1/*
2 * Copyright (c) 2001-2003 The ffmpeg Project
3 *
4 * first version by Francois Revol (revol@free.fr)
5 * fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
6 *   by Mike Melanson (melanson@pcisys.net)
7 *
8 * This file is part of FFmpeg.
9 *
10 * FFmpeg is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2.1 of the License, or (at your option) any later version.
14 *
15 * FFmpeg is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18 * Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with FFmpeg; if not, write to the Free Software
22 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 */
24
25#include "avcodec.h"
26#include "put_bits.h"
27#include "bytestream.h"
28#include "adpcm.h"
29#include "adpcm_data.h"
30#include "internal.h"
31
32/**
33 * @file
34 * ADPCM encoders
35 * See ADPCM decoder reference documents for codec information.
36 */
37
38typedef struct TrellisPath {
39    int nibble;
40    int prev;
41} TrellisPath;
42
43typedef struct TrellisNode {
44    uint32_t ssd;
45    int path;
46    int sample1;
47    int sample2;
48    int step;
49} TrellisNode;
50
51typedef struct ADPCMEncodeContext {
52    ADPCMChannelStatus status[6];
53    TrellisPath *paths;
54    TrellisNode *node_buf;
55    TrellisNode **nodep_buf;
56    uint8_t *trellis_hash;
57} ADPCMEncodeContext;
58
59#define FREEZE_INTERVAL 128
60
61static av_cold int adpcm_encode_close(AVCodecContext *avctx);
62
63static av_cold int adpcm_encode_init(AVCodecContext *avctx)
64{
65    ADPCMEncodeContext *s = avctx->priv_data;
66    uint8_t *extradata;
67    int i;
68    int ret = AVERROR(ENOMEM);
69
70    if (avctx->channels > 2) {
71        av_log(avctx, AV_LOG_ERROR, "only stereo or mono is supported\n");
72        return AVERROR(EINVAL);
73    }
74
75    if (avctx->trellis && (unsigned)avctx->trellis > 16U) {
76        av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n");
77        return AVERROR(EINVAL);
78    }
79
80    if (avctx->trellis) {
81        int frontier  = 1 << avctx->trellis;
82        int max_paths =  frontier * FREEZE_INTERVAL;
83        FF_ALLOC_OR_GOTO(avctx, s->paths,
84                         max_paths * sizeof(*s->paths), error);
85        FF_ALLOC_OR_GOTO(avctx, s->node_buf,
86                         2 * frontier * sizeof(*s->node_buf),  error);
87        FF_ALLOC_OR_GOTO(avctx, s->nodep_buf,
88                         2 * frontier * sizeof(*s->nodep_buf), error);
89        FF_ALLOC_OR_GOTO(avctx, s->trellis_hash,
90                         65536 * sizeof(*s->trellis_hash), error);
91    }
92
93    avctx->bits_per_coded_sample = av_get_bits_per_sample(avctx->codec->id);
94
95    switch (avctx->codec->id) {
96    case AV_CODEC_ID_ADPCM_IMA_WAV:
97        /* each 16 bits sample gives one nibble
98           and we have 4 bytes per channel overhead */
99        avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 /
100                            (4 * avctx->channels) + 1;
101        /* seems frame_size isn't taken into account...
