch_delay_int - 1;
192        for (i = pitch_delay_int - 1; i <= pitch_delay_int + 1; i++) {
193            sum = adsp->scalarproduct_int16(sig_scaled + RES_PREV_DATA_SIZE,
194                                           sig_scaled + RES_PREV_DATA_SIZE - i,
195                                           subframe_size);
196            if (sum > corr_int_num) {
197                corr_int_num = sum;
198                best_delay_int = i;
199            }
200        }
201        if (corr_int_num) {
202            /* Compute denominator of pseudo-normalized correlation R'(0). */
203            corr_int_den = adsp->scalarproduct_int16(sig_scaled - best_delay_int + RES_PREV_DATA_SIZE,
204                                                    sig_scaled - best_delay_int + RES_PREV_DATA_SIZE,
205                                                    subframe_size);
206
207            /* Compute signals with non-integer delay k (with 1/8 precision),
208               where k is in [0;6] range.
209               Entire delay is qual to best_delay+(k+1)/8
210               This is archieved by applying an interpolation filter of
211               legth 33 to source signal. */
212            for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) {
213                ff_acelp_interpolate(&delayed_signal[k][0],
214                                     &sig_scaled[RES_PREV_DATA_SIZE - best_delay_int],
215                                     ff_g729_interp_filt_short,
216                                     ANALYZED_FRAC_DELAYS+1,
217                                     8 - k - 1,
218                                     SHORT_INT_FILT_LEN,
219                                     subframe_size + 1);
220            }
221
222            /* Compute denominator of pseudo-normalized correlation R'(k).
223
224                 corr_den[k][0] is square root of R'(k) denominator, for int(T) == int(T0)
225                 corr_den[k][1] is square root of R'(k) denominator, for int(T) == int(T0)+1
226
227              Also compute maximum value of above denominators over all k. */
228            tmp = corr_int_den;
229            for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) {
230                sum = adsp->scalarproduct_int16(&delayed_signal[k][1],
231                                               &delayed_signal[k][1],
232                                               subframe_size - 1);
233                corr_den[k][0] = sum + delayed_signal[k][0            ] * delayed_signal[k][0            ];
234                corr_den[k][1] = sum + delayed_signal[k][subframe_size] * delayed_signal[k][subframe_size];
235
236                tmp = FFMAX3(tmp, corr_den[k][0], corr_den[k][1]);
237            }
238
239            sh_gain_den = av_log2(tmp) - 14;
240            if (sh_gain_den >= 0) {
241
242                sh_gain_num =  FFMAX(sh_gain_den, sh_ener);
243                /* Loop through all k and find delay that maximizes
244                   R'(k) correlation.
245                   Search is done in [int(T0)-1; intT(0)+1] range
246                   with 1/8 precision. */
247                delayed_signal_offset = 1;
248                best_delay_frac = 0;
249                gain_den = corr_int_den >> sh_gain_den;
250                gain_num = corr_int_num >> sh_gain_num;
251                gain_num_square = gain_num * gain_num;
252                for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) {
253                    for (i = 0; i < 2; i++) {
254                        int16_t gain_num_short, gain_den_short;
255                        int gain_num_short_square;
256                        /* Compute numerator of pseudo-normalized
257                           correlation R'(k). */
258                        sum = adsp->scalarproduct_int16(&delayed_signal[k][i],
259                                                       sig_scaled + RES_PREV_DATA_SIZE,
260                                                       subframe_size);
261                        gain_num_short = FFMAX(sum >> sh_gain_num, 0);
262
263                        /*
264                                      gain_num_short_square                gain_num_square
265                           R'(T)^2 = -----------------------, max R'(T)^2= --------------
266                                           den                                 gain_den
267                        */
268                        gain_num_short_square = gain_num_short * gain_num_short;
269                        gain_den_short = corr_den[k][i] >> sh_gain_den;
270
271                        tmp = MULL(gain_num_short_square, gain_den, FRAC_BITS);
272                        tmp2 = MULL(gain_num_square, gain_den_short, FRAC_BITS);
273
274                        // R'(T)^2 > max R'(T)^2
275                        if (tmp > tmp2) {
276                            gain_num = gain_num_short;
277                            gain_den = gain_den_short;
278                            gain_num_square = gain_num_short_square;
279                            delayed_signal_offset = i;
