1/*#define CHASE_CHAIN*/
2/*
3 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that: (1) source code distributions
8 * retain the above copyright notice and this paragraph in its entirety, (2)
9 * distributions including binary code include the above copyright notice and
10 * this paragraph in its entirety in the documentation or other materials
11 * provided with the distribution, and (3) all advertising materials mentioning
12 * features or use of this software display the following acknowledgement:
13 * ``This product includes software developed by the University of California,
14 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15 * the University nor the names of its contributors may be used to endorse
16 * or promote products derived from this software without specific prior
17 * written permission.
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21 */
22#ifndef lint
23static const char rcsid[] _U_ =
24    "@(#) $Header: /tcpdump/master/libpcap/gencode.c,v 1.309 2008-12-23 20:13:29 guy Exp $ (LBL)";
25#endif
26
27#ifdef HAVE_CONFIG_H
28#include "config.h"
29#endif
30
31#ifdef WIN32
32#include <pcap-stdinc.h>
33#else /* WIN32 */
34#if HAVE_INTTYPES_H
35#include <inttypes.h>
36#elif HAVE_STDINT_H
37#include <stdint.h>
38#endif
39#ifdef HAVE_SYS_BITYPES_H
40#include <sys/bitypes.h>
41#endif
42#include <sys/types.h>
43#include <sys/socket.h>
44#endif /* WIN32 */
45
46/*
47 * XXX - why was this included even on UNIX?
48 */
49#ifdef __MINGW32__
50#include "ip6_misc.h"
51#endif
52
53#ifndef WIN32
54
55#ifdef __NetBSD__
56#include <sys/param.h>
57#endif
58
59#include <netinet/in.h>
60#include <arpa/inet.h>
61
62#endif /* WIN32 */
63
64#include <stdlib.h>
65#include <string.h>
66#include <memory.h>
67#include <setjmp.h>
68#include <stdarg.h>
69
70#ifdef MSDOS
71#include "pcap-dos.h"
72#endif
73
74#include "pcap-int.h"
75
76#include "ethertype.h"
77#include "nlpid.h"
78#include "llc.h"
79#include "gencode.h"
80#include "ieee80211.h"
81#include "atmuni31.h"
82#include "sunatmpos.h"
83#include "ppp.h"
84#include "pcap/sll.h"
85#include "pcap/ipnet.h"
86#include "arcnet.h"
87#if defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
88#include <linux/types.h>
89#include <linux/if_packet.h>
90#include <linux/filter.h>
91#endif
92#ifdef HAVE_NET_PFVAR_H
93#include <sys/socket.h>
94#include <net/if.h>
95#include <net/pfvar.h>
96#include <net/if_pflog.h>
97#endif
98#ifndef offsetof
99#define offsetof(s, e) ((size_t)&((s *)0)->e)
100#endif
101#ifdef INET6
102#ifndef WIN32
103#include <netdb.h>	/* for "struct addrinfo" */
104#endif /* WIN32 */
105#endif /*INET6*/
106#include <pcap/namedb.h>
107
108#define ETHERMTU	1500
109
110#ifndef IPPROTO_HOPOPTS
111#define IPPROTO_HOPOPTS 0
112#endif
113#ifndef IPPROTO_ROUTING
114#define IPPROTO_ROUTING 43
115#endif
116#ifndef IPPROTO_FRAGMENT
117#define IPPROTO_FRAGMENT 44
118#endif
119#ifndef IPPROTO_DSTOPTS
120#define IPPROTO_DSTOPTS 60
121#endif
122#ifndef IPPROTO_SCTP
123#define IPPROTO_SCTP 132
124#endif
125
126#ifdef HAVE_OS_PROTO_H
127#include "os-proto.h"
128#endif
129
130#define JMP(c) ((c)|BPF_JMP|BPF_K)
131
132/* Locals */
133static jmp_buf top_ctx;
134static pcap_t *bpf_pcap;
135
136/* Hack for updating VLAN, MPLS, and PPPoE offsets. */
137#ifdef WIN32
138static u_int	orig_linktype = (u_int)-1, orig_nl = (u_int)-1, label_stack_depth = (u_int)-1;
139#else
140static u_int	orig_linktype = -1U, orig_nl = -1U, label_stack_depth = -1U;
141#endif
142
143/* XXX */
144#ifdef PCAP_FDDIPAD
145static int	pcap_fddipad;
146#endif
147
148/* VARARGS */
149void
150bpf_error(const char *fmt, ...)
151{
152	va_list ap;
153
154	va_start(ap, fmt);
155	if (bpf_pcap != NULL)
156		(void)vsnprintf(pcap_geterr(bpf_pcap), PCAP_ERRBUF_SIZE,
157		    fmt, ap);
158	va_end(ap);
159	longjmp(top_ctx, 1);
160	/* NOTREACHED */
161}
162
163static void init_linktype(pcap_t *);
164
165static void init_regs(void);
166static int alloc_reg(void);
167static void free_reg(int);
168
169static struct block *root;
170
171/*
172 * Value passed to gen_load_a() to indicate what the offset argument
173 * is relative to.
174 */
175enum e_offrel {
176	OR_PACKET,	/* relative to the beginning of the packet */
177	OR_LINK,	/* relative to the beginning of the link-layer header */
178	OR_MACPL,	/* relative to the end of the MAC-layer header */
179	OR_NET,		/* relative to the network-layer header */
180	OR_NET_NOSNAP,	/* relative to the network-layer header, with no SNAP header at the link layer */
181	OR_TRAN_IPV4,	/* relative to the transport-layer header, with IPv4 network layer */
182	OR_TRAN_IPV6	/* relative to the transport-layer header, with IPv6 network layer */
183};
184
185#ifdef INET6
186/*
187 * As errors are handled by a longjmp, anything allocated must be freed
188 * in the longjmp handler, so it must be reachable from that handler.
189 * One thing that's allocated is the result of pcap_nametoaddrinfo();
190 * it must be freed with freeaddrinfo().  This variable points to any
191 * addrinfo structure that would need to be freed.
192 */
193static struct addrinfo *ai;
194#endif
195
196/*
197 * We divy out chunks of memory rather than call malloc each time so
198 * we don't have to worry about leaking memory.  It's probably
199 * not a big deal if all this memory was wasted but if this ever
200 * goes into a library that would probably not be a good idea.
201 *
202 * XXX - this *is* in a library....
