1/*
2 * AAC encoder psychoacoustic model
3 * Copyright (C) 2008 Konstantin Shishkov
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file
24 * AAC encoder psychoacoustic model
25 */
26
27#include "libavutil/attributes.h"
28#include "libavutil/libm.h"
29
30#include "avcodec.h"
31#include "aactab.h"
32#include "psymodel.h"
33
34/***********************************
35 *              TODOs:
36 * try other bitrate controlling mechanism (maybe use ratecontrol.c?)
37 * control quality for quality-based output
38 **********************************/
39
40/**
41 * constants for 3GPP AAC psychoacoustic model
42 * @{
43 */
44#define PSY_3GPP_THR_SPREAD_HI   1.5f // spreading factor for low-to-hi threshold spreading  (15 dB/Bark)
45#define PSY_3GPP_THR_SPREAD_LOW  3.0f // spreading factor for hi-to-low threshold spreading  (30 dB/Bark)
46/* spreading factor for low-to-hi energy spreading, long block, > 22kbps/channel (20dB/Bark) */
47#define PSY_3GPP_EN_SPREAD_HI_L1 2.0f
48/* spreading factor for low-to-hi energy spreading, long block, <= 22kbps/channel (15dB/Bark) */
49#define PSY_3GPP_EN_SPREAD_HI_L2 1.5f
50/* spreading factor for low-to-hi energy spreading, short block (15 dB/Bark) */
51#define PSY_3GPP_EN_SPREAD_HI_S  1.5f
52/* spreading factor for hi-to-low energy spreading, long block (30dB/Bark) */
53#define PSY_3GPP_EN_SPREAD_LOW_L 3.0f
54/* spreading factor for hi-to-low energy spreading, short block (20dB/Bark) */
55#define PSY_3GPP_EN_SPREAD_LOW_S 2.0f
56
57#define PSY_3GPP_RPEMIN      0.01f
58#define PSY_3GPP_RPELEV      2.0f
59
60#define PSY_3GPP_C1          3.0f           /* log2(8) */
61#define PSY_3GPP_C2          1.3219281f     /* log2(2.5) */
62#define PSY_3GPP_C3          0.55935729f    /* 1 - C2 / C1 */
63
64#define PSY_SNR_1DB          7.9432821e-1f  /* -1dB */
65#define PSY_SNR_25DB         3.1622776e-3f  /* -25dB */
66
67#define PSY_3GPP_SAVE_SLOPE_L  -0.46666667f
68#define PSY_3GPP_SAVE_SLOPE_S  -0.36363637f
69#define PSY_3GPP_SAVE_ADD_L    -0.84285712f
70#define PSY_3GPP_SAVE_ADD_S    -0.75f
71#define PSY_3GPP_SPEND_SLOPE_L  0.66666669f
72#define PSY_3GPP_SPEND_SLOPE_S  0.81818181f
73#define PSY_3GPP_SPEND_ADD_L   -0.35f
74#define PSY_3GPP_SPEND_ADD_S   -0.26111111f
75#define PSY_3GPP_CLIP_LO_L      0.2f
76#define PSY_3GPP_CLIP_LO_S      0.2f
77#define PSY_3GPP_CLIP_HI_L      0.95f
78#define PSY_3GPP_CLIP_HI_S      0.75f
79
80#define PSY_3GPP_AH_THR_LONG    0.5f
81#define PSY_3GPP_AH_THR_SHORT   0.63f
82
83enum {
84    PSY_3GPP_AH_NONE,
85    PSY_3GPP_AH_INACTIVE,
86    PSY_3GPP_AH_ACTIVE
87};
88
89#define PSY_3GPP_BITS_TO_PE(bits) ((bits) * 1.18f)
90
91/* LAME psy model constants */
92#define PSY_LAME_FIR_LEN 21         ///< LAME psy model FIR order
93#define AAC_BLOCK_SIZE_LONG 1024    ///< long block size
94#define AAC_BLOCK_SIZE_SHORT 128    ///< short block size
95#define AAC_NUM_BLOCKS_SHORT 8      ///< number of blocks in a short sequence
96#define PSY_LAME_NUM_SUBBLOCKS 3    ///< Number of sub-blocks in each short block
97
98/**
99 * @}
100 */
101
102/**
103 * information for single band used by 3GPP TS26.403-inspired psychoacoustic model
104 */
105typedef struct AacPsyBand{
106    float energy;       ///< band energy
107    float thr;          ///< energy threshold
108    float thr_quiet;    ///< threshold in quiet
109    float nz_lines;     ///< number of non-zero spectral lines
110    float active_lines; ///< number of active spectral lines
111    float pe;           ///< perceptual entropy
112    float pe_const;     ///< constant part of the PE calculation
113    float norm_fac;     ///< normalization factor for linearization
114    int   avoid_holes;  ///< hole avoidance flag
115}AacPsyBand;
116
117/**
118 * single/pair channel context for psychoacoustic model
119 */
120typedef struct AacPsyChannel{
121    AacPsyBand band[128];               ///< bands information
122    AacPsyBand prev_band[128];          ///< bands information from the previous frame
123
124    float       win_energy;              ///< sliding average of channel energy
125    float       iir_state[2];            ///< hi-pass IIR filter state
126    uint8_t     next_grouping;           ///< stored grouping scheme for the next frame (in case of 8 short window sequence)
127    enum WindowSequence next_window_seq; ///< window sequence to be used in the next frame
128    /* LAME psy model specific members */
129    float attack_threshold;              ///< attack threshold for this channel
130    float prev_energy_subshort[AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS];
131    int   prev_attack;                   ///< attack value for the last short block in the previous sequence
132}AacPsyChannel;
133