102           have to buffer the samples :-( */
103        avctx->block_align = BLKSIZE;
104        avctx->bits_per_coded_sample = 4;
105        break;
106    case AV_CODEC_ID_ADPCM_IMA_QT:
107        avctx->frame_size  = 64;
108        avctx->block_align = 34 * avctx->channels;
109        break;
110    case AV_CODEC_ID_ADPCM_MS:
111        /* each 16 bits sample gives one nibble
112           and we have 7 bytes per channel overhead */
113        avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2;
114        avctx->bits_per_coded_sample = 4;
115        avctx->block_align    = BLKSIZE;
116        if (!(avctx->extradata = av_malloc(32 + FF_INPUT_BUFFER_PADDING_SIZE)))
117            goto error;
118        avctx->extradata_size = 32;
119        extradata = avctx->extradata;
120        bytestream_put_le16(&extradata, avctx->frame_size);
121        bytestream_put_le16(&extradata, 7); /* wNumCoef */
122        for (i = 0; i < 7; i++) {
123            bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff1[i] * 4);
124            bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff2[i] * 4);
125        }
126        break;
127    case AV_CODEC_ID_ADPCM_YAMAHA:
128        avctx->frame_size  = BLKSIZE * 2 / avctx->channels;
129        avctx->block_align = BLKSIZE;
130        break;
131    case AV_CODEC_ID_ADPCM_SWF:
132        if (avctx->sample_rate != 11025 &&
133            avctx->sample_rate != 22050 &&
134            avctx->sample_rate != 44100) {
135            av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, "
136                   "22050 or 44100\n");
137            ret = AVERROR(EINVAL);
138            goto error;
139        }
140        avctx->frame_size = 512 * (avctx->sample_rate / 11025);
141        break;
142    default:
143        ret = AVERROR(EINVAL);
144        goto error;
145    }
146
147    return 0;
148error:
149    adpcm_encode_close(avctx);
150    return ret;
151}
152
153static av_cold int adpcm_encode_close(AVCodecContext *avctx)
154{
155    ADPCMEncodeContext *s = avctx->priv_data;
156    av_freep(&s->paths);
157    av_freep(&s->node_buf);
158    av_freep(&s->nodep_buf);
159    av_freep(&s->trellis_hash);
160
161    return 0;
162}
163
164
165static inline uint8_t adpcm_ima_compress_sample(ADPCMChannelStatus *c,
166                                                int16_t sample)
167{
168    int delta  = sample - c->prev_sample;
169    int nibble = FFMIN(7, abs(delta) * 4 /
170                       ff_adpcm_step_table[c->step_index]) + (delta < 0) * 8;
171    c->prev_sample += ((ff_adpcm_step_table[c->step_index] *
172                        ff_adpcm_yamaha_difflookup[nibble]) / 8);
173    c->prev_sample = av_clip_int16(c->prev_sample);
174    c->step_index  = av_clip(c->step_index + ff_adpcm_index_table[nibble], 0, 88);
175    return nibble;
176}
177
178static inline uint8_t adpcm_ima_qt_compress_sample(ADPCMChannelStatus *c,
179                                                   int16_t sample)
180{
181    int delta  = sample - c->prev_sample;
182    int diff, step = ff_adpcm_step_table[c->step_index];
183    int nibble = 8*(delta < 0);
184
185    delta= abs(delta);
186    diff = delta + (step >> 3);
187
188    if (delta >= step) {
189        nibble |= 4;
190        delta  -= step;
191    }
192    step >>= 1;
193    if (delta >= step) {
194        nibble |= 2;
195        delta  -= step;
196    }
197    step >>= 1;
198    if (delta >= step) {
199        nibble |= 1;
200        delta  -= step;
201    }
202    diff -= delta;
203
204    if (nibble & 8)
205        c->prev_sample -= diff;
206    else
207        c->prev_sample += diff;
208
209    c->prev_sample = av_clip_int16(c->prev_sample);
210    c->step_index  = av_clip(c->step_index + ff_adpcm_index_table[nibble], 0, 88);
211
212    return nibble;
213}
214
215static inline uint8_t adpcm_ms_compress_sample(ADPCMChannelStatus *c,
216                                               int16_t sample)
217{
218    int predictor, nibble, bias;
219
220    predictor = (((c->sample1) * (c->coeff1)) +
221                (( c->sample2) * (c->coeff2))) / 64;
222
223    nibble = sample - predictor;
224    if (nibble >= 0)
225        bias =  c->idelta / 2;
226    else
227        bias = -c->idelta / 2;
228
229    nibble = (nibble + bias) / c->idelta;
230    nibble = av_clip(nibble, -8, 7) & 0x0F;
231
232    predictor += ((nibble & 0x08) ? (nibble - 0x10) : nibble) * c->idelta;
233
234    c->sample2 = c->sample1;
235    c->sample1 = av_clip_int16(predictor);
236
237    c->idelta = (ff_adpcm_AdaptationTable[nibble] * c->idelta) >> 8;
238    if (c->idelta < 16)
239        c->idelta = 16;