203 */
204#define NCHUNKS 16
205#define CHUNK0SIZE 1024
206struct chunk {
207	u_int n_left;
208	void *m;
209};
210
211static struct chunk chunks[NCHUNKS];
212static int cur_chunk;
213
214static void *newchunk(u_int);
215static void freechunks(void);
216static inline struct block *new_block(int);
217static inline struct slist *new_stmt(int);
218static struct block *gen_retblk(int);
219static inline void syntax(void);
220
221static void backpatch(struct block *, struct block *);
222static void merge(struct block *, struct block *);
223static struct block *gen_cmp(enum e_offrel, u_int, u_int, bpf_int32);
224static struct block *gen_cmp_gt(enum e_offrel, u_int, u_int, bpf_int32);
225static struct block *gen_cmp_ge(enum e_offrel, u_int, u_int, bpf_int32);
226static struct block *gen_cmp_lt(enum e_offrel, u_int, u_int, bpf_int32);
227static struct block *gen_cmp_le(enum e_offrel, u_int, u_int, bpf_int32);
228static struct block *gen_mcmp(enum e_offrel, u_int, u_int, bpf_int32,
229    bpf_u_int32);
230static struct block *gen_bcmp(enum e_offrel, u_int, u_int, const u_char *);
231static struct block *gen_ncmp(enum e_offrel, bpf_u_int32, bpf_u_int32,
232    bpf_u_int32, bpf_u_int32, int, bpf_int32);
233static struct slist *gen_load_llrel(u_int, u_int);
234static struct slist *gen_load_macplrel(u_int, u_int);
235static struct slist *gen_load_a(enum e_offrel, u_int, u_int);
236static struct slist *gen_loadx_iphdrlen(void);
237static struct block *gen_uncond(int);
238static inline struct block *gen_true(void);
239static inline struct block *gen_false(void);
240static struct block *gen_ether_linktype(int);
241static struct block *gen_ipnet_linktype(int);
242static struct block *gen_linux_sll_linktype(int);
243static struct slist *gen_load_prism_llprefixlen(void);
244static struct slist *gen_load_avs_llprefixlen(void);
245static struct slist *gen_load_radiotap_llprefixlen(void);
246static struct slist *gen_load_ppi_llprefixlen(void);
247static void insert_compute_vloffsets(struct block *);
248static struct slist *gen_llprefixlen(void);
249static struct slist *gen_off_macpl(void);
250static int ethertype_to_ppptype(int);
251static struct block *gen_linktype(int);
252static struct block *gen_snap(bpf_u_int32, bpf_u_int32);
253static struct block *gen_llc_linktype(int);
254static struct block *gen_hostop(bpf_u_int32, bpf_u_int32, int, int, u_int, u_int);
255#ifdef INET6
256static struct block *gen_hostop6(struct in6_addr *, struct in6_addr *, int, int, u_int, u_int);
257#endif
258static struct block *gen_ahostop(const u_char *, int);
259static struct block *gen_ehostop(const u_char *, int);
260static struct block *gen_fhostop(const u_char *, int);
261static struct block *gen_thostop(const u_char *, int);
262static struct block *gen_wlanhostop(const u_char *, int);
263static struct block *gen_ipfchostop(const u_char *, int);
264static struct block *gen_dnhostop(bpf_u_int32, int);
265static struct block *gen_mpls_linktype(int);
266static struct block *gen_host(bpf_u_int32, bpf_u_int32, int, int, int);
267#ifdef INET6
268static struct block *gen_host6(struct in6_addr *, struct in6_addr *, int, int, int);
269#endif
270#ifndef INET6
271static struct block *gen_gateway(const u_char *, bpf_u_int32 **, int, int);
272#endif
273static struct block *gen_ipfrag(void);
274static struct block *gen_portatom(int, bpf_int32);
275static struct block *gen_portrangeatom(int, bpf_int32, bpf_int32);
276static struct block *gen_portatom6(int, bpf_int32);
277static struct block *gen_portrangeatom6(int, bpf_int32, bpf_int32);
278struct block *gen_portop(int, int, int);
279static struct block *gen_port(int, int, int);
280struct block *gen_portrangeop(int, int, int, int);
281static struct block *gen_portrange(int, int, int, int);
282struct block *gen_portop6(int, int, int);
283static struct block *gen_port6(int, int, int);
284struct block *gen_portrangeop6(int, int, int, int);
285static struct block *gen_portrange6(int, int, int, int);
286static int lookup_proto(const char *, int);
287static struct block *gen_protochain(int, int, int);
288static struct block *gen_proto(int, int, int);
289static struct slist *xfer_to_x(struct arth *);
290static struct slist *xfer_to_a(struct arth *);
291static struct block *gen_mac_multicast(int);
292static struct block *gen_len(int, int);
293static struct block *gen_check_802_11_data_frame(void);
294
295static struct block *gen_ppi_dlt_check(void);
296static struct block *gen_msg_abbrev(int type);
297
298static void *
299newchunk(n)
300	u_int n;
301{
302	struct chunk *cp;
303	int k;
304	size_t size;
305
306#ifndef __NetBSD__
307	/* XXX Round up to nearest long. */
308	n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
309#else
310	/* XXX Round up to structure boundary. */
311	n = ALIGN(n);
312#endif
313
314	cp = &chunks[cur_chunk];
315	if (n > cp->n_left) {
316		++cp, k = ++cur_chunk;
317		if (k >= NCHUNKS)
318			bpf_error("out of memory");
319		size = CHUNK0SIZE << k;
320		cp->m = (void *)malloc(size);
321		if (cp->m == NULL)
322			bpf_error("out of memory");
323		memset((char *)cp->m, 0, size);
324		cp->n_left = size;
325		if (n > size)
326			bpf_error("out of memory");
327	}
328	cp->n_left -= n;
329	return (void *)((char *)cp->m + cp->n_left);
330}
331
332static void
333freechunks()
334{
335	int i;
336
337	cur_chunk = 0;
338	for (i = 0; i < NCHUNKS; ++i)
339		if (chunks[i].m != NULL) {
340			free(chunks[i].m);
341			chunks[i].m = NULL;
342		}
343}
344
345/*
346 * A strdup whose allocations are freed after code generation is over.
347 */
348char *
349sdup(s)
350	register const char *s;
351{
352	int n = strlen(s) + 1;
353	char *cp = newchunk(n);
354
355	strlcpy(cp, s, n);
356	return (cp);
357}
358
359static inline struct block *
360new_block(code)
361	int code;
362{
363	struct block *p;
364
365	p = (struct block *)newchunk(sizeof(*p));
366	p->s.code = code;
367	p->head = p;
368
369	return p;
370}
371
372static inline struct slist *
373new_stmt(code)
374	int code;
375{
376	struct slist *p;
377
378	p = (struct slist *)newchunk(sizeof(*p));
379	p->s.code = code;
380
381	return p;
382}
383
384static struct block *
385gen_retblk(v)
386	int v;
387{
388	struct block *b = new_block(BPF_RET|BPF_K);
389
390	b->s.k = v;
391	return b;
392}
393
394static inline void
395syntax()
396{
397	bpf_error("syntax error in filter expression");
398}
399
400static bpf_u_int32 netmask;
401static int snaplen;
402int no_optimize;
403#ifdef WIN32
404static int
405pcap_compile_unsafe(pcap_t *p, struct bpf_program *program,
406	     const char *buf, int optimize, bpf_u_int32 mask);
407
408int
409pcap_compile(pcap_t *p, struct bpf_program *program,
410	     const char *buf, int optimize, bpf_u_int32 mask)
411{
412	int result;
413
414	EnterCriticalSection(&g_PcapCompileCriticalSection);
415
416	result = pcap_compile_unsafe(p, program, buf, optimize, mask);
417
418	LeaveCriticalSection(&g_PcapCompileCriticalSection);
419
420	return result;
421}
422
423static int
424pcap_compile_unsafe(pcap_t *p, struct bpf_program *program,
425	     const char *buf, int optimize, bpf_u_int32 mask)
426#else /* WIN32 */
427int
428pcap_compile(pcap_t *p, struct bpf_program *program,
429	     const char *buf, int optimize, bpf_u_int32 mask)
430#endif /* WIN32 */
431{
432	extern int n_errors;
433	const char * volatile xbuf = buf;
434	u_int len;
435
436	/*
437	 * If this pcap_t hasn't been activated, it doesn't have a
438	 * link-layer type, so we can't use it.
439	 */
440	if (!p->activated) {
441		snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
442		    "not-yet-activated pcap_t passed to pcap_compile");
443		return (-1);
444	}
445	no_optimize = 0;
446	n_errors = 0;
447	root = NULL;
448	bpf_pcap = p;
449	init_regs();
450	if (setjmp(top_ctx)) {
451#ifdef INET6
452		if (ai != NULL) {
453			freeaddrinfo(ai);
454			ai = NULL;
455		}
456#endif
457		lex_cleanup();
458		freechunks();
459		return (-1);
460	}
461
462	netmask = mask;
463
464	snaplen = pcap_snapshot(p);
465	if (snaplen == 0) {
466		snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
467			 "snaplen of 0 rejects all packets");
468		return -1;
469	}
470
471	lex_init(xbuf ? xbuf : "");
472	init_linktype(p);
473	(void)pcap_parse();
474
475	if (n_errors)
476		syntax();
477
478	if (root == NULL)
479		root = gen_retblk(snaplen);
480
481	if (optimize && !no_optimize) {
482		bpf_optimize(&root);
483		if (root == NULL ||
484		    (root->s.code == (BPF_RET|BPF_K) && root->s.k == 0))
485			bpf_error("expression rejects all packets");
486	}
487	program->bf_insns = icode_to_fcode(root, &len);
488	program->bf_len = len;
489
490	lex_cleanup();
491	freechunks();
492	return (0);
493}
494
495/*
496 * entry point for using the compiler with no pcap open
497 * pass in all the stuff that is needed explicitly instead.
498 */
499int
500pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
501		    struct bpf_program *program,
502	     const char *buf, int optimize, bpf_u_int32 mask)
503{
504	pcap_t *p;
505	int ret;
506
507	p = pcap_open_dead(linktype_arg, snaplen_arg);
508	if (p == NULL)
509		return (-1);
510	ret = pcap_compile(p, program, buf, optimize, mask);
511	pcap_close(p);
512	return (ret);
513}
514
515/*
516 * Clean up a "struct bpf_program" by freeing all the memory allocated
517 * in it.
518 */
519void
520pcap_freecode(struct bpf_program *program)
521{
522	program->bf_len = 0;
523	if (program->bf_insns != NULL) {
524		free((char *)program->bf_insns);
525		program->bf_insns = NULL;
526	}
527}
528
529/*
530 * Backpatch the blocks in 'list' to 'target'.  The 'sense' field indicates
531 * which of the jt and jf fields has been resolved and which is a pointer
532 * back to another unresolved block (or nil).  At least one of the fields
533 * in each block is already resolved.
534 */
535static void
536backpatch(list, target)
537	struct block *list, *target;
538{
539	struct block *next;
540
541	while (list) {
542		if (!list->sense) {
543			next = JT(list);
544			JT(list) = target;
545		} else {
546			next = JF(list);
547			JF(list) = target;
548		}
549		list = next;
550	}
551}
552
553/*
554 * Merge the lists in b0 and b1, using the 'sense' field to indicate
555 * which of jt and jf is the link.