134/**
135 * psychoacoustic model frame type-dependent coefficients
136 */
137typedef struct AacPsyCoeffs{
138    float ath;           ///< absolute threshold of hearing per bands
139    float barks;         ///< Bark value for each spectral band in long frame
140    float spread_low[2]; ///< spreading factor for low-to-high threshold spreading in long frame
141    float spread_hi [2]; ///< spreading factor for high-to-low threshold spreading in long frame
142    float min_snr;       ///< minimal SNR
143}AacPsyCoeffs;
144
145/**
146 * 3GPP TS26.403-inspired psychoacoustic model specific data
147 */
148typedef struct AacPsyContext{
149    int chan_bitrate;     ///< bitrate per channel
150    int frame_bits;       ///< average bits per frame
151    int fill_level;       ///< bit reservoir fill level
152    struct {
153        float min;        ///< minimum allowed PE for bit factor calculation
154        float max;        ///< maximum allowed PE for bit factor calculation
155        float previous;   ///< allowed PE of the previous frame
156        float correction; ///< PE correction factor
157    } pe;
158    AacPsyCoeffs psy_coef[2][64];
159    AacPsyChannel *ch;
160}AacPsyContext;
161
162/**
163 * LAME psy model preset struct
164 */
165typedef struct {
166    int   quality;  ///< Quality to map the rest of the vaules to.
167     /* This is overloaded to be both kbps per channel in ABR mode, and
168      * requested quality in constant quality mode.
169      */
170    float st_lrm;   ///< short threshold for L, R, and M channels
171} PsyLamePreset;
172
173/**
174 * LAME psy model preset table for ABR
175 */
176static const PsyLamePreset psy_abr_map[] = {
177/* TODO: Tuning. These were taken from LAME. */
178/* kbps/ch st_lrm   */
179    {  8,  6.60},
180    { 16,  6.60},
181    { 24,  6.60},
182    { 32,  6.60},
183    { 40,  6.60},
184    { 48,  6.60},
185    { 56,  6.60},
186    { 64,  6.40},
187    { 80,  6.00},
188    { 96,  5.60},
189    {112,  5.20},
190    {128,  5.20},
191    {160,  5.20}
192};
193
194/**
195* LAME psy model preset table for constant quality
196*/
197static const PsyLamePreset psy_vbr_map[] = {
198/* vbr_q  st_lrm    */
199    { 0,  4.20},
200    { 1,  4.20},
201    { 2,  4.20},
202    { 3,  4.20},
203    { 4,  4.20},
204    { 5,  4.20},
205    { 6,  4.20},
206    { 7,  4.20},
207    { 8,  4.20},
208    { 9,  4.20},
209    {10,  4.20}
210};
211
212/**
213 * LAME psy model FIR coefficient table
214 */
215static const float psy_fir_coeffs[] = {
216    -8.65163e-18 * 2, -0.00851586 * 2, -6.74764e-18 * 2, 0.0209036 * 2,
217    -3.36639e-17 * 2, -0.0438162 * 2,  -1.54175e-17 * 2, 0.0931738 * 2,
218    -5.52212e-17 * 2, -0.313819 * 2
219};
220
221#if ARCH_MIPS
222#   include "mips/aacpsy_mips.h"
223#endif /* ARCH_MIPS */
224
225/**
226 * Calculate the ABR attack threshold from the above LAME psymodel table.
227 */
228static float lame_calc_attack_threshold(int bitrate)
229{
230    /* Assume max bitrate to start with */
231    int lower_range = 12, upper_range = 12;
232    int lower_range_kbps = psy_abr_map[12].quality;
233    int upper_range_kbps = psy_abr_map[12].quality;
234    int i;
235
236    /* Determine which bitrates the value specified falls between.
237     * If the loop ends without breaking our above assumption of 320kbps was correct.
238     */
239    for (i = 1; i < 13; i++) {
240        if (FFMAX(bitrate, psy_abr_map[i].quality) != bitrate) {
241            upper_range = i;
242            upper_range_kbps = psy_abr_map[i    ].quality;
243            lower_range = i - 1;
244            lower_range_kbps = psy_abr_map[i - 1].quality;
245            break; /* Upper range found */
246        }
247    }
248
249    /* Determine which range the value specified is closer to */
250    if ((upper_range_kbps - bitrate) > (bitrate - lower_range_kbps))
251        return psy_abr_map[lower_range].st_lrm;
252    return psy_abr_map[upper_range].st_lrm;
253}
254
255/**
256 * LAME psy model specific initialization
257 */
258static av_cold void lame_window_init(AacPsyContext *ctx, AVCodecContext *avctx)
259{
260    int i, j;
261
262    for (i = 0; i < avctx->channels; i++) {
263        AacPsyChannel *pch = &ctx->ch[i];
264
265        if (avctx->flags & CODEC_FLAG_QSCALE)
266            pch->attack_threshold = psy_vbr_map[avctx->global_quality / FF_QP2LAMBDA].st_lrm;
267        else
268            pch->attack_threshold = lame_calc_attack_threshold(avctx->bit_rate / avctx->channels / 1000);
269
270        for (j = 0; j < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; j++)
271            pch->prev_energy_subshort[j] = 10.0f;
272    }
273}
274
275/**
276 * Calculate Bark value for given line.