240
241    return nibble;
242}
243
244static inline uint8_t adpcm_yamaha_compress_sample(ADPCMChannelStatus *c,
245                                                   int16_t sample)
246{
247    int nibble, delta;
248
249    if (!c->step) {
250        c->predictor = 0;
251        c->step      = 127;
252    }
253
254    delta = sample - c->predictor;
255
256    nibble = FFMIN(7, abs(delta) * 4 / c->step) + (delta < 0) * 8;
257
258    c->predictor += ((c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8);
259    c->predictor = av_clip_int16(c->predictor);
260    c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
261    c->step = av_clip(c->step, 127, 24567);
262
263    return nibble;
264}
265
266static void adpcm_compress_trellis(AVCodecContext *avctx,
267                                   const int16_t *samples, uint8_t *dst,
268                                   ADPCMChannelStatus *c, int n, int stride)
269{
270    //FIXME 6% faster if frontier is a compile-time constant
271    ADPCMEncodeContext *s = avctx->priv_data;
272    const int frontier = 1 << avctx->trellis;
273    const int version  = avctx->codec->id;
274    TrellisPath *paths       = s->paths, *p;
275    TrellisNode *node_buf    = s->node_buf;
276    TrellisNode **nodep_buf  = s->nodep_buf;
277    TrellisNode **nodes      = nodep_buf; // nodes[] is always sorted by .ssd
278    TrellisNode **nodes_next = nodep_buf + frontier;
279    int pathn = 0, froze = -1, i, j, k, generation = 0;
280    uint8_t *hash = s->trellis_hash;
281    memset(hash, 0xff, 65536 * sizeof(*hash));
282
283    memset(nodep_buf, 0, 2 * frontier * sizeof(*nodep_buf));
284    nodes[0]          = node_buf + frontier;
285    nodes[0]->ssd     = 0;
286    nodes[0]->path    = 0;
287    nodes[0]->step    = c->step_index;
288    nodes[0]->sample1 = c->sample1;
289    nodes[0]->sample2 = c->sample2;
290    if (version == AV_CODEC_ID_ADPCM_IMA_WAV ||
291        version == AV_CODEC_ID_ADPCM_IMA_QT  ||
292        version == AV_CODEC_ID_ADPCM_SWF)
293        nodes[0]->sample1 = c->prev_sample;
294    if (version == AV_CODEC_ID_ADPCM_MS)
295        nodes[0]->step = c->idelta;
296    if (version == AV_CODEC_ID_ADPCM_YAMAHA) {
297        if (c->step == 0) {
298            nodes[0]->step    = 127;
299            nodes[0]->sample1 = 0;
300        } else {
301            nodes[0]->step    = c->step;
302            nodes[0]->sample1 = c->predictor;
303        }
304    }
305
306    for (i = 0; i < n; i++) {
307        TrellisNode *t = node_buf + frontier*(i&1);
308        TrellisNode **u;
309        int sample   = samples[i * stride];
310        int heap_pos = 0;
311        memset(nodes_next, 0, frontier * sizeof(TrellisNode*));
312        for (j = 0; j < frontier && nodes[j]; j++) {
313            // higher j have higher ssd already, so they're likely
314            // to yield a suboptimal next sample too
315            const int range = (j < frontier / 2) ? 1 : 0;
316            const int step  = nodes[j]->step;
317            int nidx;
318            if (version == AV_CODEC_ID_ADPCM_MS) {
319                const int predictor = ((nodes[j]->sample1 * c->coeff1) +
320                                       (nodes[j]->sample2 * c->coeff2)) / 64;
321                const int div  = (sample - predictor) / step;
322                const int nmin = av_clip(div-range, -8, 6);
323                const int nmax = av_clip(div+range, -7, 7);
324                for (nidx = nmin; nidx <= nmax; nidx++) {
325                    const int nibble = nidx & 0xf;
326                    int dec_sample   = predictor + nidx * step;
327#define STORE_NODE(NAME, STEP_INDEX)\
328                    int d;\
329                    uint32_t ssd;\
330                    int pos;\
331                    TrellisNode *u;\
332                    uint8_t *h;\
333                    dec_sample = av_clip_int16(dec_sample);\
334                    d = sample - dec_sample;\
335                    ssd = nodes[j]->ssd + d*(unsigned)d;\
336                    /* Check for wraparound, skip such samples completely. \
337                     * Note, changing ssd to a 64 bit variable would be \
338                     * simpler, avoiding this check, but it's slower on \
339                     * x86 32 bit at the moment. */\
340                    if (ssd < nodes[j]->ssd)\
341                        goto next_##NAME;\
342                    /* Collapse any two states with the same previous sample value. \
343                     * One could also distinguish states by step and by 2nd to last
344                     * sample, but the effects of that are negligible.