280                            best_delay_frac = k + 1;
281                        }
282                    }
283                }
284
285                /*
286                       R'(T)^2
287                  2 * --------- < 1
288                        R(0)
289                */
290                L64_temp0 =  (int64_t)gain_num_square  << ((sh_gain_num << 1) + 1);
291                L64_temp1 = ((int64_t)gain_den * ener) << (sh_gain_den + sh_ener);
292                if (L64_temp0 < L64_temp1)
293                    gain_num = 0;
294            } // if(sh_gain_den >= 0)
295        } // if(corr_int_num)
296    } // if(ener)
297    /* End of best delay searching code  */
298
299    if (!gain_num) {
300        memcpy(residual_filt, residual + RES_PREV_DATA_SIZE, subframe_size * sizeof(int16_t));
301
302        /* Long-term prediction gain is less than 3dB. Long-term postfilter is disabled. */
303        return 0;
304    }
305    if (best_delay_frac) {
306        /* Recompute delayed signal with an interpolation filter of length 129. */
307        ff_acelp_interpolate(residual_filt,
308                             &sig_scaled[RES_PREV_DATA_SIZE - best_delay_int + delayed_signal_offset],
309                             ff_g729_interp_filt_long,
310                             ANALYZED_FRAC_DELAYS + 1,
311                             8 - best_delay_frac,
312                             LONG_INT_FILT_LEN,
313                             subframe_size + 1);
314        /* Compute R'(k) correlation's numerator. */
315        sum = adsp->scalarproduct_int16(residual_filt,
316                                       sig_scaled + RES_PREV_DATA_SIZE,
317                                       subframe_size);
318
319        if (sum < 0) {
320            gain_long_num = 0;
321            sh_gain_long_num = 0;
322        } else {
323            tmp = FFMAX(av_log2(sum) - 14, 0);
324            sum >>= tmp;
325            gain_long_num = sum;
326            sh_gain_long_num = tmp;
327        }
328
329        /* Compute R'(k) correlation's denominator. */
330        sum = adsp->scalarproduct_int16(residual_filt, residual_filt, subframe_size);
331
332        tmp = FFMAX(av_log2(sum) - 14, 0);
333        sum >>= tmp;
334        gain_long_den = sum;
335        sh_gain_long_den = tmp;
336
337        /* Select between original and delayed signal.
338           Delayed signal will be selected if it increases R'(k)
339           correlation. */
340        L_temp0 = gain_num * gain_num;
341        L_temp0 = MULL(L_temp0, gain_long_den, FRAC_BITS);
342
343        L_temp1 = gain_long_num * gain_long_num;
344        L_temp1 = MULL(L_temp1, gain_den, FRAC_BITS);
345
346        tmp = ((sh_gain_long_num - sh_gain_num) << 1) - (sh_gain_long_den - sh_gain_den);
347        if (tmp > 0)
348            L_temp0 >>= tmp;
349        else
350            L_temp1 >>= -tmp;
351
352        /* Check if longer filter increases the values of R'(k). */
353        if (L_temp1 > L_temp0) {
354            /* Select long filter. */
355            selected_signal = residual_filt;
356            gain_num = gain_long_num;
357            gain_den = gain_long_den;
358            sh_gain_num = sh_gain_long_num;
359            sh_gain_den = sh_gain_long_den;
360        } else
361            /* Select short filter. */
362            selected_signal = &delayed_signal[best_delay_frac-1][delayed_signal_offset];
363
364        /* Rescale selected signal to original value. */
365        if (shift > 0)
366            for (i = 0; i < subframe_size; i++)
367                selected_signal[i] <<= shift;
368        else
369            for (i = 0; i < subframe_size; i++)
370                selected_signal[i] >>= -shift;
371
372        /* necessary to avoid compiler warning */
373        selected_signal_const = selected_signal;
374    } // if(best_delay_frac)
375    else
376        selected_signal_const = residual + RES_PREV_DATA_SIZE - (best_delay_int + 1 - delayed_signal_offset);
377#ifdef G729_BITEXACT
378    tmp = sh_gain_num - sh_gain_den;
379    if (tmp > 0)
380        gain_den >>= tmp;
381    else
382        gain_num >>= -tmp;
383
384    if (gain_num > gain_den)
385        lt_filt_factor_a = MIN_LT_FILT_FACTOR_A;
386    else {
387        gain_num >>= 2;
388        gain_den >>= 1;
389        lt_filt_factor_a = (gain_den << 15) / (gain_den + gain_num);
390    }
391#else
392    L64_temp0 = (((int64_t)gain_num) << sh_gain_num) >> 1;
393    L64_temp1 = ((int64_t)gain_den) << sh_gain_den;
394    lt_filt_factor_a = FFMAX((L64_temp1 << 15) / (L64_temp1 + L64_temp0), MIN_LT_FILT_FACTOR_A);
395#endif
396
397    /* Filter through selected filter. */
398    lt_filt_factor_b = 32767 - lt_filt_factor_a + 1;
399
400    ff_acelp_weighted_vector_sum(residual_filt, residual + RES_PREV_DATA_SIZE,
401                                 selected_signal_const,
402                                 lt_filt_factor_a, lt_filt_factor_b,
403                                 1<<14, 15, subframe_size);
404
405    // Long-term prediction gain is larger than 3dB.