556 */
557static void
558merge(b0, b1)
559	struct block *b0, *b1;
560{
561	register struct block **p = &b0;
562
563	/* Find end of list. */
564	while (*p)
565		p = !((*p)->sense) ? &JT(*p) : &JF(*p);
566
567	/* Concatenate the lists. */
568	*p = b1;
569}
570
571void
572finish_parse(p)
573	struct block *p;
574{
575	struct block *ppi_dlt_check;
576
577	/*
578	 * Insert before the statements of the first (root) block any
579	 * statements needed to load the lengths of any variable-length
580	 * headers into registers.
581	 *
582	 * XXX - a fancier strategy would be to insert those before the
583	 * statements of all blocks that use those lengths and that
584	 * have no predecessors that use them, so that we only compute
585	 * the lengths if we need them.  There might be even better
586	 * approaches than that.
587	 *
588	 * However, those strategies would be more complicated, and
589	 * as we don't generate code to compute a length if the
590	 * program has no tests that use the length, and as most
591	 * tests will probably use those lengths, we would just
592	 * postpone computing the lengths so that it's not done
593	 * for tests that fail early, and it's not clear that's
594	 * worth the effort.
595	 */
596	insert_compute_vloffsets(p->head);
597
598	/*
599	 * For DLT_PPI captures, generate a check of the per-packet
600	 * DLT value to make sure it's DLT_IEEE802_11.
601	 */
602	ppi_dlt_check = gen_ppi_dlt_check();
603	if (ppi_dlt_check != NULL)
604		gen_and(ppi_dlt_check, p);
605
606	backpatch(p, gen_retblk(snaplen));
607	p->sense = !p->sense;
608	backpatch(p, gen_retblk(0));
609	root = p->head;
610}
611
612void
613gen_and(b0, b1)
614	struct block *b0, *b1;
615{
616	backpatch(b0, b1->head);
617	b0->sense = !b0->sense;
618	b1->sense = !b1->sense;
619	merge(b1, b0);
620	b1->sense = !b1->sense;
621	b1->head = b0->head;
622}
623
624void
625gen_or(b0, b1)
626	struct block *b0, *b1;
627{
628	b0->sense = !b0->sense;
629	backpatch(b0, b1->head);
630	b0->sense = !b0->sense;
631	merge(b1, b0);
632	b1->head = b0->head;
633}
634
635void
636gen_not(b)
637	struct block *b;
638{
639	b->sense = !b->sense;
640}
641
642static struct block *
643gen_cmp(offrel, offset, size, v)
644	enum e_offrel offrel;
645	u_int offset, size;
646	bpf_int32 v;
647{
648	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
649}
650
651static struct block *
652gen_cmp_gt(offrel, offset, size, v)
653	enum e_offrel offrel;
654	u_int offset, size;
655	bpf_int32 v;
656{
657	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
658}
659
660static struct block *
661gen_cmp_ge(offrel, offset, size, v)
662	enum e_offrel offrel;
663	u_int offset, size;
664	bpf_int32 v;
665{
666	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
667}
668
669static struct block *
670gen_cmp_lt(offrel, offset, size, v)
671	enum e_offrel offrel;
672	u_int offset, size;
673	bpf_int32 v;
674{
675	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
676}
677
678static struct block *
679gen_cmp_le(offrel, offset, size, v)
680	enum e_offrel offrel;
681	u_int offset, size;
682	bpf_int32 v;
683{
684	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
685}
686
687static struct block *
688gen_mcmp(offrel, offset, size, v, mask)
689	enum e_offrel offrel;
690	u_int offset, size;
691	bpf_int32 v;
692	bpf_u_int32 mask;
693{
694	return gen_ncmp(offrel, offset, size, mask, BPF_JEQ, 0, v);
695}
696
697static struct block *
698gen_bcmp(offrel, offset, size, v)
699	enum e_offrel offrel;
700	register u_int offset, size;
701	register const u_char *v;
702{
703	register struct block *b, *tmp;
704
705	b = NULL;
706	while (size >= 4) {
707		register const u_char *p = &v[size - 4];
708		bpf_int32 w = ((bpf_int32)p[0] << 24) |
709		    ((bpf_int32)p[1] << 16) | ((bpf_int32)p[2] << 8) | p[3];
710
711		tmp = gen_cmp(offrel, offset + size - 4, BPF_W, w);
712		if (b != NULL)
713			gen_and(b, tmp);
714		b = tmp;
715		size -= 4;
716	}
717	while (size >= 2) {
718		register const u_char *p = &v[size - 2];
719		bpf_int32 w = ((bpf_int32)p[0] << 8) | p[1];
720
721		tmp = gen_cmp(offrel, offset + size - 2, BPF_H, w);
722		if (b != NULL)
723			gen_and(b, tmp);
724		b = tmp;
725		size -= 2;
726	}
727	if (size > 0) {
728		tmp = gen_cmp(offrel, offset, BPF_B, (bpf_int32)v[0]);
729		if (b != NULL)
730			gen_and(b, tmp);
731		b = tmp;
732	}
733	return b;
734}
735
736/*
737 * AND the field of size "size" at offset "offset" relative to the header
738 * specified by "offrel" with "mask", and compare it with the value "v"
739 * with the test specified by "jtype"; if "reverse" is true, the test
740 * should test the opposite of "jtype".
741 */
742static struct block *
743gen_ncmp(offrel, offset, size, mask, jtype, reverse, v)
744	enum e_offrel offrel;
745	bpf_int32 v;
746	bpf_u_int32 offset, size, mask, jtype;
747	int reverse;
748{
749	struct slist *s, *s2;
750	struct block *b;
751
752	s = gen_load_a(offrel, offset, size);
753
754	if (mask != 0xffffffff) {
755		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
756		s2->s.k = mask;
757		sappend(s, s2);
758	}
759
760	b = new_block(JMP(jtype));
761	b->stmts = s;
762	b->s.k = v;
763	if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
764		gen_not(b);
765	return b;
766}
767
768/*
769 * Various code constructs need to know the layout of the data link
770 * layer.  These variables give the necessary offsets from the beginning
771 * of the packet data.
772 */
773
774/*
775 * This is the offset of the beginning of the link-layer header from
776 * the beginning of the raw packet data.
777 *
778 * It's usually 0, except for 802.11 with a fixed-length radio header.
779 * (For 802.11 with a variable-length radio header, we have to generate
780 * code to compute that offset; off_ll is 0 in that case.)
781 */
782static u_int off_ll;
783
784/*
785 * If there's a variable-length header preceding the link-layer header,
786 * "reg_off_ll" is the register number for a register containing the
787 * length of that header, and therefore the offset of the link-layer
788 * header from the beginning of the raw packet data.  Otherwise,
789 * "reg_off_ll" is -1.
790 */
791static int reg_off_ll;
792
793/*
794 * This is the offset of the beginning of the MAC-layer header from
795 * the beginning of the link-layer header.
796 * It's usually 0, except for ATM LANE, where it's the offset, relative
797 * to the beginning of the raw packet data, of the Ethernet header, and
798 * for Ethernet with various additional information.
799 */
800static u_int off_mac;
801
802/*
803 * This is the offset of the beginning of the MAC-layer payload,
804 * from the beginning of the raw packet data.
805 *
806 * I.e., it's the sum of the length of the link-layer header (without,
807 * for example, any 802.2 LLC header, so it's the MAC-layer
808 * portion of that header), plus any prefix preceding the
809 * link-layer header.
810 */
811static u_int off_macpl;
812
813/*
814 * This is 1 if the offset of the beginning of the MAC-layer payload
815 * from the beginning of the link-layer header is variable-length.
816 */
817static int off_macpl_is_variable;
818
819/*
820 * If the link layer has variable_length headers, "reg_off_macpl"
821 * is the register number for a register containing the length of the
822 * link-layer header plus the length of any variable-length header
823 * preceding the link-layer header.  Otherwise, "reg_off_macpl"
824 * is -1.
825 */
826static int reg_off_macpl;
827
828/*
829 * "off_linktype" is the offset to information in the link-layer header
830 * giving the packet type.  This offset is relative to the beginning
831 * of the link-layer header (i.e., it doesn't include off_ll).
832 *
833 * For Ethernet, it's the offset of the Ethernet type field.
834 *
835 * For link-layer types that always use 802.2 headers, it's the
836 * offset of the LLC header.
837 *
838 * For PPP, it's the offset of the PPP type field.
839 *
840 * For Cisco HDLC, it's the offset of the CHDLC type field.
841 *
842 * For BSD loopback, it's the offset of the AF_ value.
843 *
844 * For Linux cooked sockets, it's the offset of the type field.
845 *
846 * It's set to -1 for no encapsulation, in which case, IP is assumed.
847 */
848static u_int off_linktype;
849
850/*
851 * TRUE if "pppoes" appeared in the filter; it causes link-layer type
852 * checks to check the PPP header, assumed to follow a LAN-style link-
853 * layer header and a PPPoE session header.
854 */
855static int is_pppoes = 0;
856
857/*
858 * TRUE if the link layer includes an ATM pseudo-header.