277 */
278static av_cold float calc_bark(float f)
279{
280    return 13.3f * atanf(0.00076f * f) + 3.5f * atanf((f / 7500.0f) * (f / 7500.0f));
281}
282
283#define ATH_ADD 4
284/**
285 * Calculate ATH value for given frequency.
286 * Borrowed from Lame.
287 */
288static av_cold float ath(float f, float add)
289{
290    f /= 1000.0f;
291    return    3.64 * pow(f, -0.8)
292            - 6.8  * exp(-0.6  * (f - 3.4) * (f - 3.4))
293            + 6.0  * exp(-0.15 * (f - 8.7) * (f - 8.7))
294            + (0.6 + 0.04 * add) * 0.001 * f * f * f * f;
295}
296
297static av_cold int psy_3gpp_init(FFPsyContext *ctx) {
298    AacPsyContext *pctx;
299    float bark;
300    int i, j, g, start;
301    float prev, minscale, minath, minsnr, pe_min;
302    const int chan_bitrate = ctx->avctx->bit_rate / ctx->avctx->channels;
303    const int bandwidth    = ctx->avctx->cutoff ? ctx->avctx->cutoff : AAC_CUTOFF(ctx->avctx);
304    const float num_bark   = calc_bark((float)bandwidth);
305
306    ctx->model_priv_data = av_mallocz(sizeof(AacPsyContext));
307    pctx = (AacPsyContext*) ctx->model_priv_data;
308
309    pctx->chan_bitrate = chan_bitrate;
310    pctx->frame_bits   = chan_bitrate * AAC_BLOCK_SIZE_LONG / ctx->avctx->sample_rate;
311    pctx->pe.min       =  8.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f);
312    pctx->pe.max       = 12.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f);
313    ctx->bitres.size   = 6144 - pctx->frame_bits;
314    ctx->bitres.size  -= ctx->bitres.size % 8;
315    pctx->fill_level   = ctx->bitres.size;
316    minath = ath(3410, ATH_ADD);
317    for (j = 0; j < 2; j++) {
318        AacPsyCoeffs *coeffs = pctx->psy_coef[j];
319        const uint8_t *band_sizes = ctx->bands[j];
320        float line_to_frequency = ctx->avctx->sample_rate / (j ? 256.f : 2048.0f);
321        float avg_chan_bits = chan_bitrate * (j ? 128.0f : 1024.0f) / ctx->avctx->sample_rate;
322        /* reference encoder uses 2.4% here instead of 60% like the spec says */
323        float bark_pe = 0.024f * PSY_3GPP_BITS_TO_PE(avg_chan_bits) / num_bark;
324        float en_spread_low = j ? PSY_3GPP_EN_SPREAD_LOW_S : PSY_3GPP_EN_SPREAD_LOW_L;
325        /* High energy spreading for long blocks <= 22kbps/channel and short blocks are the same. */
326        float en_spread_hi  = (j || (chan_bitrate <= 22.0f)) ? PSY_3GPP_EN_SPREAD_HI_S : PSY_3GPP_EN_SPREAD_HI_L1;
327
328        i = 0;
329        prev = 0.0;
330        for (g = 0; g < ctx->num_bands[j]; g++) {
331            i += band_sizes[g];
332            bark = calc_bark((i-1) * line_to_frequency);
333            coeffs[g].barks = (bark + prev) / 2.0;
334            prev = bark;
335        }
336        for (g = 0; g < ctx->num_bands[j] - 1; g++) {
337            AacPsyCoeffs *coeff = &coeffs[g];
338            float bark_width = coeffs[g+1].barks - coeffs->barks;
339            coeff->spread_low[0] = pow(10.0, -bark_width * PSY_3GPP_THR_SPREAD_LOW);
340            coeff->spread_hi [0] = pow(10.0, -bark_width * PSY_3GPP_THR_SPREAD_HI);
341            coeff->spread_low[1] = pow(10.0, -bark_width * en_spread_low);
342            coeff->spread_hi [1] = pow(10.0, -bark_width * en_spread_hi);
343            pe_min = bark_pe * bark_width;
344            minsnr = exp2(pe_min / band_sizes[g]) - 1.5f;
345            coeff->min_snr = av_clipf(1.0f / minsnr, PSY_SNR_25DB, PSY_SNR_1DB);
346        }
347        start = 0;
348        for (g = 0; g < ctx->num_bands[j]; g++) {
349            minscale = ath(start * line_to_frequency, ATH_ADD);
350            for (i = 1; i < band_sizes[g]; i++)
351                minscale = FFMIN(minscale, ath((start + i) * line_to_frequency, ATH_ADD));
352            coeffs[g].ath = minscale - minath;
353            start += band_sizes[g];
354        }
355    }
356
357    pctx->ch = av_mallocz_array(ctx->avctx->channels, sizeof(AacPsyChannel));
358
359    lame_window_init(pctx, ctx->avctx);
360
361    return 0;
362}
363
364/**
365 * IIR filter used in block switching decision
366 */
367static float iir_filter(int in, float state[2])
368{
369    float ret;
370
371    ret = 0.7548f * (in - state[0]) + 0.5095f * state[1];
372    state[0] = in;
373    state[1] = ret;
374    return ret;
375}
376
377/**
378 * window grouping information stored as bits (0 - new group, 1 - group continues)
379 */
380static const uint8_t window_grouping[9] = {
381    0xB6, 0x6C, 0xD8, 0xB2, 0x66, 0xC6, 0x96, 0x36, 0x36
382};
383
384/**
385 * Tell encoder which window types to use.
