1/*
2 * AC-3 encoder float/fixed template
3 * Copyright (c) 2000 Fabrice Bellard
4 * Copyright (c) 2006-2011 Justin Ruggles <justin.ruggles@gmail.com>
5 * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
6 *
7 * This file is part of FFmpeg.
8 *
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24/**
25 * @file
26 * AC-3 encoder float/fixed template
27 */
28
29#include <stdint.h>
30
31#include "libavutil/attributes.h"
32#include "libavutil/internal.h"
33
34#include "audiodsp.h"
35#include "internal.h"
36#include "ac3enc.h"
37#include "eac3enc.h"
38
39/* prototypes for static functions in ac3enc_fixed.c and ac3enc_float.c */
40
41static void scale_coefficients(AC3EncodeContext *s);
42
43static int normalize_samples(AC3EncodeContext *s);
44
45static void clip_coefficients(AudioDSPContext *adsp, CoefType *coef,
46                              unsigned int len);
47
48static CoefType calc_cpl_coord(CoefSumType energy_ch, CoefSumType energy_cpl);
49
50static void sum_square_butterfly(AC3EncodeContext *s, CoefSumType sum[4],
51                                 const CoefType *coef0, const CoefType *coef1,
52                                 int len);
53
54int AC3_NAME(allocate_sample_buffers)(AC3EncodeContext *s)
55{
56    int ch;
57
58    FF_ALLOC_OR_GOTO(s->avctx, s->windowed_samples, AC3_WINDOW_SIZE *
59                     sizeof(*s->windowed_samples), alloc_fail);
60    FF_ALLOC_OR_GOTO(s->avctx, s->planar_samples, s->channels * sizeof(*s->planar_samples),
61                     alloc_fail);
62    for (ch = 0; ch < s->channels; ch++) {
63        FF_ALLOCZ_OR_GOTO(s->avctx, s->planar_samples[ch],
64                          (AC3_FRAME_SIZE+AC3_BLOCK_SIZE) * sizeof(**s->planar_samples),
65                          alloc_fail);
66    }
67
68    return 0;
69alloc_fail:
70    return AVERROR(ENOMEM);
71}
72
73
74/*
75 * Copy input samples.
76 * Channels are reordered from FFmpeg's default order to AC-3 order.
77 */
78static void copy_input_samples(AC3EncodeContext *s, SampleType **samples)
79{
80    int ch;
81
82    /* copy and remap input samples */
83    for (ch = 0; ch < s->channels; ch++) {
84        /* copy last 256 samples of previous frame to the start of the current frame */
85        memcpy(&s->planar_samples[ch][0], &s->planar_samples[ch][AC3_BLOCK_SIZE * s->num_blocks],
86               AC3_BLOCK_SIZE * sizeof(s->planar_samples[0][0]));
87
88        /* copy new samples for current frame */
89        memcpy(&s->planar_samples[ch][AC3_BLOCK_SIZE],
90               samples[s->channel_map[ch]],
91               AC3_BLOCK_SIZE * s->num_blocks * sizeof(s->planar_samples[0][0]));
92    }
93}
94
95
96/*
97 * Apply the MDCT to input samples to generate frequency coefficients.
98 * This applies the KBD window and normalizes the input to reduce precision
99 * loss due to fixed-point calculations.
100 */
101static void apply_mdct(AC3EncodeContext *s)
102{
103    int blk, ch;
104
105    for (ch = 0; ch < s->channels; ch++) {
106        for (blk = 0; blk < s->num_blocks; blk++) {
107            AC3Block *block = &s->blocks[blk];
108            const SampleType *input_samples = &s->planar_samples[ch][blk * AC3_BLOCK_SIZE];
109
110#if CONFIG_AC3ENC_FLOAT
111            s->fdsp.vector_fmul(s->windowed_samples, input_samples,
112                                s->mdct_window, AC3_WINDOW_SIZE);
113#else
114            s->ac3dsp.apply_window_int16(s->windowed_samples, input_samples,
115                                         s->mdct_window, AC3_WINDOW_SIZE);
116#endif
117
118            if (s->fixed_point)
119                block->coeff_shift[ch+1] = normalize_samples(s);
120
121            s->mdct.mdct_calcw(&s->mdct, block->mdct_coef[ch+1],
122                               s->windowed_samples);
123        }
124    }
125}
126
127
128/*
129 * Calculate coupling channel and coupling coordinates.