345                     * Since nodes in the previous generation are iterated
346                     * through a heap, they're roughly ordered from better to
347                     * worse, but not strictly ordered. Therefore, an earlier
348                     * node with the same sample value is better in most cases
349                     * (and thus the current is skipped), but not strictly
350                     * in all cases. Only skipping samples where ssd >=
351                     * ssd of the earlier node with the same sample gives
352                     * slightly worse quality, though, for some reason. */ \
353                    h = &hash[(uint16_t) dec_sample];\
354                    if (*h == generation)\
355                        goto next_##NAME;\
356                    if (heap_pos < frontier) {\
357                        pos = heap_pos++;\
358                    } else {\
359                        /* Try to replace one of the leaf nodes with the new \
360                         * one, but try a different slot each time. */\
361                        pos = (frontier >> 1) +\
362                              (heap_pos & ((frontier >> 1) - 1));\
363                        if (ssd > nodes_next[pos]->ssd)\
364                            goto next_##NAME;\
365                        heap_pos++;\
366                    }\
367                    *h = generation;\
368                    u  = nodes_next[pos];\
369                    if (!u) {\
370                        av_assert1(pathn < FREEZE_INTERVAL << avctx->trellis);\
371                        u = t++;\
372                        nodes_next[pos] = u;\
373                        u->path = pathn++;\
374                    }\
375                    u->ssd  = ssd;\
376                    u->step = STEP_INDEX;\
377                    u->sample2 = nodes[j]->sample1;\
378                    u->sample1 = dec_sample;\
379                    paths[u->path].nibble = nibble;\
380                    paths[u->path].prev   = nodes[j]->path;\
381                    /* Sift the newly inserted node up in the heap to \
382                     * restore the heap property. */\
383                    while (pos > 0) {\
384                        int parent = (pos - 1) >> 1;\
385                        if (nodes_next[parent]->ssd <= ssd)\
386                            break;\
387                        FFSWAP(TrellisNode*, nodes_next[parent], nodes_next[pos]);\
388                        pos = parent;\
389                    }\
390                    next_##NAME:;
391                    STORE_NODE(ms, FFMAX(16,
392                               (ff_adpcm_AdaptationTable[nibble] * step) >> 8));
393                }
394            } else if (version == AV_CODEC_ID_ADPCM_IMA_WAV ||
395                       version == AV_CODEC_ID_ADPCM_IMA_QT  ||
396                       version == AV_CODEC_ID_ADPCM_SWF) {
397#define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
398                const int predictor = nodes[j]->sample1;\
399                const int div = (sample - predictor) * 4 / STEP_TABLE;\
400                int nmin = av_clip(div - range, -7, 6);\
401                int nmax = av_clip(div + range, -6, 7);\
402                if (nmin <= 0)\
403                    nmin--; /* distinguish -0 from +0 */\
404                if (nmax < 0)\
405                    nmax--;\
406                for (nidx = nmin; nidx <= nmax; nidx++) {\
407                    const int nibble = nidx < 0 ? 7 - nidx : nidx;\
408                    int dec_sample = predictor +\
409                                    (STEP_TABLE *\
410                                     ff_adpcm_yamaha_difflookup[nibble]) / 8;\
411                    STORE_NODE(NAME, STEP_INDEX);\
412                }
413                LOOP_NODES(ima, ff_adpcm_step_table[step],
414                           av_clip(step + ff_adpcm_index_table[nibble], 0, 88));
415            } else { //AV_CODEC_ID_ADPCM_YAMAHA
416                LOOP_NODES(yamaha, step,
417                           av_clip((step * ff_adpcm_yamaha_indexscale[nibble]) >> 8,
418                                   127, 24567));
419#undef LOOP_NODES
420#undef STORE_NODE
421            }
422        }
423
424        u = nodes;
425        nodes = nodes_next;
426        nodes_next = u;
427
428        generation++;
429        if (generation == 255) {
430            memset(hash, 0xff, 65536 * sizeof(*hash));
431            generation = 0;
432        }
433
434        // prevent overflow
435        if (nodes[0]->ssd > (1 << 28)) {
436            for (j = 1; j < frontier && nodes[j]; j++)
437                nodes[j]->ssd -= nodes[0]->ssd;
438            nodes[0]->ssd = 0;
439        }
440
441        // merge old paths to save memory
442        if (i == froze + FREEZE_INTERVAL) {
443            p = &paths[nodes[0]->path];
444            for (k = i; k > froze; k--) {
445                dst[k] = p->nibble;
446                p = &paths[p->prev];
447            }
448            froze = i;
449            pathn = 0;
450            // other nodes might use paths that don't coincide with the frozen one.
