1/*
2 * adaptive and fixed codebook vector operations for ACELP-based codecs
3 *
4 * Copyright (c) 2008 Vladimir Voroshilov
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23#include <inttypes.h>
24
25#include "libavutil/common.h"
26#include "libavutil/float_dsp.h"
27#include "avcodec.h"
28#include "acelp_vectors.h"
29
30const uint8_t ff_fc_2pulses_9bits_track1[16] =
31{
32    1,  3,
33    6,  8,
34    11, 13,
35    16, 18,
36    21, 23,
37    26, 28,
38    31, 33,
39    36, 38
40};
41const uint8_t ff_fc_2pulses_9bits_track1_gray[16] =
42{
43  1,  3,
44  8,  6,
45  18, 16,
46  11, 13,
47  38, 36,
48  31, 33,
49  21, 23,
50  28, 26,
51};
52
53const uint8_t ff_fc_2pulses_9bits_track2_gray[32] =
54{
55  0,  2,
56  5,  4,
57  12, 10,
58  7,  9,
59  25, 24,
60  20, 22,
61  14, 15,
62  19, 17,
63  36, 31,
64  21, 26,
65  1,  6,
66  16, 11,
67  27, 29,
68  32, 30,
69  39, 37,
70  34, 35,
71};
72
73const uint8_t ff_fc_4pulses_8bits_tracks_13[16] =
74{
75  0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75,
76};
77
78const uint8_t ff_fc_4pulses_8bits_track_4[32] =
79{
80    3,  4,
81    8,  9,
82    13, 14,
83    18, 19,
84    23, 24,
85    28, 29,
86    33, 34,
87    38, 39,
88    43, 44,
89    48, 49,
90    53, 54,
91    58, 59,
92    63, 64,
93    68, 69,
94    73, 74,
95    78, 79,
96};
97
98const float ff_pow_0_7[10] = {
99    0.700000, 0.490000, 0.343000, 0.240100, 0.168070,
100    0.117649, 0.082354, 0.057648, 0.040354, 0.028248
101};
102
103const float ff_pow_0_75[10] = {
104    0.750000, 0.562500, 0.421875, 0.316406, 0.237305,
105    0.177979, 0.133484, 0.100113, 0.075085, 0.056314
106};
107
108const float ff_pow_0_55[10] = {
109    0.550000, 0.302500, 0.166375, 0.091506, 0.050328,
110    0.027681, 0.015224, 0.008373, 0.004605, 0.002533
111};
112
113const float ff_b60_sinc[61] = {
114 0.898529  ,  0.865051  ,  0.769257  ,  0.624054  ,  0.448639  ,  0.265289   ,
115 0.0959167 , -0.0412598 , -0.134338  , -0.178986  , -0.178528  , -0.142609   ,
116-0.0849304 , -0.0205078 ,  0.0369568 ,  0.0773926 ,  0.0955200 ,  0.0912781  ,
117 0.0689392 ,  0.0357056 ,  0.0       , -0.0305481 , -0.0504150 , -0.0570068  ,
118-0.0508423 , -0.0350037 , -0.0141602 ,  0.00665283,  0.0230713 ,  0.0323486  ,
119 0.0335388 ,  0.0275879 ,  0.0167847 ,  0.00411987, -0.00747681, -0.0156860  ,
120-0.0193481 , -0.0183716 , -0.0137634 , -0.00704956,  0.0       ,  0.00582886 ,
121 0.00939941,  0.0103760 ,  0.00903320,  0.00604248,  0.00238037, -0.00109863 ,
122-0.00366211, -0.00497437, -0.00503540, -0.00402832, -0.00241089, -0.000579834,
123 0.00103760,  0.00222778,  0.00277710,  0.00271606,  0.00213623,  0.00115967 ,
124 0.