130 */
131static void apply_channel_coupling(AC3EncodeContext *s)
132{
133    LOCAL_ALIGNED_16(CoefType, cpl_coords,      [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]);
134#if CONFIG_AC3ENC_FLOAT
135    LOCAL_ALIGNED_16(int32_t, fixed_cpl_coords, [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]);
136#else
137    int32_t (*fixed_cpl_coords)[AC3_MAX_CHANNELS][16] = cpl_coords;
138#endif
139    int av_uninit(blk), ch, bnd, i, j;
140    CoefSumType energy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][16] = {{{0}}};
141    int cpl_start, num_cpl_coefs;
142
143    memset(cpl_coords,       0, AC3_MAX_BLOCKS * sizeof(*cpl_coords));
144#if CONFIG_AC3ENC_FLOAT
145    memset(fixed_cpl_coords, 0, AC3_MAX_BLOCKS * sizeof(*cpl_coords));
146#endif
147
148    /* align start to 16-byte boundary. align length to multiple of 32.
149        note: coupling start bin % 4 will always be 1 */
150    cpl_start     = s->start_freq[CPL_CH] - 1;
151    num_cpl_coefs = FFALIGN(s->num_cpl_subbands * 12 + 1, 32);
152    cpl_start     = FFMIN(256, cpl_start + num_cpl_coefs) - num_cpl_coefs;
153
154    /* calculate coupling channel from fbw channels */
155    for (blk = 0; blk < s->num_blocks; blk++) {
156        AC3Block *block = &s->blocks[blk];
157        CoefType *cpl_coef = &block->mdct_coef[CPL_CH][cpl_start];
158        if (!block->cpl_in_use)
159            continue;
160        memset(cpl_coef, 0, num_cpl_coefs * sizeof(*cpl_coef));
161        for (ch = 1; ch <= s->fbw_channels; ch++) {
162            CoefType *ch_coef = &block->mdct_coef[ch][cpl_start];
163            if (!block->channel_in_cpl[ch])
164                continue;
165            for (i = 0; i < num_cpl_coefs; i++)
166                cpl_coef[i] += ch_coef[i];
167        }
168
169        /* coefficients must be clipped in order to be encoded */
170        clip_coefficients(&s->adsp, cpl_coef, num_cpl_coefs);
171    }
172
173    /* calculate energy in each band in coupling channel and each fbw channel */
174    /* TODO: possibly use SIMD to speed up energy calculation */
175    bnd = 0;
176    i = s->start_freq[CPL_CH];
177    while (i < s->cpl_end_freq) {
178        int band_size = s->cpl_band_sizes[bnd];
179        for (ch = CPL_CH; ch <= s->fbw_channels; ch++) {
180            for (blk = 0; blk < s->num_blocks; blk++) {
181                AC3Block *block = &s->blocks[blk];
182                if (!block->cpl_in_use || (ch > CPL_CH && !block->channel_in_cpl[ch]))
183                    continue;
184                for (j = 0; j < band_size; j++) {
185                    CoefType v = block->mdct_coef[ch][i+j];
186                    MAC_COEF(energy[blk][ch][bnd], v, v);
187                }
188            }
189        }
190        i += band_size;
191        bnd++;
192    }
193
194    /* calculate coupling coordinates for all blocks for all channels */
195    for (blk = 0; blk < s->num_blocks; blk++) {
196        AC3Block *block  = &s->blocks[blk];
197        if (!block->cpl_in_use)
198            continue;
199        for (ch = 1; ch <= s->fbw_channels; ch++) {
200            if (!block->channel_in_cpl[ch])
201                continue;
202            for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
203                cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy[blk][ch][bnd],
204                                                          energy[blk][CPL_CH][bnd]);
205            }
206        }
207    }
208
209    /* determine which blocks to send new coupling coordinates for */
210    for (blk = 0; blk < s->num_blocks; blk++) {
211        AC3Block *block  = &s->blocks[blk];
212        AC3Block *block0 = blk ? &s->blocks[blk-1] : NULL;
213
214        memset(block->new_cpl_coords, 0, sizeof(block->new_cpl_coords));
215
216        if (block->cpl_in_use) {
217            /* send new coordinates if this is the first block, if previous
218             * block did not use coupling but this block does, the channels
219             * using coupling has changed from the previous block, or the
220             * coordinate difference from the last block for any channel is
221             * greater than a threshold value. */
222            if (blk == 0 || !block0->cpl_in_use) {
223                for (ch = 1; ch <= s->fbw_channels; ch++)
224                    block->new_cpl_coords[ch] = 1;
225            } else {
226                for (ch = 1; ch <= s->fbw_channels; ch++) {
227                    if (!block->channel_in_cpl[ch])