451            // checking which nodes do so is too slow, so just kill them all.
452            // this also slightly improves quality, but I don't know why.
453            memset(nodes + 1, 0, (frontier - 1) * sizeof(TrellisNode*));
454        }
455    }
456
457    p = &paths[nodes[0]->path];
458    for (i = n - 1; i > froze; i--) {
459        dst[i] = p->nibble;
460        p = &paths[p->prev];
461    }
462
463    c->predictor  = nodes[0]->sample1;
464    c->sample1    = nodes[0]->sample1;
465    c->sample2    = nodes[0]->sample2;
466    c->step_index = nodes[0]->step;
467    c->step       = nodes[0]->step;
468    c->idelta     = nodes[0]->step;
469}
470
471static int adpcm_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
472                              const AVFrame *frame, int *got_packet_ptr)
473{
474    int n, i, ch, st, pkt_size, ret;
475    const int16_t *samples;
476    int16_t **samples_p;
477    uint8_t *dst;
478    ADPCMEncodeContext *c = avctx->priv_data;
479    uint8_t *buf;
480
481    samples = (const int16_t *)frame->data[0];
482    samples_p = (int16_t **)frame->extended_data;
483    st = avctx->channels == 2;
484
485    if (avctx->codec_id == AV_CODEC_ID_ADPCM_SWF)
486        pkt_size = (2 + avctx->channels * (22 + 4 * (frame->nb_samples - 1)) + 7) / 8;
487    else
488        pkt_size = avctx->block_align;
489    if ((ret = ff_alloc_packet2(avctx, avpkt, pkt_size)) < 0)
490        return ret;
491    dst = avpkt->data;
492
493    switch(avctx->codec->id) {
494    case AV_CODEC_ID_ADPCM_IMA_WAV:
495    {
496        int blocks, j;
497
498        blocks = (frame->nb_samples - 1) / 8;
499
500        for (ch = 0; ch < avctx->channels; ch++) {
501            ADPCMChannelStatus *status = &c->status[ch];
502            status->prev_sample = samples_p[ch][0];
503            /* status->step_index = 0;
504               XXX: not sure how to init the state machine */
505            bytestream_put_le16(&dst, status->prev_sample);
506            *dst++ = status->step_index;
507            *dst++ = 0; /* unknown */
508        }
509
510        /* stereo: 4 bytes (8 samples) for left, 4 bytes for right */
511        if (avctx->trellis > 0) {
512            FF_ALLOC_OR_GOTO(avctx, buf, avctx->channels * blocks * 8, error);
513            for (ch = 0; ch < avctx->channels; ch++) {
514                adpcm_compress_trellis(avctx, &samples_p[ch][1],
515                                       buf + ch * blocks * 8, &c->status[ch],
516                                       blocks * 8, 1);
517            }
518            for (i = 0; i < blocks; i++) {
519                for (ch = 0; ch < avctx->channels; ch++) {
520                    uint8_t *buf1 = buf + ch * blocks * 8 + i * 8;
521                    for (j = 0; j < 8; j += 2)
522                        *dst++ = buf1[j] | (buf1[j + 1] << 4);
523                }
524            }
525            av_free(buf);
526        } else {
527            for (i = 0; i < blocks; i++) {
528                for (ch = 0; ch < avctx->channels; ch++) {
529                    ADPCMChannelStatus *status = &c->status[ch];
530                    const int16_t *smp = &samples_p[ch][1 + i * 8];
531                    for (j = 0; j < 8; j += 2) {
532                        uint8_t v = adpcm_ima_compress_sample(status, smp[j    ]);
533                        v        |= adpcm_ima_compress_sample(status, smp[j + 1]) << 4;
534                        *dst++ = v;
535                    }
536                }
537            }
538        }
539        break;
540    }
541    case AV_CODEC_ID_ADPCM_IMA_QT:
542    {
543        PutBitContext pb;
544        init_put_bits(&pb, dst, pkt_size * 8);
545
546        for (ch = 0; ch < avctx->channels; ch++) {
547            ADPCMChannelStatus *status = &c->status[ch];
548            put_bits(&pb, 9, (status->prev_sample & 0xFFFF) >> 7);
549            put_bits(&pb, 7,  status->step_index);