386 * @see 3GPP TS26.403 5.4.1 "Blockswitching"
387 */
388static av_unused FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx,
389                                                 const int16_t *audio,
390                                                 const int16_t *la,
391                                                 int channel, int prev_type)
392{
393    int i, j;
394    int br               = ctx->avctx->bit_rate / ctx->avctx->channels;
395    int attack_ratio     = br <= 16000 ? 18 : 10;
396    AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
397    AacPsyChannel *pch  = &pctx->ch[channel];
398    uint8_t grouping     = 0;
399    int next_type        = pch->next_window_seq;
400    FFPsyWindowInfo wi  = { { 0 } };
401
402    if (la) {
403        float s[8], v;
404        int switch_to_eight = 0;
405        float sum = 0.0, sum2 = 0.0;
406        int attack_n = 0;
407        int stay_short = 0;
408        for (i = 0; i < 8; i++) {
409            for (j = 0; j < 128; j++) {
410                v = iir_filter(la[i*128+j], pch->iir_state);
411                sum += v*v;
412            }
413            s[i]  = sum;
414            sum2 += sum;
415        }
416        for (i = 0; i < 8; i++) {
417            if (s[i] > pch->win_energy * attack_ratio) {
418                attack_n        = i + 1;
419                switch_to_eight = 1;
420                break;
421            }
422        }
423        pch->win_energy = pch->win_energy*7/8 + sum2/64;
424
425        wi.window_type[1] = prev_type;
426        switch (prev_type) {
427        case ONLY_LONG_SEQUENCE:
428            wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE;
429            next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE;
430            break;
431        case LONG_START_SEQUENCE:
432            wi.window_type[0] = EIGHT_SHORT_SEQUENCE;
433            grouping = pch->next_grouping;
434            next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
435            break;
436        case LONG_STOP_SEQUENCE:
437            wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE;
438            next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE;
439            break;
440        case EIGHT_SHORT_SEQUENCE:
441            stay_short = next_type == EIGHT_SHORT_SEQUENCE || switch_to_eight;
442            wi.window_type[0] = stay_short ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
443            grouping = next_type == EIGHT_SHORT_SEQUENCE ? pch->next_grouping : 0;
444            next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
445            break;
446        }
447
448        pch->next_grouping = window_grouping[attack_n];
449        pch->next_window_seq = next_type;
450    } else {
451        for (i = 0; i < 3; i++)
452            wi.window_type[i] = prev_type;
453        grouping = (prev_type == EIGHT_SHORT_SEQUENCE) ? window_grouping[0] : 0;
454    }
455
456    wi.window_shape   = 1;
457    if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) {
458        wi.num_windows = 1;
459        wi.grouping[0] = 1;
460    } else {
461        int lastgrp = 0;
462        wi.num_windows = 8;
463        for (i = 0; i < 8; i++) {
464            if (!((grouping >> i) & 1))
465                lastgrp = i;
466            wi.grouping[lastgrp]++;
467        }
468    }
469
470    return wi;
471}
472
473/* 5.6.1.2 "Calculation of Bit Demand" */
474static int calc_bit_demand(AacPsyContext *ctx, float pe, int bits, int size,
475                           int short_window)
476{
477    const float bitsave_slope  = short_window ? PSY_3GPP_SAVE_SLOPE_S  : PSY_3GPP_SAVE_SLOPE_L;
478    const float bitsave_add    = short_window ? PSY_3GPP_SAVE_ADD_S    : PSY_3GPP_SAVE_ADD_L;
479    const float bitspend_slope = short_window ? PSY_3GPP_SPEND_SLOPE_S : PSY_3GPP_SPEND_SLOPE_L;
480    const float bitspend_add   = short_window ? PSY_3GPP_SPEND_ADD_S   : PSY_3GPP_SPEND_ADD_L;
481    const float clip_low       = short_window ? PSY_3GPP_CLIP_LO_S     : PSY_3GPP_CLIP_LO_L;
482    const float clip_high      = short_window ? PSY_3GPP_CLIP_HI_S     : PSY_3GPP_CLIP_HI_L;
483    float clipped_pe, bit_save, bit_spend, bit_factor, fill_level;
484
485    ctx->fill_level += ctx->frame_bits - bits;
486    ctx->fill_level  = av_clip(ctx->fill_level, 0, size);
487    fill_level = av_clipf((float)ctx->fill_level / size, clip_low, clip_high);
488    clipped_pe = av_clipf(pe, ctx->pe.min, ctx->pe.max);
489    bit_save   = (fill_level + bitsave_add) * bitsave_slope;
490    assert(bit_save <= 0.3f && bit_save >= -0.05000001f);
491    bit_spend  = (fill_level + bitspend_add) * bitspend_slope;
492    assert(bit_spend <= 0.5f && bit_spend >= -0.1f);
493    /* The bit factor graph in the spec is obviously incorrect.
494     *      bit_spend + ((bit_spend - bit_spend))...
495     * The reference encoder subtracts everything from 1, but also seems incorrect.
496     *      1 - bit_save + ((bit_spend + bit_save))...