859 */
860static int is_atm = 0;
861
862/*
863 * TRUE if "lane" appeared in the filter; it causes us to generate
864 * code that assumes LANE rather than LLC-encapsulated traffic in SunATM.
865 */
866static int is_lane = 0;
867
868/*
869 * These are offsets for the ATM pseudo-header.
870 */
871static u_int off_vpi;
872static u_int off_vci;
873static u_int off_proto;
874
875/*
876 * These are offsets for the MTP2 fields.
877 */
878static u_int off_li;
879
880/*
881 * These are offsets for the MTP3 fields.
882 */
883static u_int off_sio;
884static u_int off_opc;
885static u_int off_dpc;
886static u_int off_sls;
887
888/*
889 * This is the offset of the first byte after the ATM pseudo_header,
890 * or -1 if there is no ATM pseudo-header.
891 */
892static u_int off_payload;
893
894/*
895 * These are offsets to the beginning of the network-layer header.
896 * They are relative to the beginning of the MAC-layer payload (i.e.,
897 * they don't include off_ll or off_macpl).
898 *
899 * If the link layer never uses 802.2 LLC:
900 *
901 *	"off_nl" and "off_nl_nosnap" are the same.
902 *
903 * If the link layer always uses 802.2 LLC:
904 *
905 *	"off_nl" is the offset if there's a SNAP header following
906 *	the 802.2 header;
907 *
908 *	"off_nl_nosnap" is the offset if there's no SNAP header.
909 *
910 * If the link layer is Ethernet:
911 *
912 *	"off_nl" is the offset if the packet is an Ethernet II packet
913 *	(we assume no 802.3+802.2+SNAP);
914 *
915 *	"off_nl_nosnap" is the offset if the packet is an 802.3 packet
916 *	with an 802.2 header following it.
917 */
918static u_int off_nl;
919static u_int off_nl_nosnap;
920
921static int linktype;
922
923static void
924init_linktype(p)
925	pcap_t *p;
926{
927	linktype = pcap_datalink(p);
928#ifdef PCAP_FDDIPAD
929	pcap_fddipad = p->fddipad;
930#endif
931
932	/*
933	 * Assume it's not raw ATM with a pseudo-header, for now.
934	 */
935	off_mac = 0;
936	is_atm = 0;
937	is_lane = 0;
938	off_vpi = -1;
939	off_vci = -1;
940	off_proto = -1;
941	off_payload = -1;
942
943	/*
944	 * And that we're not doing PPPoE.
945	 */
946	is_pppoes = 0;
947
948	/*
949	 * And assume we're not doing SS7.
950	 */
951	off_li = -1;
952	off_sio = -1;
953	off_opc = -1;
954	off_dpc = -1;
955	off_sls = -1;
956
957	/*
958	 * Also assume it's not 802.11.
959	 */
960	off_ll = 0;
961	off_macpl = 0;
962	off_macpl_is_variable = 0;
963
964	orig_linktype = -1;
965	orig_nl = -1;
966        label_stack_depth = 0;
967
968	reg_off_ll = -1;
969	reg_off_macpl = -1;
970
971	switch (linktype) {
972
973	case DLT_ARCNET:
974		off_linktype = 2;
975		off_macpl = 6;
976		off_nl = 0;		/* XXX in reality, variable! */
977		off_nl_nosnap = 0;	/* no 802.2 LLC */
978		return;
979
980	case DLT_ARCNET_LINUX:
981		off_linktype = 4;
982		off_macpl = 8;
983		off_nl = 0;		/* XXX in reality, variable! */
984		off_nl_nosnap = 0;	/* no 802.2 LLC */
985		return;
986
987	case DLT_EN10MB:
988		off_linktype = 12;
989		off_macpl = 14;		/* Ethernet header length */
990		off_nl = 0;		/* Ethernet II */
991		off_nl_nosnap = 3;	/* 802.3+802.2 */
992		return;
993
994	case DLT_SLIP:
995		/*
996		 * SLIP doesn't have a link level type.  The 16 byte
997		 * header is hacked into our SLIP driver.
998		 */
999		off_linktype = -1;
1000		off_macpl = 16;
1001		off_nl = 0;
1002		off_nl_nosnap = 0;	/* no 802.2 LLC */
1003		return;
1004
1005	case DLT_SLIP_BSDOS:
1006		/* XXX this may be the same as the DLT_PPP_BSDOS case */
1007		off_linktype = -1;
1008		/* XXX end */
1009		off_macpl = 24;
1010		off_nl = 0;
1011		off_nl_nosnap = 0;	/* no 802.2 LLC */
1012		return;
1013
1014	case DLT_NULL:
1015	case DLT_LOOP:
1016		off_linktype = 0;
1017		off_macpl = 4;
1018		off_nl = 0;
1019		off_nl_nosnap = 0;	/* no 802.2 LLC */
1020		return;
1021
1022	case DLT_ENC:
1023		off_linktype = 0;
1024		off_macpl = 12;
1025		off_nl = 0;
1026		off_nl_nosnap = 0;	/* no 802.2 LLC */
1027		return;
1028
1029	case DLT_PPP:
1030	case DLT_PPP_PPPD:
1031	case DLT_C_HDLC:		/* BSD/OS Cisco HDLC */
1032	case DLT_PPP_SERIAL:		/* NetBSD sync/async serial PPP */
1033		off_linktype = 2;
1034		off_macpl = 4;
1035		off_nl = 0;
1036		off_nl_nosnap = 0;	/* no 802.2 LLC */
1037		return;
1038
1039	case DLT_PPP_ETHER:
1040		/*
1041		 * This does no include the Ethernet header, and
1042		 * only covers session state.
1043		 */
1044		off_linktype = 6;
1045		off_macpl = 8;
1046		off_nl = 0;
1047		off_nl_nosnap = 0;	/* no 802.2 LLC */
1048		return;
1049
1050	case DLT_PPP_BSDOS:
1051		off_linktype = 5;
1052		off_macpl = 24;
1053		off_nl = 0;
1054		off_nl_nosnap = 0;	/* no 802.2 LLC */
1055		return;
1056
1057	case DLT_FDDI:
1058		/*
1059		 * FDDI doesn't really have a link-level type field.
1060		 * We set "off_linktype" to the offset of the LLC header.
1061		 *
1062		 * To check for Ethernet types, we assume that SSAP = SNAP
1063		 * is being used and pick out the encapsulated Ethernet type.
1064		 * XXX - should we generate code to check for SNAP?
1065		 */
1066		off_linktype = 13;
1067#ifdef PCAP_FDDIPAD
1068		off_linktype += pcap_fddipad;
1069#endif
1070		off_macpl = 13;		/* FDDI MAC header length */
1071#ifdef PCAP_FDDIPAD
1072		off_macpl += pcap_fddipad;
1073#endif
1074		off_nl = 8;		/* 802.2+SNAP */
1075		off_nl_nosnap = 3;	/* 802.2 */
1076		return;
1077
1078	case DLT_IEEE802:
1079		/*
1080		 * Token Ring doesn't really have a link-level type field.
1081		 * We set "off_linktype" to the offset of the LLC header.
1082		 *
1083		 * To check for Ethernet types, we assume that SSAP = SNAP
1084		 * is being used and pick out the encapsulated Ethernet type.
1085		 * XXX - should we generate code to check for SNAP?
1086		 *
1087		 * XXX - the header is actually variable-length.
1088		 * Some various Linux patched versions gave 38
1089		 * as "off_linktype" and 40 as "off_nl"; however,
1090		 * if a token ring packet has *no* routing
1091		 * information, i.e. is not source-routed, the correct
1092		 * values are 20 and 22, as they are in the vanilla code.
1093		 *
1094		 * A packet is source-routed iff the uppermost bit
1095		 * of the first byte of the source address, at an
1096		 * offset of 8, has the uppermost bit set.  If the
1097		 * packet is source-routed, the total number of bytes
1098		 * of routing information is 2 plus bits 0x1F00 of
1099		 * the 16-bit value at an offset of 14 (shifted right
1100		 * 8 - figure out which byte that is).
1101		 */
1102		off_linktype = 14;
1103		off_macpl = 14;		/* Token Ring MAC header length */
1104		off_nl = 8;		/* 802.2+SNAP */
1105		off_nl_nosnap = 3;	/* 802.2 */
1106		return;
1107
1108	case DLT_IEEE802_11:
1109	case DLT_PRISM_HEADER:
1110	case DLT_IEEE802_11_RADIO_AVS:
1111	case DLT_IEEE802_11_RADIO:
1112		/*
1113		 * 802.11 doesn't really have a link-level type field.
1114		 * We set "off_linktype" to the offset of the LLC header.
1115		 *
1116		 * To check for Ethernet types, we assume that SSAP = SNAP
1117		 * is being used and pick out the encapsulated Ethernet type.
1118		 * XXX - should we generate code to check for SNAP?
1119		 *
1120		 * We also handle variable-length radio headers here.