125};
126
127void ff_acelp_fc_pulse_per_track(
128        int16_t* fc_v,
129        const uint8_t *tab1,
130        const uint8_t *tab2,
131        int pulse_indexes,
132        int pulse_signs,
133        int pulse_count,
134        int bits)
135{
136    int mask = (1 << bits) - 1;
137    int i;
138
139    for(i=0; i<pulse_count; i++)
140    {
141        fc_v[i + tab1[pulse_indexes & mask]] +=
142                (pulse_signs & 1) ? 8191 : -8192; // +/-1 in (2.13)
143
144        pulse_indexes >>= bits;
145        pulse_signs >>= 1;
146    }
147
148    fc_v[tab2[pulse_indexes]] += (pulse_signs & 1) ? 8191 : -8192;
149}
150
151void ff_decode_10_pulses_35bits(const int16_t *fixed_index,
152                                AMRFixed *fixed_sparse,
153                                const uint8_t *gray_decode,
154                                int half_pulse_count, int bits)
155{
156    int i;
157    int mask = (1 << bits) - 1;
158
159    fixed_sparse->no_repeat_mask = 0;
160    fixed_sparse->n = 2 * half_pulse_count;
161    for (i = 0; i < half_pulse_count; i++) {
162        const int pos1   = gray_decode[fixed_index[2*i+1] & mask] + i;
163        const int pos2   = gray_decode[fixed_index[2*i  ] & mask] + i;
164        const float sign = (fixed_index[2*i+1] & (1 << bits)) ? -1.0 : 1.0;
165        fixed_sparse->x[2*i+1] = pos1;
166        fixed_sparse->x[2*i  ] = pos2;
167        fixed_sparse->y[2*i+1] = sign;
168        fixed_sparse->y[2*i  ] = pos2 < pos1 ? -sign : sign;
169    }
170}
171
172void ff_acelp_weighted_vector_sum(
173        int16_t* out,
174        const int16_t *in_a,
175        const int16_t *in_b,
176        int16_t weight_coeff_a,
177        int16_t weight_coeff_b,
178        int16_t rounder,
179        int shift,
180        int length)
181{
182    int i;
183
184    // Clipping required here; breaks OVERFLOW test.
185    for(i=0; i<length; i++)
186        out[i] = av_clip_int16((
187                 in_a[i] * weight_coeff_a +
188                 in_b[i] * weight_coeff_b +
189                 rounder) >> shift);
190}
191
192void ff_weighted_vector_sumf(float *out, const float *in_a, const float *in_b,
193                             float weight_coeff_a, float weight_coeff_b, int length)
194{
195    int i;
196
197    for(i=0; i<length; i++)
198        out[i] = weight_coeff_a * in_a[i]
199               + weight_coeff_b * in_b[i];
200}
201
202void ff_adaptive_gain_control(float *out, const float *in, float speech_energ,
203                              int size, float alpha, float *gain_mem)
204{
205    int i;
206    float postfilter_energ = avpriv_scalarproduct_float_c(in, in, size);
207    float gain_scale_factor = 1.0;
208    float mem = *gain_mem;
209
210    if (postfilter_energ)
211        gain_scale_factor = sqrt(speech_energ / postfilter_energ);
212
213    gain_scale_factor *= 1.0 - alpha;
214
215    for (i = 0; i < size; i++) {
216        mem = alpha * mem + gain_scale_factor;
217        out[i] = in[i] * mem;
218    }
219
220    *gain_mem = mem;
221}
222
223void ff_scale_vector_to_given_sum_of_squares(float *out, const float *in,
224                                             float sum_of_squares, const int n)
225{
226    int i;
227    float scalefactor = avpriv_scalarproduct_float_c(in, in, n);
228    if (scalefactor)
229        scalefactor = sqrt(sum_of_squares / scalefactor);
230    for (i = 0; i < n; i++)
231        out[i] = in[i] * scalefactor;
232}
233
234void ff_set_fixed_vector(float *out, const AMRFixed *in, float scale, int size)
235{
236    int i;
237
238    for (i=0; i < in->n; i++) {
239        int x   = in->x[i], repeats = !((in->no_repeat_mask >> i) & 1);
240        float y = in->y[i] * scale;
241
242        if (in->pitch_lag > 0)
243            do {
244                out[x] += y;
245                y *= in->pitch_fac;
246                x += in->pitch_lag;
247            } while (x < size && repeats);
248    }
249}
250
251void ff_clear_fixed_vector(float *out, const AMRFixed *in, int size)
252{
253    int i;
254
255    for (i=0; i < in->n; i++) {
256        int x  = in->x[i], repeats = !((in->no_repeat_mask >> i) & 1);
257
258        if (in->pitch_lag > 0)
259            do {
260                out[x] = 0.0;
261                x += in->pitch_lag;
262            } while (x < size && repeats);
263    }
264}
265
266void ff_acelp_vectors_init(ACELPVContext *c)
267{
268    c->weighted_vector_sumf   = ff_weighted_vector_sumf;
269
270    if(HAVE_MIPSFPU)
271        ff_acelp_vectors_init_mips(c);
272}
273