497     * Hopefully below is correct.
498     */
499    bit_factor = 1.0f - bit_save + ((bit_spend - bit_save) / (ctx->pe.max - ctx->pe.min)) * (clipped_pe - ctx->pe.min);
500    /* NOTE: The reference encoder attempts to center pe max/min around the current pe. */
501    ctx->pe.max = FFMAX(pe, ctx->pe.max);
502    ctx->pe.min = FFMIN(pe, ctx->pe.min);
503
504    return FFMIN(ctx->frame_bits * bit_factor, ctx->frame_bits + size - bits);
505}
506
507static float calc_pe_3gpp(AacPsyBand *band)
508{
509    float pe, a;
510
511    band->pe           = 0.0f;
512    band->pe_const     = 0.0f;
513    band->active_lines = 0.0f;
514    if (band->energy > band->thr) {
515        a  = log2f(band->energy);
516        pe = a - log2f(band->thr);
517        band->active_lines = band->nz_lines;
518        if (pe < PSY_3GPP_C1) {
519            pe = pe * PSY_3GPP_C3 + PSY_3GPP_C2;
520            a  = a  * PSY_3GPP_C3 + PSY_3GPP_C2;
521            band->active_lines *= PSY_3GPP_C3;
522        }
523        band->pe       = pe * band->nz_lines;
524        band->pe_const = a  * band->nz_lines;
525    }
526
527    return band->pe;
528}
529
530static float calc_reduction_3gpp(float a, float desired_pe, float pe,
531                                 float active_lines)
532{
533    float thr_avg, reduction;
534
535    if(active_lines == 0.0)
536        return 0;
537
538    thr_avg   = exp2f((a - pe) / (4.0f * active_lines));
539    reduction = exp2f((a - desired_pe) / (4.0f * active_lines)) - thr_avg;
540
541    return FFMAX(reduction, 0.0f);
542}
543
544static float calc_reduced_thr_3gpp(AacPsyBand *band, float min_snr,
545                                   float reduction)
546{
547    float thr = band->thr;
548
549    if (band->energy > thr) {
550        thr = sqrtf(thr);
551        thr = sqrtf(thr) + reduction;
552        thr *= thr;
553        thr *= thr;
554
555        /* This deviates from the 3GPP spec to match the reference encoder.
556         * It performs min(thr_reduced, max(thr, energy/min_snr)) only for bands
557         * that have hole avoidance on (active or inactive). It always reduces the
558         * threshold of bands with hole avoidance off.
559         */
560        if (thr > band->energy * min_snr && band->avoid_holes != PSY_3GPP_AH_NONE) {
561            thr = FFMAX(band->thr, band->energy * min_snr);
562            band->avoid_holes = PSY_3GPP_AH_ACTIVE;
563        }
564    }
565
566    return thr;
567}
568
569#ifndef calc_thr_3gpp
570static void calc_thr_3gpp(const FFPsyWindowInfo *wi, const int num_bands, AacPsyChannel *pch,
571                          const uint8_t *band_sizes, const float *coefs)
572{
573    int i, w, g;
574    int start = 0;
575    for (w = 0; w < wi->num_windows*16; w += 16) {
576        for (g = 0; g < num_bands; g++) {
577            AacPsyBand *band = &pch->band[w+g];
578
579            float form_factor = 0.0f;
580            float Temp;
581            band->energy = 0.0f;
582            for (i = 0; i < band_sizes[g]; i++) {
583                band->energy += coefs[start+i] * coefs[start+i];
584                form_factor  += sqrtf(fabs(coefs[start+i]));
585            }
586            Temp = band->energy > 0 ? sqrtf((float)band_sizes[g] / band->energy) : 0;
587            band->thr      = band->energy * 0.001258925f;
588            band->nz_lines = form_factor * sqrtf(Temp);
589
590            start += band_sizes[g];
591        }
592    }
593}
594#endif /* calc_thr_3gpp */
595
596#ifndef psy_hp_filter
597static void psy_hp_filter(const float *firbuf, float *hpfsmpl, const float *psy_fir_coeffs)
598{
599    int i, j;
600    for (i = 0; i < AAC_BLOCK_SIZE_LONG; i++) {
601        float sum1, sum2;
602        sum1 = firbuf[i + (PSY_LAME_FIR_LEN - 1) / 2];
603        sum2 = 0.0;
604        for (j = 0; j < ((PSY_LAME_FIR_LEN - 1) / 2) - 1; j += 2) {
605            sum1 += psy_fir_coeffs[j] * (firbuf[i + j] + firbuf[i + PSY_LAME_FIR_LEN - j]);
606            sum2 += psy_fir_coeffs[j + 1] * (firbuf[i + j + 1] + firbuf[i + PSY_LAME_FIR_LEN - j - 1]);
607        }
608        /* NOTE: The LAME psymodel expects it's input in the range -32768 to 32768.