228                        continue;
229                    if (!block0->channel_in_cpl[ch]) {
230                        block->new_cpl_coords[ch] = 1;
231                    } else {
232                        CoefSumType coord_diff = 0;
233                        for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
234                            coord_diff += FFABS(cpl_coords[blk-1][ch][bnd] -
235                                                cpl_coords[blk  ][ch][bnd]);
236                        }
237                        coord_diff /= s->num_cpl_bands;
238                        if (coord_diff > NEW_CPL_COORD_THRESHOLD)
239                            block->new_cpl_coords[ch] = 1;
240                    }
241                }
242            }
243        }
244    }
245
246    /* calculate final coupling coordinates, taking into account reusing of
247       coordinates in successive blocks */
248    for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
249        blk = 0;
250        while (blk < s->num_blocks) {
251            int av_uninit(blk1);
252            AC3Block *block  = &s->blocks[blk];
253
254            if (!block->cpl_in_use) {
255                blk++;
256                continue;
257            }
258
259            for (ch = 1; ch <= s->fbw_channels; ch++) {
260                CoefSumType energy_ch, energy_cpl;
261                if (!block->channel_in_cpl[ch])
262                    continue;
263                energy_cpl = energy[blk][CPL_CH][bnd];
264                energy_ch = energy[blk][ch][bnd];
265                blk1 = blk+1;
266                while (blk1 < s->num_blocks && !s->blocks[blk1].new_cpl_coords[ch]) {
267                    if (s->blocks[blk1].cpl_in_use) {
268                        energy_cpl += energy[blk1][CPL_CH][bnd];
269                        energy_ch += energy[blk1][ch][bnd];
270                    }
271                    blk1++;
272                }
273                cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy_ch, energy_cpl);
274            }
275            blk = blk1;
276        }
277    }
278
279    /* calculate exponents/mantissas for coupling coordinates */
280    for (blk = 0; blk < s->num_blocks; blk++) {
281        AC3Block *block = &s->blocks[blk];
282        if (!block->cpl_in_use)
283            continue;
284
285#if CONFIG_AC3ENC_FLOAT
286        s->ac3dsp.float_to_fixed24(fixed_cpl_coords[blk][1],
287                                   cpl_coords[blk][1],
288                                   s->fbw_channels * 16);
289#endif
290        s->ac3dsp.extract_exponents(block->cpl_coord_exp[1],
291                                    fixed_cpl_coords[blk][1],
292                                    s->fbw_channels * 16);
293
294        for (ch = 1; ch <= s->fbw_channels; ch++) {
295            int bnd, min_exp, max_exp, master_exp;
296
297            if (!block->new_cpl_coords[ch])
298                continue;
299
300            /* determine master exponent */
301            min_exp = max_exp = block->cpl_coord_exp[ch][0];
302            for (bnd = 1; bnd < s->num_cpl_bands; bnd++) {
303                int exp = block->cpl_coord_exp[ch][bnd];
304                min_exp = FFMIN(exp, min_exp);
305                max_exp = FFMAX(exp, max_exp);
306            }
307            master_exp = ((max_exp - 15) + 2) / 3;
308            master_exp = FFMAX(master_exp, 0);
309            while (min_exp < master_exp * 3)
310                master_exp--;
311            for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
312                block->cpl_coord_exp[ch][bnd] = av_clip(block->cpl_coord_exp[ch][bnd] -
313                                                        master_exp * 3, 0, 15);
314            }
315            block->cpl_master_exp[ch] = master_exp;
316
317            /* quantize mantissas */
318            for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
319                int cpl_exp  = block->cpl_coord_exp[ch][bnd];
320                int cpl_mant = (fixed_cpl_coords[blk][ch][bnd] << (5 + cpl_exp + master_exp * 3)) >> 24;
321                if (cpl_exp == 15)
322                    cpl_mant >>= 1;
323                else
324                    cpl_mant -= 16;
325
326                block->cpl_coord_mant[ch][bnd] = cpl_mant;
327            }
328        }
329    }
330
331    if (CONFIG_EAC3_ENCODER && s->eac3)
332        ff_eac3_set_cpl_states(s);
333}
334
335
336/*
337 * Determine rematrixing flags for each block and band.