1121		 * The Prism header is in theory variable-length, but in
1122		 * practice it's always 144 bytes long.  However, some
1123		 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1124		 * sometimes or always supply an AVS header, so we
1125		 * have to check whether the radio header is a Prism
1126		 * header or an AVS header, so, in practice, it's
1127		 * variable-length.
1128		 */
1129		off_linktype = 24;
1130		off_macpl = 0;		/* link-layer header is variable-length */
1131		off_macpl_is_variable = 1;
1132		off_nl = 8;		/* 802.2+SNAP */
1133		off_nl_nosnap = 3;	/* 802.2 */
1134		return;
1135
1136	case DLT_PPI:
1137		/*
1138		 * At the moment we treat PPI the same way that we treat
1139		 * normal Radiotap encoded packets. The difference is in
1140		 * the function that generates the code at the beginning
1141		 * to compute the header length.  Since this code generator
1142		 * of PPI supports bare 802.11 encapsulation only (i.e.
1143		 * the encapsulated DLT should be DLT_IEEE802_11) we
1144		 * generate code to check for this too.
1145		 */
1146		off_linktype = 24;
1147		off_macpl = 0;		/* link-layer header is variable-length */
1148		off_macpl_is_variable = 1;
1149		off_nl = 8;		/* 802.2+SNAP */
1150		off_nl_nosnap = 3;	/* 802.2 */
1151		return;
1152
1153	case DLT_ATM_RFC1483:
1154	case DLT_ATM_CLIP:	/* Linux ATM defines this */
1155		/*
1156		 * assume routed, non-ISO PDUs
1157		 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1158		 *
1159		 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1160		 * or PPP with the PPP NLPID (e.g., PPPoA)?  The
1161		 * latter would presumably be treated the way PPPoE
1162		 * should be, so you can do "pppoe and udp port 2049"
1163		 * or "pppoa and tcp port 80" and have it check for
1164		 * PPPo{A,E} and a PPP protocol of IP and....
1165		 */
1166		off_linktype = 0;
1167		off_macpl = 0;		/* packet begins with LLC header */
1168		off_nl = 8;		/* 802.2+SNAP */
1169		off_nl_nosnap = 3;	/* 802.2 */
1170		return;
1171
1172	case DLT_SUNATM:
1173		/*
1174		 * Full Frontal ATM; you get AALn PDUs with an ATM
1175		 * pseudo-header.
1176		 */
1177		is_atm = 1;
1178		off_vpi = SUNATM_VPI_POS;
1179		off_vci = SUNATM_VCI_POS;
1180		off_proto = PROTO_POS;
1181		off_mac = -1;	/* assume LLC-encapsulated, so no MAC-layer header */
1182		off_payload = SUNATM_PKT_BEGIN_POS;
1183		off_linktype = off_payload;
1184		off_macpl = off_payload;	/* if LLC-encapsulated */
1185		off_nl = 8;		/* 802.2+SNAP */
1186		off_nl_nosnap = 3;	/* 802.2 */
1187		return;
1188
1189	case DLT_RAW:
1190	case DLT_IPV4:
1191	case DLT_IPV6:
1192		off_linktype = -1;
1193		off_macpl = 0;
1194		off_nl = 0;
1195		off_nl_nosnap = 0;	/* no 802.2 LLC */
1196		return;
1197
1198	case DLT_LINUX_SLL:	/* fake header for Linux cooked socket */
1199		off_linktype = 14;
1200		off_macpl = 16;
1201		off_nl = 0;
1202		off_nl_nosnap = 0;	/* no 802.2 LLC */
1203		return;
1204
1205	case DLT_LTALK:
1206		/*
1207		 * LocalTalk does have a 1-byte type field in the LLAP header,
1208		 * but really it just indicates whether there is a "short" or
1209		 * "long" DDP packet following.
1210		 */
1211		off_linktype = -1;
1212		off_macpl = 0;
1213		off_nl = 0;
1214		off_nl_nosnap = 0;	/* no 802.2 LLC */
1215		return;
1216
1217	case DLT_IP_OVER_FC:
1218		/*
1219		 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1220		 * link-level type field.  We set "off_linktype" to the
1221		 * offset of the LLC header.
1222		 *
1223		 * To check for Ethernet types, we assume that SSAP = SNAP
1224		 * is being used and pick out the encapsulated Ethernet type.
1225		 * XXX - should we generate code to check for SNAP? RFC
1226		 * 2625 says SNAP should be used.
1227		 */
1228		off_linktype = 16;
1229		off_macpl = 16;
1230		off_nl = 8;		/* 802.2+SNAP */
1231		off_nl_nosnap = 3;	/* 802.2 */
1232		return;
1233
1234	case DLT_FRELAY:
1235		/*
1236		 * XXX - we should set this to handle SNAP-encapsulated
1237		 * frames (NLPID of 0x80).
1238		 */
1239		off_linktype = -1;
1240		off_macpl = 0;
1241		off_nl = 0;
1242		off_nl_nosnap = 0;	/* no 802.2 LLC */
1243		return;
1244
1245                /*
1246                 * the only BPF-interesting FRF.16 frames are non-control frames;
1247                 * Frame Relay has a variable length link-layer
1248                 * so lets start with offset 4 for now and increments later on (FIXME);
1249                 */
1250	case DLT_MFR:
1251		off_linktype = -1;
1252		off_macpl = 0;
1253		off_nl = 4;
1254		off_nl_nosnap = 0;	/* XXX - for now -> no 802.2 LLC */
1255		return;
1256
1257	case DLT_APPLE_IP_OVER_IEEE1394:
1258		off_linktype = 16;
1259		off_macpl = 18;
1260		off_nl = 0;
1261		off_nl_nosnap = 0;	/* no 802.2 LLC */
1262		return;
1263
1264	case DLT_SYMANTEC_FIREWALL:
1265		off_linktype = 6;
1266		off_macpl = 44;
1267		off_nl = 0;		/* Ethernet II */
1268		off_nl_nosnap = 0;	/* XXX - what does it do with 802.3 packets? */
1269		return;
1270
1271#ifdef HAVE_NET_PFVAR_H
1272	case DLT_PFLOG:
1273		off_linktype = 0;
1274		off_macpl = PFLOG_HDRLEN;
1275		off_nl = 0;
1276		off_nl_nosnap = 0;	/* no 802.2 LLC */
1277		return;
1278#endif
1279
1280        case DLT_JUNIPER_MFR:
1281        case DLT_JUNIPER_MLFR:
1282        case DLT_JUNIPER_MLPPP:
1283        case DLT_JUNIPER_PPP:
1284        case DLT_JUNIPER_CHDLC:
1285        case DLT_JUNIPER_FRELAY:
1286                off_linktype = 4;
1287		off_macpl = 4;
1288		off_nl = 0;
1289		off_nl_nosnap = -1;	/* no 802.2 LLC */
1290                return;
1291
1292	case DLT_JUNIPER_ATM1:
1293		off_linktype = 4;	/* in reality variable between 4-8 */
1294		off_macpl = 4;	/* in reality variable between 4-8 */
1295		off_nl = 0;
1296		off_nl_nosnap = 10;
1297		return;
1298
1299	case DLT_JUNIPER_ATM2:
1300		off_linktype = 8;	/* in reality variable between 8-12 */
1301		off_macpl = 8;	/* in reality variable between 8-12 */
1302		off_nl = 0;
1303		off_nl_nosnap = 10;
1304		return;
1305
1306		/* frames captured on a Juniper PPPoE service PIC
1307		 * contain raw ethernet frames */
1308	case DLT_JUNIPER_PPPOE:
1309        case DLT_JUNIPER_ETHER:
1310        	off_macpl = 14;
1311		off_linktype = 16;
1312		off_nl = 18;		/* Ethernet II */
1313		off_nl_nosnap = 21;	/* 802.3+802.2 */
1314		return;
1315
1316	case DLT_JUNIPER_PPPOE_ATM:
1317		off_linktype = 4;
1318		off_macpl = 6;
1319		off_nl = 0;
1320		off_nl_nosnap = -1;	/* no 802.2 LLC */
1321		return;
1322
1323	case DLT_JUNIPER_GGSN:
1324		off_linktype = 6;
1325		off_macpl = 12;
1326		off_nl = 0;
1327		off_nl_nosnap = -1;	/* no 802.2 LLC */
1328		return;
1329
1330	case DLT_JUNIPER_ES:
1331		off_linktype = 6;
1332		off_macpl = -1;		/* not really a network layer but raw IP addresses */
1333		off_nl = -1;		/* not really a network layer but raw IP addresses */
1334		off_nl_nosnap = -1;	/* no 802.2 LLC */
1335		return;
1336
1337	case DLT_JUNIPER_MONITOR:
1338		off_linktype = 12;
1339		off_macpl = 12;
1340		off_nl = 0;		/* raw IP/IP6 header */
1341		off_nl_nosnap = -1;	/* no 802.2 LLC */
1342		return;
1343
1344	case DLT_JUNIPER_SERVICES:
1345		off_linktype = 12;
1346		off_macpl = -1;		/* L3 proto location dep. on cookie type */
1347		off_nl = -1;		/* L3 proto location dep. on cookie type */
1348		off_nl_nosnap = -1;	/* no 802.2 LLC */
1349		return;
1350
1351	case DLT_JUNIPER_VP:
1352		off_linktype = 18;
1353		off_macpl = -1;
1354		off_nl = -1;
1355		off_nl_nosnap = -1;
1356		return;
1357
1358	case DLT_JUNIPER_ST:
1359		off_linktype = 18;
1360		off_macpl = -1;
1361		off_nl = -1;
1362		off_nl_nosnap = -1;
1363		return;
1364
1365	case DLT_JUNIPER_ISM:
1366		off_linktype = 8;
1367		off_macpl = -1;
1368		off_nl = -1;
1369		off_nl_nosnap = -1;
1370		return;
1371
1372	case DLT_JUNIPER_VS:
1373	case DLT_JUNIPER_SRX_E2E:
1374	case DLT_JUNIPER_FIBRECHANNEL:
1375	case DLT_JUNIPER_ATM_CEMIC:
1376		off_linktype = 8;
1377		off_macpl = -1;
1378		off_nl = -1;
1379		off_nl_nosnap = -1;
1380		return;
1381
1382	case DLT_MTP2:
1383		off_li = 2;
1384		off_sio = 3;
1385		off_opc = 4;
1386		off_dpc = 4;
1387		off_sls = 7;
1388		off_linktype = -1;
1389		off_macpl = -1;
1390		off_nl = -1;
1391		off_nl_nosnap = -1;
1392		return;
1393
1394	case DLT_MTP2_WITH_PHDR:
1395		off_li = 6;
1396		off_sio = 7;
1397		off_opc = 8;
1398		off_dpc = 8;
1399		off_sls = 11;
1400		off_linktype = -1;
1401		off_macpl = -1;
1402		off_nl = -1;
1403		off_nl_nosnap = -1;
1404		return;
1405
1406	case DLT_ERF:
1407		off_li = 22;
1408		off_sio = 23;
1409		off_opc = 24;
1410		off_dpc = 24;
1411		off_sls = 27;
1412		off_linktype = -1;
1413		off_macpl = -1;
1414		off_nl = -1;
1415		off_nl_nosnap = -1;
1416		return;
1417
1418	case DLT_PFSYNC:
1419		off_linktype = -1;
1420		off_macpl = 4;
1421		off_nl = 0;
1422		off_nl_nosnap = 0;
1423		return;
1424
1425	case DLT_AX25_KISS:
1426		/*
1427		 * Currently, only raw "link[N:M]" filtering is supported.