609         *       Tuning this for normalized floats would be difficult. */
610        hpfsmpl[i] = (sum1 + sum2) * 32768.0f;
611    }
612}
613#endif /* psy_hp_filter */
614
615/**
616 * Calculate band thresholds as suggested in 3GPP TS26.403
617 */
618static void psy_3gpp_analyze_channel(FFPsyContext *ctx, int channel,
619                                     const float *coefs, const FFPsyWindowInfo *wi)
620{
621    AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
622    AacPsyChannel *pch  = &pctx->ch[channel];
623    int i, w, g;
624    float desired_bits, desired_pe, delta_pe, reduction= NAN, spread_en[128] = {0};
625    float a = 0.0f, active_lines = 0.0f, norm_fac = 0.0f;
626    float pe = pctx->chan_bitrate > 32000 ? 0.0f : FFMAX(50.0f, 100.0f - pctx->chan_bitrate * 100.0f / 32000.0f);
627    const int      num_bands   = ctx->num_bands[wi->num_windows == 8];
628    const uint8_t *band_sizes  = ctx->bands[wi->num_windows == 8];
629    AacPsyCoeffs  *coeffs      = pctx->psy_coef[wi->num_windows == 8];
630    const float avoid_hole_thr = wi->num_windows == 8 ? PSY_3GPP_AH_THR_SHORT : PSY_3GPP_AH_THR_LONG;
631
632    //calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation"
633    calc_thr_3gpp(wi, num_bands, pch, band_sizes, coefs);
634
635    //modify thresholds and energies - spread, threshold in quiet, pre-echo control
636    for (w = 0; w < wi->num_windows*16; w += 16) {
637        AacPsyBand *bands = &pch->band[w];
638
639        /* 5.4.2.3 "Spreading" & 5.4.3 "Spread Energy Calculation" */
640        spread_en[0] = bands[0].energy;
641        for (g = 1; g < num_bands; g++) {
642            bands[g].thr   = FFMAX(bands[g].thr,    bands[g-1].thr * coeffs[g].spread_hi[0]);
643            spread_en[w+g] = FFMAX(bands[g].energy, spread_en[w+g-1] * coeffs[g].spread_hi[1]);
644        }
645        for (g = num_bands - 2; g >= 0; g--) {
646            bands[g].thr   = FFMAX(bands[g].thr,   bands[g+1].thr * coeffs[g].spread_low[0]);
647            spread_en[w+g] = FFMAX(spread_en[w+g], spread_en[w+g+1] * coeffs[g].spread_low[1]);
648        }
649        //5.4.2.4 "Threshold in quiet"
650        for (g = 0; g < num_bands; g++) {
651            AacPsyBand *band = &bands[g];
652
653            band->thr_quiet = band->thr = FFMAX(band->thr, coeffs[g].ath);
654            //5.4.2.5 "Pre-echo control"
655            if (!(wi->window_type[0] == LONG_STOP_SEQUENCE || (wi->window_type[1] == LONG_START_SEQUENCE && !w)))
656                band->thr = FFMAX(PSY_3GPP_RPEMIN*band->thr, FFMIN(band->thr,
657                                  PSY_3GPP_RPELEV*pch->prev_band[w+g].thr_quiet));
658
659            /* 5.6.1.3.1 "Preparatory steps of the perceptual entropy calculation" */
660            pe += calc_pe_3gpp(band);
661            a  += band->pe_const;
662            active_lines += band->active_lines;
663
664            /* 5.6.1.3.3 "Selection of the bands for avoidance of holes" */
665            if (spread_en[w+g] * avoid_hole_thr > band->energy || coeffs[g].min_snr > 1.0f)
666                band->avoid_holes = PSY_3GPP_AH_NONE;
667            else
668                band->avoid_holes = PSY_3GPP_AH_INACTIVE;
669        }
670    }
671
672    /* 5.6.1.3.2 "Calculation of the desired perceptual entropy" */
673    ctx->ch[channel].entropy = pe;
674    desired_bits = calc_bit_demand(pctx, pe, ctx->bitres.bits, ctx->bitres.size, wi->num_windows == 8);
675    desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits);
676    /* NOTE: PE correction is kept simple. During initial testing it had very
677     *       little effect on the final bitrate. Probably a good idea to come
678     *       back and do more testing later.
679     */
680    if (ctx->bitres.bits > 0)
681        desired_pe *= av_clipf(pctx->pe.previous / PSY_3GPP_BITS_TO_PE(ctx->bitres.bits),
682                               0.85f, 1.15f);
683    pctx->pe.previous = PSY_3GPP_BITS_TO_PE(desired_bits);
684
685    if (desired_pe < pe) {
686        /* 5.6.1.3.4 "First Estimation of the reduction value" */
687        for (w = 0; w < wi->num_windows*16; w += 16) {
688            reduction = calc_reduction_3gpp(a, desired_pe, pe, active_lines);
689            pe = 0.0f;
690            a  = 0.0f;
691            active_lines = 0.0f;
692            for (g = 0; g < num_bands; g++) {
693                AacPsyBand *band = &pch->band[w+g];
694
695                band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction);
696                /* recalculate PE */
697                pe += calc_pe_3gpp(band);
698                a  += band->pe_const;
699                active_lines += band->active_lines;
700            }
701        }
702
703        /* 5.6.1.3.5 "Second Estimation of the reduction value" */
704        for (i = 0; i < 2; i++) {
705            float pe_no_ah = 0.0f, desired_pe_no_ah;
706            active_lines = a = 0.0f;
707            for (w = 0; w < wi->num_windows*16; w += 16) {
708                for (g = 0; g < num_bands; g++) {
709                    AacPsyBand *band = &pch->band[w+g];
710
711                    if (band->avoid_holes != PSY_3GPP_AH_ACTIVE) {
712                        pe_no_ah += band->pe;
713                        a        += band->pe_const;
714                        active_lines += band->active_lines;
715                    }
716                }
717            }
718            desired_pe_no_ah = FFMAX(desired_pe - (pe - pe_no_ah), 0.0f);
719            if (active_lines > 0.0f)
720                reduction += calc_reduction_3gpp(a, desired_pe_no_ah, pe_no_ah, active_lines);
721
722            pe = 0.0f;
723            for (w = 0; w < wi->num_windows*16; w += 16) {
724                for (g = 0; g < num_bands; g++) {
725                    AacPsyBand *band = &pch->band[w+g];
726
727                    if (active_lines > 0.0f)
728                        band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction);