550            if (avctx->trellis > 0) {
551                uint8_t buf[64];
552                adpcm_compress_trellis(avctx, &samples_p[ch][0], buf, status,
553                                       64, 1);
554                for (i = 0; i < 64; i++)
555                    put_bits(&pb, 4, buf[i ^ 1]);
556                status->prev_sample = status->predictor;
557            } else {
558                for (i = 0; i < 64; i += 2) {
559                    int t1, t2;
560                    t1 = adpcm_ima_qt_compress_sample(status, samples_p[ch][i    ]);
561                    t2 = adpcm_ima_qt_compress_sample(status, samples_p[ch][i + 1]);
562                    put_bits(&pb, 4, t2);
563                    put_bits(&pb, 4, t1);
564                }
565            }
566        }
567
568        flush_put_bits(&pb);
569        break;
570    }
571    case AV_CODEC_ID_ADPCM_SWF:
572    {
573        PutBitContext pb;
574        init_put_bits(&pb, dst, pkt_size * 8);
575
576        n = frame->nb_samples - 1;
577
578        // store AdpcmCodeSize
579        put_bits(&pb, 2, 2);    // set 4-bit flash adpcm format
580
581        // init the encoder state
582        for (i = 0; i < avctx->channels; i++) {
583            // clip step so it fits 6 bits
584            c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63);
585            put_sbits(&pb, 16, samples[i]);
586            put_bits(&pb, 6, c->status[i].step_index);
587            c->status[i].prev_sample = samples[i];
588        }
589
590        if (avctx->trellis > 0) {
591            FF_ALLOC_OR_GOTO(avctx, buf, 2 * n, error);
592            adpcm_compress_trellis(avctx, samples + avctx->channels, buf,
593                                   &c->status[0], n, avctx->channels);
594            if (avctx->channels == 2)
595                adpcm_compress_trellis(avctx, samples + avctx->channels + 1,
596                                       buf + n, &c->status[1], n,
597                                       avctx->channels);
598            for (i = 0; i < n; i++) {
599                put_bits(&pb, 4, buf[i]);
600                if (avctx->channels == 2)
601                    put_bits(&pb, 4, buf[n + i]);
602            }
603            av_free(buf);
604        } else {
605            for (i = 1; i < frame->nb_samples; i++) {
606                put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0],
607                         samples[avctx->channels * i]));
608                if (avctx->channels == 2)
609                    put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1],
610                             samples[2 * i + 1]));
611            }
612        }
613        flush_put_bits(&pb);
614        break;
615    }
616    case AV_CODEC_ID_ADPCM_MS:
617        for (i = 0; i < avctx->channels; i++) {
618            int predictor = 0;
619            *dst++ = predictor;
620            c->status[i].coeff1 = ff_adpcm_AdaptCoeff1[predictor];
621            c->status[i].coeff2 = ff_adpcm_AdaptCoeff2[predictor];
622        }
623        for (i = 0; i < avctx->channels; i++) {
624            if (c->status[i].idelta < 16)
625                c->status[i].idelta = 16;
626            bytestream_put_le16(&dst, c->status[i].idelta);
627        }
628        for (i = 0; i < avctx->channels; i++)
629            c->status[i].sample2= *samples++;
630        for (i = 0; i < avctx->channels; i++) {
631            c->status[i].sample1 = *samples++;
632            bytestream_put_le16(&dst, c->status[i].sample1);
633        }
634        for (i = 0; i < avctx->channels; i++)
635            bytestream_put_le16(&dst, c->status[i].sample2);
636
637        if (avctx->trellis > 0) {
638            n = avctx->block_align - 7 * avctx->channels;
639            FF_ALLOC_OR_GOTO(avctx, buf, 2 * n, error);
640            if (avctx->channels == 1) {
641                adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n,
642                                       avctx->channels);