1428		 */
1429		off_linktype = -1;	/* variable, min 15, max 71 steps of 7 */
1430		off_macpl = -1;
1431		off_nl = -1;		/* variable, min 16, max 71 steps of 7 */
1432		off_nl_nosnap = -1;	/* no 802.2 LLC */
1433		off_mac = 1;		/* step over the kiss length byte */
1434		return;
1435
1436	case DLT_IPNET:
1437		off_linktype = 1;
1438		off_macpl = 24;		/* ipnet header length */
1439		off_nl = 0;
1440		off_nl_nosnap = -1;
1441		return;
1442
1443	case DLT_NETANALYZER:
1444		off_mac = 4;		/* MAC header is past 4-byte pseudo-header */
1445		off_linktype = 16;	/* includes 4-byte pseudo-header */
1446		off_macpl = 18;		/* pseudo-header+Ethernet header length */
1447		off_nl = 0;		/* Ethernet II */
1448		off_nl_nosnap = 3;	/* 802.3+802.2 */
1449		return;
1450
1451	case DLT_NETANALYZER_TRANSPARENT:
1452		off_mac = 12;		/* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1453		off_linktype = 24;	/* includes 4-byte pseudo-header+preamble+SFD */
1454		off_macpl = 26;		/* pseudo-header+preamble+SFD+Ethernet header length */
1455		off_nl = 0;		/* Ethernet II */
1456		off_nl_nosnap = 3;	/* 802.3+802.2 */
1457		return;
1458
1459	default:
1460		/*
1461		 * For values in the range in which we've assigned new
1462		 * DLT_ values, only raw "link[N:M]" filtering is supported.
1463		 */
1464		if (linktype >= DLT_MATCHING_MIN &&
1465		    linktype <= DLT_MATCHING_MAX) {
1466			off_linktype = -1;
1467			off_macpl = -1;
1468			off_nl = -1;
1469			off_nl_nosnap = -1;
1470			return;
1471		}
1472
1473	}
1474	bpf_error("unknown data link type %d", linktype);
1475	/* NOTREACHED */
1476}
1477
1478/*
1479 * Load a value relative to the beginning of the link-layer header.
1480 * The link-layer header doesn't necessarily begin at the beginning
1481 * of the packet data; there might be a variable-length prefix containing
1482 * radio information.
1483 */
1484static struct slist *
1485gen_load_llrel(offset, size)
1486	u_int offset, size;
1487{
1488	struct slist *s, *s2;
1489
1490	s = gen_llprefixlen();
1491
1492	/*
1493	 * If "s" is non-null, it has code to arrange that the X register
1494	 * contains the length of the prefix preceding the link-layer
1495	 * header.
1496	 *
1497	 * Otherwise, the length of the prefix preceding the link-layer
1498	 * header is "off_ll".
1499	 */
1500	if (s != NULL) {
1501		/*
1502		 * There's a variable-length prefix preceding the
1503		 * link-layer header.  "s" points to a list of statements
1504		 * that put the length of that prefix into the X register.
1505		 * do an indirect load, to use the X register as an offset.
1506		 */
1507		s2 = new_stmt(BPF_LD|BPF_IND|size);
1508		s2->s.k = offset;
1509		sappend(s, s2);
1510	} else {
1511		/*
1512		 * There is no variable-length header preceding the
1513		 * link-layer header; add in off_ll, which, if there's
1514		 * a fixed-length header preceding the link-layer header,
1515		 * is the length of that header.
1516		 */
1517		s = new_stmt(BPF_LD|BPF_ABS|size);
1518		s->s.k = offset + off_ll;
1519	}
1520	return s;
1521}
1522
1523/*
1524 * Load a value relative to the beginning of the MAC-layer payload.
1525 */
1526static struct slist *
1527gen_load_macplrel(offset, size)
1528	u_int offset, size;
1529{
1530	struct slist *s, *s2;
1531
1532	s = gen_off_macpl();
1533
1534	/*
1535	 * If s is non-null, the offset of the MAC-layer payload is
1536	 * variable, and s points to a list of instructions that
1537	 * arrange that the X register contains that offset.
1538	 *
1539	 * Otherwise, the offset of the MAC-layer payload is constant,
1540	 * and is in off_macpl.
1541	 */
1542	if (s != NULL) {
1543		/*
1544		 * The offset of the MAC-layer payload is in the X
1545		 * register.  Do an indirect load, to use the X register
1546		 * as an offset.
1547		 */
1548		s2 = new_stmt(BPF_LD|BPF_IND|size);
1549		s2->s.k = offset;
1550		sappend(s, s2);
1551	} else {
1552		/*
1553		 * The offset of the MAC-layer payload is constant,
1554		 * and is in off_macpl; load the value at that offset
1555		 * plus the specified offset.
1556		 */
1557		s = new_stmt(BPF_LD|BPF_ABS|size);
1558		s->s.k = off_macpl + offset;
1559	}
1560	return s;
1561}
1562
1563/*
1564 * Load a value relative to the beginning of the specified header.
1565 */
1566static struct slist *
1567gen_load_a(offrel, offset, size)
1568	enum e_offrel offrel;
1569	u_int offset, size;
1570{
1571	struct slist *s, *s2;
1572
1573	switch (offrel) {
1574
1575	case OR_PACKET:
1576                s = new_stmt(BPF_LD|BPF_ABS|size);
1577                s->s.k = offset;
1578		break;
1579
1580	case OR_LINK:
1581		s = gen_load_llrel(offset, size);
1582		break;
1583
1584	case OR_MACPL:
1585		s = gen_load_macplrel(offset, size);
1586		break;
1587
1588	case OR_NET:
1589		s = gen_load_macplrel(off_nl + offset, size);
1590		break;
1591
1592	case OR_NET_NOSNAP:
1593		s = gen_load_macplrel(off_nl_nosnap + offset, size);
1594		break;
1595
1596	case OR_TRAN_IPV4:
1597		/*
1598		 * Load the X register with the length of the IPv4 header
1599		 * (plus the offset of the link-layer header, if it's
1600		 * preceded by a variable-length header such as a radio
1601		 * header), in bytes.
1602		 */
1603		s = gen_loadx_iphdrlen();
1604
1605		/*
1606		 * Load the item at {offset of the MAC-layer payload} +
1607		 * {offset, relative to the start of the MAC-layer
1608		 * paylod, of the IPv4 header} + {length of the IPv4 header} +
1609		 * {specified offset}.