729                    pe += calc_pe_3gpp(band);
730                    band->norm_fac = band->active_lines / band->thr;
731                    norm_fac += band->norm_fac;
732                }
733            }
734            delta_pe = desired_pe - pe;
735            if (fabs(delta_pe) > 0.05f * desired_pe)
736                break;
737        }
738
739        if (pe < 1.15f * desired_pe) {
740            /* 6.6.1.3.6 "Final threshold modification by linearization" */
741            norm_fac = 1.0f / norm_fac;
742            for (w = 0; w < wi->num_windows*16; w += 16) {
743                for (g = 0; g < num_bands; g++) {
744                    AacPsyBand *band = &pch->band[w+g];
745
746                    if (band->active_lines > 0.5f) {
747                        float delta_sfb_pe = band->norm_fac * norm_fac * delta_pe;
748                        float thr = band->thr;
749
750                        thr *= exp2f(delta_sfb_pe / band->active_lines);
751                        if (thr > coeffs[g].min_snr * band->energy && band->avoid_holes == PSY_3GPP_AH_INACTIVE)
752                            thr = FFMAX(band->thr, coeffs[g].min_snr * band->energy);
753                        band->thr = thr;
754                    }
755                }
756            }
757        } else {
758            /* 5.6.1.3.7 "Further perceptual entropy reduction" */
759            g = num_bands;
760            while (pe > desired_pe && g--) {
761                for (w = 0; w < wi->num_windows*16; w+= 16) {
762                    AacPsyBand *band = &pch->band[w+g];
763                    if (band->avoid_holes != PSY_3GPP_AH_NONE && coeffs[g].min_snr < PSY_SNR_1DB) {
764                        coeffs[g].min_snr = PSY_SNR_1DB;
765                        band->thr = band->energy * PSY_SNR_1DB;
766                        pe += band->active_lines * 1.5f - band->pe;
767                    }
768                }
769            }
770            /* TODO: allow more holes (unused without mid/side) */
771        }
772    }
773
774    for (w = 0; w < wi->num_windows*16; w += 16) {
775        for (g = 0; g < num_bands; g++) {
776            AacPsyBand *band     = &pch->band[w+g];
777            FFPsyBand  *psy_band = &ctx->ch[channel].psy_bands[w+g];
778
779            psy_band->threshold = band->thr;
780            psy_band->energy    = band->energy;
781        }
782    }
783
784    memcpy(pch->prev_band, pch->band, sizeof(pch->band));
785}
786
787static void psy_3gpp_analyze(FFPsyContext *ctx, int channel,
788                                   const float **coeffs, const FFPsyWindowInfo *wi)
789{
790    int ch;
791    FFPsyChannelGroup *group = ff_psy_find_group(ctx, channel);
792
793    for (ch = 0; ch < group->num_ch; ch++)
794        psy_3gpp_analyze_channel(ctx, channel + ch, coeffs[ch], &wi[ch]);
795}
796
797static av_cold void psy_3gpp_end(FFPsyContext *apc)
798{
799    AacPsyContext *pctx = (AacPsyContext*) apc->model_priv_data;
800    av_freep(&pctx->ch);
801    av_freep(&apc->model_priv_data);
802}
803
804static void lame_apply_block_type(AacPsyChannel *ctx, FFPsyWindowInfo *wi, int uselongblock)
805{
806    int blocktype = ONLY_LONG_SEQUENCE;
807    if (uselongblock) {
808        if (ctx->next_window_seq == EIGHT_SHORT_SEQUENCE)
809            blocktype = LONG_STOP_SEQUENCE;
810    } else {
811        blocktype = EIGHT_SHORT_SEQUENCE;
812        if (ctx->next_window_seq == ONLY_LONG_SEQUENCE)
813            ctx->next_window_seq = LONG_START_SEQUENCE;
814        if (ctx->next_window_seq == LONG_STOP_SEQUENCE)
815            ctx->next_window_seq = EIGHT_SHORT_SEQUENCE;
816    }
817
818    wi->window_type[0] = ctx->next_window_seq;
819    ctx->next_window_seq = blocktype;
820}
821
822static FFPsyWindowInfo psy_lame_window(FFPsyContext *ctx, const float *audio,
823                                       const float *la, int channel, int prev_type)
824{
825    AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
826    AacPsyChannel *pch  = &pctx->ch[channel];
827    int grouping     = 0;
828    int uselongblock = 1;
829    int attacks[AAC_NUM_BLOCKS_SHORT + 1] = { 0 };
830    int i;
831    FFPsyWindowInfo wi = { { 0 } };
832
833    if (la) {
834        float hpfsmpl[AAC_BLOCK_SIZE_LONG];
835        float const *pf = hpfsmpl;
836        float attack_intensity[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS];
837        float energy_subshort[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS];
838        float energy_short[AAC_NUM_BLOCKS_SHORT + 1] = { 0 };
839        const float *firbuf = la + (AAC_BLOCK_SIZE_SHORT/4 - PSY_LAME_FIR_LEN);
840        int att_sum = 0;
841
842        /* LAME comment: apply high pass filter of fs/4 */
843        psy_hp_filter(firbuf, hpfsmpl, psy_fir_coeffs);
844
845        /* Calculate the energies of each sub-shortblock */
846        for (i = 0; i < PSY_LAME_NUM_SUBBLOCKS; i++) {
847            energy_subshort[i] = pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 1) * PSY_LAME_NUM_SUBBLOCKS)];
848            assert(pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)] > 0);
849            attack_intensity[i] = energy_subshort[i] / pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)];
850            energy_short[0] += energy_subshort[i];
851        }
852
853        for (i = 0; i < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; i++) {
854            float const *const pfe = pf + AAC_BLOCK_SIZE_LONG / (AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS);
855            float p = 1.0f;
856            for (; pf < pfe; pf++)
857                p = FFMAX(p, fabsf(*pf));
858            pch->prev_energy_subshort[i] = energy_subshort[i + PSY_LAME_NUM_SUBBLOCKS] = p;
859            energy_short[1 + i / PSY_LAME_NUM_SUBBLOCKS] += p;
860            /* NOTE: The indexes below are [i + 3 - 2] in the LAME source.