643                for (i = 0; i < n; i += 2)
644                    *dst++ = (buf[i] << 4) | buf[i + 1];
645            } else {
646                adpcm_compress_trellis(avctx, samples,     buf,
647                                       &c->status[0], n, avctx->channels);
648                adpcm_compress_trellis(avctx, samples + 1, buf + n,
649                                       &c->status[1], n, avctx->channels);
650                for (i = 0; i < n; i++)
651                    *dst++ = (buf[i] << 4) | buf[n + i];
652            }
653            av_free(buf);
654        } else {
655            for (i = 7 * avctx->channels; i < avctx->block_align; i++) {
656                int nibble;
657                nibble  = adpcm_ms_compress_sample(&c->status[ 0], *samples++) << 4;
658                nibble |= adpcm_ms_compress_sample(&c->status[st], *samples++);
659                *dst++  = nibble;
660            }
661        }
662        break;
663    case AV_CODEC_ID_ADPCM_YAMAHA:
664        n = frame->nb_samples / 2;
665        if (avctx->trellis > 0) {
666            FF_ALLOC_OR_GOTO(avctx, buf, 2 * n * 2, error);
667            n *= 2;
668            if (avctx->channels == 1) {
669                adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n,
670                                       avctx->channels);
671                for (i = 0; i < n; i += 2)
672                    *dst++ = buf[i] | (buf[i + 1] << 4);
673            } else {
674                adpcm_compress_trellis(avctx, samples,     buf,
675                                       &c->status[0], n, avctx->channels);
676                adpcm_compress_trellis(avctx, samples + 1, buf + n,
677                                       &c->status[1], n, avctx->channels);
678                for (i = 0; i < n; i++)
679                    *dst++ = buf[i] | (buf[n + i] << 4);
680            }
681            av_free(buf);
682        } else
683            for (n *= avctx->channels; n > 0; n--) {
684                int nibble;
685                nibble  = adpcm_yamaha_compress_sample(&c->status[ 0], *samples++);
686                nibble |= adpcm_yamaha_compress_sample(&c->status[st], *samples++) << 4;
687                *dst++  = nibble;
688            }
689        break;
690    default:
691        return AVERROR(EINVAL);
692    }
693
694    avpkt->size = pkt_size;
695    *got_packet_ptr = 1;
696    return 0;
697error:
698    return AVERROR(ENOMEM);
699}
700
701static const enum AVSampleFormat sample_fmts[] = {
702    AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE
703};
704
705static const enum AVSampleFormat sample_fmts_p[] = {
706    AV_SAMPLE_FMT_S16P, AV_SAMPLE_FMT_NONE
707};
708
709#define ADPCM_ENCODER(id_, name_, sample_fmts_, long_name_) \
710AVCodec ff_ ## name_ ## _encoder = {                        \
711    .name           = #name_,                               \
712    .long_name      = NULL_IF_CONFIG_SMALL(long_name_),     \
713    .type           = AVMEDIA_TYPE_AUDIO,                   \
714    .id             = id_,                                  \
715    .priv_data_size = sizeof(ADPCMEncodeContext),           \
716    .init           = adpcm_encode_init,                    \
717    .encode2        = adpcm_encode_frame,                   \
718    .close          = adpcm_encode_close,                   \
719    .sample_fmts    = sample_fmts_,                         \
720}
721
722ADPCM_ENCODER(AV_CODEC_ID_ADPCM_IMA_QT,  adpcm_ima_qt,  sample_fmts_p, "ADPCM IMA QuickTime");
723ADPCM_ENCODER(AV_CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, sample_fmts_p, "ADPCM IMA WAV");
724ADPCM_ENCODER(AV_CODEC_ID_ADPCM_MS,      adpcm_ms,      sample_fmts,   "ADPCM Microsoft");
725ADPCM_ENCODER(AV_CODEC_ID_ADPCM_SWF,     adpcm_swf,     sample_fmts,   "ADPCM Shockwave Flash");
726ADPCM_ENCODER(AV_CODEC_ID_ADPCM_YAMAHA,  adpcm_yamaha,  sample_fmts,   "ADPCM Yamaha");
727