1610		 *
1611		 * (If the offset of the MAC-layer payload is variable,
1612		 * it's included in the value in the X register, and
1613		 * off_macpl is 0.)
1614		 */
1615		s2 = new_stmt(BPF_LD|BPF_IND|size);
1616		s2->s.k = off_macpl + off_nl + offset;
1617		sappend(s, s2);
1618		break;
1619
1620	case OR_TRAN_IPV6:
1621		s = gen_load_macplrel(off_nl + 40 + offset, size);
1622		break;
1623
1624	default:
1625		abort();
1626		return NULL;
1627	}
1628	return s;
1629}
1630
1631/*
1632 * Generate code to load into the X register the sum of the length of
1633 * the IPv4 header and any variable-length header preceding the link-layer
1634 * header.
1635 */
1636static struct slist *
1637gen_loadx_iphdrlen()
1638{
1639	struct slist *s, *s2;
1640
1641	s = gen_off_macpl();
1642	if (s != NULL) {
1643		/*
1644		 * There's a variable-length prefix preceding the
1645		 * link-layer header, or the link-layer header is itself
1646		 * variable-length.  "s" points to a list of statements
1647		 * that put the offset of the MAC-layer payload into
1648		 * the X register.
1649		 *
1650		 * The 4*([k]&0xf) addressing mode can't be used, as we
1651		 * don't have a constant offset, so we have to load the
1652		 * value in question into the A register and add to it
1653		 * the value from the X register.
1654		 */
1655		s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
1656		s2->s.k = off_nl;
1657		sappend(s, s2);
1658		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
1659		s2->s.k = 0xf;
1660		sappend(s, s2);
1661		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
1662		s2->s.k = 2;
1663		sappend(s, s2);
1664
1665		/*
1666		 * The A register now contains the length of the
1667		 * IP header.  We need to add to it the offset of
1668		 * the MAC-layer payload, which is still in the X
1669		 * register, and move the result into the X register.
1670		 */
1671		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
1672		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
1673	} else {
1674		/*
1675		 * There is no variable-length header preceding the
1676		 * link-layer header, and the link-layer header is
1677		 * fixed-length; load the length of the IPv4 header,
1678		 * which is at an offset of off_nl from the beginning
1679		 * of the MAC-layer payload, and thus at an offset
1680		 * of off_mac_pl + off_nl from the beginning of the
1681		 * raw packet data.
1682		 */
1683		s = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
1684		s->s.k = off_macpl + off_nl;
1685	}
1686	return s;
1687}
1688
1689static struct block *
1690gen_uncond(rsense)
1691	int rsense;
1692{
1693	struct block *b;
1694	struct slist *s;
1695
1696	s = new_stmt(BPF_LD|BPF_IMM);
1697	s->s.k = !rsense;
1698	b = new_block(JMP(BPF_JEQ));
1699	b->stmts = s;
1700
1701	return b;
1702}
1703
1704static inline struct block *
1705gen_true()
1706{
1707	return gen_uncond(1);
1708}
1709
1710static inline struct block *
1711gen_false()
1712{
1713	return gen_uncond(0);
1714}
1715
1716/*
1717 * Byte-swap a 32-bit number.
1718 * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1719 * big-endian platforms.)
1720 */
1721#define	SWAPLONG(y) \
1722((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1723
1724/*
1725 * Generate code to match a particular packet type.
1726 *
1727 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1728 * value, if <= ETHERMTU.  We use that to determine whether to
1729 * match the type/length field or to check the type/length field for
1730 * a value <= ETHERMTU to see whether it's a type field and then do
1731 * the appropriate test.
1732 */
1733static struct block *
1734gen_ether_linktype(proto)
1735	register int proto;
1736{
1737	struct block *b0, *b1;
1738
1739	switch (proto) {
1740
1741	case LLCSAP_ISONS:
1742	case LLCSAP_IP:
1743	case LLCSAP_NETBEUI:
1744		/*
1745		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1746		 * so we check the DSAP and SSAP.
1747		 *
1748		 * LLCSAP_IP checks for IP-over-802.2, rather
1749		 * than IP-over-Ethernet or IP-over-SNAP.
1750		 *
1751		 * XXX - should we check both the DSAP and the
1752		 * SSAP, like this, or should we check just the
1753		 * DSAP, as we do for other types <= ETHERMTU
1754		 * (i.e., other SAP values)?
1755		 */
1756		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1757		gen_not(b0);
1758		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)
1759			     ((proto << 8) | proto));
1760		gen_and(b0, b1);
1761		return b1;
1762
1763	case LLCSAP_IPX:
1764		/*
1765		 * Check for;
1766		 *
1767		 *	Ethernet_II frames, which are Ethernet
1768		 *	frames with a frame type of ETHERTYPE_IPX;
1769		 *
1770		 *	Ethernet_802.3 frames, which are 802.3
1771		 *	frames (i.e., the type/length field is
1772		 *	a length field, <= ETHERMTU, rather than
1773		 *	a type field) with the first two bytes
1774		 *	after the Ethernet/802.3 header being
1775		 *	0xFFFF;
1776		 *
1777		 *	Ethernet_802.2 frames, which are 802.3
1778		 *	frames with an 802.2 LLC header and
1779		 *	with the IPX LSAP as the DSAP in the LLC
1780		 *	header;
1781		 *
1782		 *	Ethernet_SNAP frames, which are 802.3
1783		 *	frames with an LLC header and a SNAP
1784		 *	header and with an OUI of 0x000000
1785		 *	(encapsulated Ethernet) and a protocol
1786		 *	ID of ETHERTYPE_IPX in the SNAP header.
1787		 *
1788		 * XXX - should we generate the same code both
1789		 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1790		 */
1791
1792		/*
1793		 * This generates code to check both for the
1794		 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
1795		 */
1796		b0 = gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
1797		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)0xFFFF);
1798		gen_or(b0, b1);
1799
1800		/*
1801		 * Now we add code to check for SNAP frames with
1802		 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
1803		 */
1804		b0 = gen_snap(0x000000, ETHERTYPE_IPX);
1805		gen_or(b0, b1);
1806
1807		/*
1808		 * Now we generate code to check for 802.3
1809		 * frames in general.
1810		 */
1811		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1812		gen_not(b0);
1813
1814		/*
1815		 * Now add the check for 802.3 frames before the
1816		 * check for Ethernet_802.2 and Ethernet_802.3,
1817		 * as those checks should only be done on 802.3
1818		 * frames, not on Ethernet frames.
1819		 */
1820		gen_and(b0, b1);
1821
1822		/*
1823		 * Now add the check for Ethernet_II frames, and
1824		 * do that before checking for the other frame
1825		 * types.
1826		 */
1827		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
1828		    (bpf_int32)ETHERTYPE_IPX);
1829		gen_or(b0, b1);
1830		return b1;
1831
1832	case ETHERTYPE_ATALK:
1833	case ETHERTYPE_AARP:
1834		/*
1835		 * EtherTalk (AppleTalk protocols on Ethernet link
1836		 * layer) may use 802.2 encapsulation.
1837		 */
1838
1839		/*
1840		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1841		 * we check for an Ethernet type field less than
1842		 * 1500, which means it's an 802.3 length field.
1843		 */
1844		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1845		gen_not(b0);
1846
1847		/*
1848		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1849		 * SNAP packets with an organization code of
1850		 * 0x080007 (Apple, for Appletalk) and a protocol
1851		 * type of ETHERTYPE_ATALK (Appletalk).
1852		 *
1853		 * 802.2-encapsulated ETHERTYPE_AARP packets are
1854		 * SNAP packets with an organization code of
1855		 * 0x000000 (encapsulated Ethernet) and a protocol
1856		 * type of ETHERTYPE_AARP (Appletalk ARP).
1857		 */
1858		if (proto == ETHERTYPE_ATALK)
1859			b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
1860		else	/* proto == ETHERTYPE_AARP */
1861			b1 = gen_snap(0x000000, ETHERTYPE_AARP);
1862		gen_and(b0, b1);
1863
1864		/*
1865		 * Check for Ethernet encapsulation (Ethertalk
1866		 * phase 1?); we just check for the Ethernet
1867		 * protocol type.
1868		 */
1869		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
1870
1871		gen_or(b0, b1);
1872		return b1;
1873
1874	default:
1875		if (proto <= ETHERMTU) {
1876			/*
1877			 * This is an LLC SAP value, so the frames
1878			 * that match would be 802.2 frames.
1879			 * Check that the frame is an 802.2 frame
1880			 * (i.e., that the length/type field is
1881			 * a length field, <= ETHERMTU) and
1882			 * then check the DSAP.
1883			 */
1884			b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1885			gen_not(b0);
1886			b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
1887			    (bpf_int32)proto);
1888			gen_and(b0, b1);
1889			return b1;
1890		} else {
1891			/*
1892			 * This is an Ethernet type, so compare
1893			 * the length/type field with it (if
1894			 * the frame is an 802.2 frame, the length
1895			 * field will be <= ETHERMTU, and, as
1896			 * "proto" is > ETHERMTU, this test
1897			 * will fail and the frame won't match,
1898			 * which is what we want).