406    return 1;
407}
408
409/**
410 * \brief Calculate reflection coefficient for tilt compensation filter (4.2.3).
411 * \param dsp initialized DSP context
412 * \param lp_gn (3.12) coefficients of A(z/FORMANT_PP_FACTOR_NUM) filter
413 * \param lp_gd (3.12) coefficients of A(z/FORMANT_PP_FACTOR_DEN) filter
414 * \param speech speech to update
415 * \param subframe_size size of subframe
416 *
417 * \return (3.12) reflection coefficient
418 *
419 * \remark The routine also calculates the gain term for the short-term
420 *         filter (gf) and multiplies the speech data by 1/gf.
421 *
422 * \note All members of lp_gn, except 10-19 must be equal to zero.
423 */
424static int16_t get_tilt_comp(AudioDSPContext *adsp, int16_t *lp_gn,
425                             const int16_t *lp_gd, int16_t* speech,
426                             int subframe_size)
427{
428    int rh1,rh0; // (3.12)
429    int temp;
430    int i;
431    int gain_term;
432
433    lp_gn[10] = 4096; //1.0 in (3.12)
434
435    /* Apply 1/A(z/FORMANT_PP_FACTOR_DEN) filter to hf. */
436    ff_celp_lp_synthesis_filter(lp_gn + 11, lp_gd + 1, lp_gn + 11, 22, 10, 0, 0, 0x800);
437    /* Now lp_gn (starting with 10) contains impulse response
438       of A(z/FORMANT_PP_FACTOR_NUM)/A(z/FORMANT_PP_FACTOR_DEN) filter. */
439
440    rh0 = adsp->scalarproduct_int16(lp_gn + 10, lp_gn + 10, 20);
441    rh1 = adsp->scalarproduct_int16(lp_gn + 10, lp_gn + 11, 20);
442
443    /* downscale to avoid overflow */
444    temp = av_log2(rh0) - 14;
445    if (temp > 0) {
446        rh0 >>= temp;
447        rh1 >>= temp;
448    }
449
450    if (FFABS(rh1) > rh0 || !rh0)
451        return 0;
452
453    gain_term = 0;
454    for (i = 0; i < 20; i++)
455        gain_term += FFABS(lp_gn[i + 10]);
456    gain_term >>= 2; // (3.12) -> (5.10)
457
458    if (gain_term > 0x400) { // 1.0 in (5.10)
459        temp = 0x2000000 / gain_term; // 1.0/gain_term in (0.15)
460        for (i = 0; i < subframe_size; i++)
461            speech[i] = (speech[i] * temp + 0x4000) >> 15;
462    }
463
464    return -(rh1 << 15) / rh0;
465}
466
467/**
468 * \brief Apply tilt compensation filter (4.2.3).
469 * \param res_pst [in/out] residual signal (partially filtered)
470 * \param k1 (3.12) reflection coefficient
471 * \param subframe_size size of subframe
472 * \param ht_prev_data previous data for 4.2.3, equation 86
473 *
474 * \return new value for ht_prev_data
475*/
476static int16_t apply_tilt_comp(int16_t* out, int16_t* res_pst, int refl_coeff,
477                               int subframe_size, int16_t ht_prev_data)
478{
479    int tmp, tmp2;
480    int i;
481    int gt, ga;
482    int fact, sh_fact;
483
484    if (refl_coeff > 0) {
485        gt = (refl_coeff * G729_TILT_FACTOR_PLUS + 0x4000) >> 15;
486        fact = 0x4000; // 0.5 in (0.15)
487        sh_fact = 15;
488    } else {
489        gt = (refl_coeff * G729_TILT_FACTOR_MINUS + 0x4000) >> 15;
490        fact = 0x800; // 0.5 in (3.12)
491        sh_fact = 12;
492    }
493    ga = (fact << 15) / av_clip_int16(32768 - FFABS(gt));
494    gt >>= 1;
495
496    /* Apply tilt compensation filter to signal. */
497    tmp = res_pst[subframe_size - 1];
498
499    for (i = subframe_size - 1; i >= 1; i--) {
500        tmp2 = (res_pst[i] << 15) + ((gt * res_pst[i-1]) << 1);
501        tmp2 = (tmp2 + 0x4000) >> 15;
502
503        tmp2 = (tmp2 * ga * 2 + fact) >> sh_fact;
504        out[i] = tmp2;
505    }
506    tmp2 = (res_pst[0] << 15) + ((gt * ht_prev_data) << 1);
507    tmp2 = (tmp2 + 0x4000) >> 15;
508    tmp2 = (tmp2 * ga * 2 + fact) >> sh_fact;
509    out[0] = tmp2;
510
511    return tmp;
512}
513
514void ff_g729_postfilter(AudioDSPContext *adsp, int16_t* ht_prev_data, int* voicing,
515                     const int16_t *lp_filter_coeffs, int pitch_delay_int,
516                     int16_t* residual, int16_t* res_filter_data,
517                     int16_t* pos_filter_data, int16_t *speech, int subframe_size)
518{
519    int16_t residual_filt_buf[SUBFRAME_SIZE+11];