861             *       Obviously the 3 and 2 have some significance, or this would be just [i + 1]
862             *       (which is what we use here). What the 3 stands for is ambiguous, as it is both
863             *       number of short blocks, and the number of sub-short blocks.
864             *       It seems that LAME is comparing each sub-block to sub-block + 1 in the
865             *       previous block.
866             */
867            if (p > energy_subshort[i + 1])
868                p = p / energy_subshort[i + 1];
869            else if (energy_subshort[i + 1] > p * 10.0f)
870                p = energy_subshort[i + 1] / (p * 10.0f);
871            else
872                p = 0.0;
873            attack_intensity[i + PSY_LAME_NUM_SUBBLOCKS] = p;
874        }
875
876        /* compare energy between sub-short blocks */
877        for (i = 0; i < (AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS; i++)
878            if (!attacks[i / PSY_LAME_NUM_SUBBLOCKS])
879                if (attack_intensity[i] > pch->attack_threshold)
880                    attacks[i / PSY_LAME_NUM_SUBBLOCKS] = (i % PSY_LAME_NUM_SUBBLOCKS) + 1;
881
882        /* should have energy change between short blocks, in order to avoid periodic signals */
883        /* Good samples to show the effect are Trumpet test songs */
884        /* GB: tuned (1) to avoid too many short blocks for test sample TRUMPET */
885        /* RH: tuned (2) to let enough short blocks through for test sample FSOL and SNAPS */
886        for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++) {
887            float const u = energy_short[i - 1];
888            float const v = energy_short[i];
889            float const m = FFMAX(u, v);
890            if (m < 40000) {                          /* (2) */
891                if (u < 1.7f * v && v < 1.7f * u) {   /* (1) */
892                    if (i == 1 && attacks[0] < attacks[i])
893                        attacks[0] = 0;
894                    attacks[i] = 0;
895                }
896            }
897            att_sum += attacks[i];
898        }
899
900        if (attacks[0] <= pch->prev_attack)
901            attacks[0] = 0;
902
903        att_sum += attacks[0];
904        /* 3 below indicates the previous attack happened in the last sub-block of the previous sequence */
905        if (pch->prev_attack == 3 || att_sum) {
906            uselongblock = 0;
907
908            for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++)
909                if (attacks[i] && attacks[i-1])
910                    attacks[i] = 0;
911        }
912    } else {
913        /* We have no lookahead info, so just use same type as the previous sequence. */
914        uselongblock = !(prev_type == EIGHT_SHORT_SEQUENCE);
915    }
916
917    lame_apply_block_type(pch, &wi, uselongblock);
918
919    wi.window_type[1] = prev_type;
920    if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) {
921        wi.num_windows  = 1;
922        wi.grouping[0]  = 1;
923        if (wi.window_type[0] == LONG_START_SEQUENCE)
924            wi.window_shape = 0;
925        else
926            wi.window_shape = 1;
927    } else {
928        int lastgrp = 0;
929
930        wi.num_windows = 8;
931        wi.window_shape = 0;
932        for (i = 0; i < 8; i++) {
933            if (!((pch->next_grouping >> i) & 1))
934                lastgrp = i;
935            wi.grouping[lastgrp]++;
936        }
937    }
938
939    /* Determine grouping, based on the location of the first attack, and save for
940     * the next frame.
941     * FIXME: Move this to analysis.
942     * TODO: Tune groupings depending on attack location
943     * TODO: Handle more than one attack in a group
944     */
945    for (i = 0; i < 9; i++) {
946        if (attacks[i]) {
947            grouping = i;
948            break;
949        }
950    }
951    pch->next_grouping = window_grouping[grouping];
952
953    pch->prev_attack = attacks[8];
954
955    return wi;
956}
957
958const FFPsyModel ff_aac_psy_model =
959{
960    .name    = "3GPP TS 26.403-inspired model",
961    .init    = psy_3gpp_init,
962    .window  = psy_lame_window,
963    .analyze = psy_3gpp_analyze,
964    .end     = psy_3gpp_end,
965};
966