338 */
339static void compute_rematrixing_strategy(AC3EncodeContext *s)
340{
341    int nb_coefs;
342    int blk, bnd;
343    AC3Block *block, *block0 = NULL;
344
345    if (s->channel_mode != AC3_CHMODE_STEREO)
346        return;
347
348    for (blk = 0; blk < s->num_blocks; blk++) {
349        block = &s->blocks[blk];
350        block->new_rematrixing_strategy = !blk;
351
352        block->num_rematrixing_bands = 4;
353        if (block->cpl_in_use) {
354            block->num_rematrixing_bands -= (s->start_freq[CPL_CH] <= 61);
355            block->num_rematrixing_bands -= (s->start_freq[CPL_CH] == 37);
356            if (blk && block->num_rematrixing_bands != block0->num_rematrixing_bands)
357                block->new_rematrixing_strategy = 1;
358        }
359        nb_coefs = FFMIN(block->end_freq[1], block->end_freq[2]);
360
361        if (!s->rematrixing_enabled) {
362            block0 = block;
363            continue;
364        }
365
366        for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) {
367            /* calculate sum of squared coeffs for one band in one block */
368            int start = ff_ac3_rematrix_band_tab[bnd];
369            int end   = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]);
370            CoefSumType sum[4];
371            sum_square_butterfly(s, sum, block->mdct_coef[1] + start,
372                                 block->mdct_coef[2] + start, end - start);
373
374            /* compare sums to determine if rematrixing will be used for this band */
375            if (FFMIN(sum[2], sum[3]) < FFMIN(sum[0], sum[1]))
376                block->rematrixing_flags[bnd] = 1;
377            else
378                block->rematrixing_flags[bnd] = 0;
379
380            /* determine if new rematrixing flags will be sent */
381            if (blk &&
382                block->rematrixing_flags[bnd] != block0->rematrixing_flags[bnd]) {
383                block->new_rematrixing_strategy = 1;
384            }
385        }
386        block0 = block;
387    }
388}
389
390
391int AC3_NAME(encode_frame)(AVCodecContext *avctx, AVPacket *avpkt,
392                           const AVFrame *frame, int *got_packet_ptr)
393{
394    AC3EncodeContext *s = avctx->priv_data;
395    int ret;
396
397    if (s->options.allow_per_frame_metadata) {
398        ret = ff_ac3_validate_metadata(s);
399        if (ret)
400            return ret;
401    }
402
403    if (s->bit_alloc.sr_code == 1 || s->eac3)
404        ff_ac3_adjust_frame_size(s);
405
406    copy_input_samples(s, (SampleType **)frame->extended_data);
407
408    apply_mdct(s);
409
410    if (s->fixed_point)
411        scale_coefficients(s);
412
413    clip_coefficients(&s->adsp, s->blocks[0].mdct_coef[1],
414                      AC3_MAX_COEFS * s->num_blocks * s->channels);
415
416    s->cpl_on = s->cpl_enabled;
417    ff_ac3_compute_coupling_strategy(s);
418
419    if (s->cpl_on)
420        apply_channel_coupling(s);
421
422    compute_rematrixing_strategy(s);
423
424    if (!s->fixed_point)
425        scale_coefficients(s);
426
427    ff_ac3_apply_rematrixing(s);
428
429    ff_ac3_process_exponents(s);
430
431    ret = ff_ac3_compute_bit_allocation(s);
432    if (ret) {
433        av_log(avctx, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
434        return ret;
435    }
436
437    ff_ac3_group_exponents(s);
438
439    ff_ac3_quantize_mantissas(s);
440
441    if ((ret = ff_alloc_packet2(avctx, avpkt, s->frame_size)) < 0)
442        return ret;
443    ff_ac3_output_frame(s, avpkt->data);
444
445    if (frame->pts != AV_NOPTS_VALUE)
446        avpkt->pts = frame->pts - ff_samples_to_time_base(avctx, avctx->delay);
447
448    *got_packet_ptr = 1;
449    return 0;
450}
451