520    int16_t lp_gn[33]; // (3.12)
521    int16_t lp_gd[11]; // (3.12)
522    int tilt_comp_coeff;
523    int i;
524
525    /* Zero-filling is necessary for tilt-compensation filter. */
526    memset(lp_gn, 0, 33 * sizeof(int16_t));
527
528    /* Calculate A(z/FORMANT_PP_FACTOR_NUM) filter coefficients. */
529    for (i = 0; i < 10; i++)
530        lp_gn[i + 11] = (lp_filter_coeffs[i + 1] * formant_pp_factor_num_pow[i] + 0x4000) >> 15;
531
532    /* Calculate A(z/FORMANT_PP_FACTOR_DEN) filter coefficients. */
533    for (i = 0; i < 10; i++)
534        lp_gd[i + 1] = (lp_filter_coeffs[i + 1] * formant_pp_factor_den_pow[i] + 0x4000) >> 15;
535
536    /* residual signal calculation (one-half of short-term postfilter) */
537    memcpy(speech - 10, res_filter_data, 10 * sizeof(int16_t));
538    residual_filter(residual + RES_PREV_DATA_SIZE, lp_gn + 11, speech, subframe_size);
539    /* Save data to use it in the next subframe. */
540    memcpy(res_filter_data, speech + subframe_size - 10, 10 * sizeof(int16_t));
541
542    /* long-term filter. If long-term prediction gain is larger than 3dB (returned value is
543       nonzero) then declare current subframe as periodic. */
544    *voicing = FFMAX(*voicing, long_term_filter(adsp, pitch_delay_int,
545                                                residual, residual_filt_buf + 10,
546                                                subframe_size));
547
548    /* shift residual for using in next subframe */
549    memmove(residual, residual + subframe_size, RES_PREV_DATA_SIZE * sizeof(int16_t));
550
551    /* short-term filter tilt compensation */
552    tilt_comp_coeff = get_tilt_comp(adsp, lp_gn, lp_gd, residual_filt_buf + 10, subframe_size);
553
554    /* Apply second half of short-term postfilter: 1/A(z/FORMANT_PP_FACTOR_DEN) */
555    ff_celp_lp_synthesis_filter(pos_filter_data + 10, lp_gd + 1,
556                                residual_filt_buf + 10,
557                                subframe_size, 10, 0, 0, 0x800);
558    memcpy(pos_filter_data, pos_filter_data + subframe_size, 10 * sizeof(int16_t));
559
560    *ht_prev_data = apply_tilt_comp(speech, pos_filter_data + 10, tilt_comp_coeff,
561                                    subframe_size, *ht_prev_data);
562}
563
564/**
565 * \brief Adaptive gain control (4.2.4)
566 * \param gain_before gain of speech before applying postfilters
567 * \param gain_after  gain of speech after applying postfilters
568 * \param speech [in/out] signal buffer
569 * \param subframe_size length of subframe
570 * \param gain_prev (3.12) previous value of gain coefficient
571 *
572 * \return (3.12) last value of gain coefficient
573 */
574int16_t ff_g729_adaptive_gain_control(int gain_before, int gain_after, int16_t *speech,
575                                   int subframe_size, int16_t gain_prev)
576{
577    int gain; // (3.12)
578    int n;
579    int exp_before, exp_after;
580
581    if(!gain_after && gain_before)
582        return 0;
583
584    if (gain_before) {
585
586        exp_before  = 14 - av_log2(gain_before);
587        gain_before = bidir_sal(gain_before, exp_before);
588
589        exp_after  = 14 - av_log2(gain_after);
590        gain_after = bidir_sal(gain_after, exp_after);
591
592        if (gain_before < gain_after) {
593            gain = (gain_before << 15) / gain_after;
594            gain = bidir_sal(gain, exp_after - exp_before - 1);
595        } else {
596            gain = ((gain_before - gain_after) << 14) / gain_after + 0x4000;
597            gain = bidir_sal(gain, exp_after - exp_before);
598        }
599        gain = (gain * G729_AGC_FAC1 + 0x4000) >> 15; // gain * (1-0.9875)
600    } else
601        gain = 0;
602
603    for (n = 0; n < subframe_size; n++) {
604        // gain_prev = gain + 0.9875 * gain_prev
605        gain_prev = (G729_AGC_FACTOR * gain_prev + 0x4000) >> 15;
606        gain_prev = av_clip_int16(gain + gain_prev);
607        speech[n] = av_clip_int16((speech[n] * gain_prev + 0x2000) >> 14);
608    }
609    return gain_prev;
610}
611