1899			 */
1900			return gen_cmp(OR_LINK, off_linktype, BPF_H,
1901			    (bpf_int32)proto);
1902		}
1903	}
1904}
1905
1906/*
1907 * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
1908 * or IPv6 then we have an error.
1909 */
1910static struct block *
1911gen_ipnet_linktype(proto)
1912	register int proto;
1913{
1914	switch (proto) {
1915
1916	case ETHERTYPE_IP:
1917		return gen_cmp(OR_LINK, off_linktype, BPF_B,
1918		    (bpf_int32)IPH_AF_INET);
1919		/* NOTREACHED */
1920
1921	case ETHERTYPE_IPV6:
1922		return gen_cmp(OR_LINK, off_linktype, BPF_B,
1923		    (bpf_int32)IPH_AF_INET6);
1924		/* NOTREACHED */
1925
1926	default:
1927		break;
1928	}
1929
1930	return gen_false();
1931}
1932
1933/*
1934 * Generate code to match a particular packet type.
1935 *
1936 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1937 * value, if <= ETHERMTU.  We use that to determine whether to
1938 * match the type field or to check the type field for the special
1939 * LINUX_SLL_P_802_2 value and then do the appropriate test.
1940 */
1941static struct block *
1942gen_linux_sll_linktype(proto)
1943	register int proto;
1944{
1945	struct block *b0, *b1;
1946
1947	switch (proto) {
1948
1949	case LLCSAP_ISONS:
1950	case LLCSAP_IP:
1951	case LLCSAP_NETBEUI:
1952		/*
1953		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1954		 * so we check the DSAP and SSAP.
1955		 *
1956		 * LLCSAP_IP checks for IP-over-802.2, rather
1957		 * than IP-over-Ethernet or IP-over-SNAP.
1958		 *
1959		 * XXX - should we check both the DSAP and the
1960		 * SSAP, like this, or should we check just the
1961		 * DSAP, as we do for other types <= ETHERMTU
1962		 * (i.e., other SAP values)?
1963		 */
1964		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
1965		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)
1966			     ((proto << 8) | proto));
1967		gen_and(b0, b1);
1968		return b1;
1969
1970	case LLCSAP_IPX:
1971		/*
1972		 *	Ethernet_II frames, which are Ethernet
1973		 *	frames with a frame type of ETHERTYPE_IPX;
1974		 *
1975		 *	Ethernet_802.3 frames, which have a frame
1976		 *	type of LINUX_SLL_P_802_3;
1977		 *
1978		 *	Ethernet_802.2 frames, which are 802.3
1979		 *	frames with an 802.2 LLC header (i.e, have
1980		 *	a frame type of LINUX_SLL_P_802_2) and
1981		 *	with the IPX LSAP as the DSAP in the LLC
1982		 *	header;
1983		 *
1984		 *	Ethernet_SNAP frames, which are 802.3
1985		 *	frames with an LLC header and a SNAP
1986		 *	header and with an OUI of 0x000000
1987		 *	(encapsulated Ethernet) and a protocol
1988		 *	ID of ETHERTYPE_IPX in the SNAP header.
1989		 *
1990		 * First, do the checks on LINUX_SLL_P_802_2
1991		 * frames; generate the check for either
1992		 * Ethernet_802.2 or Ethernet_SNAP frames, and
1993		 * then put a check for LINUX_SLL_P_802_2 frames
1994		 * before it.
1995		 */
1996		b0 = gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
1997		b1 = gen_snap(0x000000, ETHERTYPE_IPX);
1998		gen_or(b0, b1);
1999		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
2000		gen_and(b0, b1);
2001
2002		/*
2003		 * Now check for 802.3 frames and OR that with
2004		 * the previous test.
2005		 */
2006		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_3);
2007		gen_or(b0, b1);
2008
2009		/*
2010		 * Now add the check for Ethernet_II frames, and
2011		 * do that before checking for the other frame
2012		 * types.
2013		 */
2014		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
2015		    (bpf_int32)ETHERTYPE_IPX);
2016		gen_or(b0, b1);
2017		return b1;
2018
2019	case ETHERTYPE_ATALK:
2020	case ETHERTYPE_AARP:
2021		/*
2022		 * EtherTalk (AppleTalk protocols on Ethernet link
2023		 * layer) may use 802.2 encapsulation.
2024		 */
2025
2026		/*
2027		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2028		 * we check for the 802.2 protocol type in the
2029		 * "Ethernet type" field.
2030		 */
2031		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
2032
2033		/*
2034		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2035		 * SNAP packets with an organization code of
2036		 * 0x080007 (Apple, for Appletalk) and a protocol
2037		 * type of ETHERTYPE_ATALK (Appletalk).
2038		 *
2039		 * 802.2-encapsulated ETHERTYPE_AARP packets are
2040		 * SNAP packets with an organization code of
2041		 * 0x000000 (encapsulated Ethernet) and a protocol
2042		 * type of ETHERTYPE_AARP (Appletalk ARP).
2043		 */
2044		if (proto == ETHERTYPE_ATALK)
2045			b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
2046		else	/* proto == ETHERTYPE_AARP */
2047			b1 = gen_snap(0x000000, ETHERTYPE_AARP);
2048		gen_and(b0, b1);
2049
2050		/*
2051		 * Check for Ethernet encapsulation (Ethertalk
2052		 * phase 1?); we just check for the Ethernet
2053		 * protocol type.
2054		 */
2055		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
2056
2057		gen_or(b0, b1);
2058		return b1;
2059
2060	default:
2061		if (proto <= ETHERMTU) {
2062			/*
2063			 * This is an LLC SAP value, so the frames
2064			 * that match would be 802.2 frames.
2065			 * Check for the 802.2 protocol type
2066			 * in the "Ethernet type" field, and
2067			 * then check the DSAP.
2068			 */
2069			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
2070			    LINUX_SLL_P_802_2);
2071			b1 = gen_cmp(OR_LINK, off_macpl, BPF_B,
2072			     (bpf_int32)proto);
2073			gen_and(b0, b1);
2074			return b1;
2075		} else {
2076			/*
2077			 * This is an Ethernet type, so compare
2078			 * the length/type field with it (if
2079			 * the frame is an 802.2 frame, the length
2080			 * field will be <= ETHERMTU, and, as
2081			 * "proto" is > ETHERMTU, this test
2082			 * will fail and the frame won't match,
2083			 * which is what we want).
2084			 */
2085			return gen_cmp(OR_LINK, off_linktype, BPF_H,
2086			    (bpf_int32)proto);
2087		}
2088	}
2089}
2090
2091static struct slist *
2092gen_load_prism_llprefixlen()
2093{
2094	struct slist *s1, *s2;
2095	struct slist *sjeq_avs_cookie;
2096	struct slist *sjcommon;
2097
2098	/*
2099	 * This code is not compatible with the optimizer, as
2100	 * we are generating jmp instructions within a normal
2101	 * slist of instructions
2102	 */
2103	no_optimize = 1;
2104
2105	/*
2106	 * Generate code to load the length of the radio header into
2107	 * the register assigned to hold that length, if one has been
2108	 * assigned.  (If one hasn't been assigned, no code we've
2109	 * generated uses that prefix, so we don't need to generate any
2110	 * code to load it.)
2111	 *
2112	 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2113	 * or always use the AVS header rather than the Prism header.
2114	 * We load a 4-byte big-endian value at the beginning of the
2115	 * raw packet data, and see whether, when masked with 0xFFFFF000,
2116	 * it's equal to 0x80211000.  If so, that indicates that it's
2117	 * an AVS header (the masked-out bits are the version number).
2118	 * Otherwise, it's a Prism header.
2119	 *
2120	 * XXX - the Prism header is also, in theory, variable-length,
2121	 * but no known software generates headers that aren't 144
2122	 * bytes long.
2123	 */
2124	if (reg_off_ll != -1) {
2125		/*
2126		 * Load the cookie.
2127		 */
2128		s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2129		s1->s.k = 0;
2130
2131		/*
2132		 * AND it with 0xFFFFF000.
2133		 */
2134		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
2135		s2->s.k = 0xFFFFF000;
2136		sappend(s1, s2);
2137
2138		/*
2139		 * Compare with 0x80211000.
2140		 */
2141		sjeq_avs_cookie = new_stmt(JMP(BPF_JEQ));
2142		sjeq_avs_cookie->s.k = 0x80211000;
2143		sappend(s1, sjeq_avs_cookie);
2144
2145		/*
2146		 * If it's AVS:
2147		 *
2148		 * The 4 bytes at an offset of 4 from the beginning of
2149		 * the AVS header are the length of the AVS header.
2150		 * That field is big-endian.
2151		 */
2152		s2 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2153		s2->s.k = 4;
2154		sappend(s1, s2);
2155		sjeq_avs_cookie->s.jt = s2;
2156
2157		/*
2158		 * Now jump to the code to allocate a register
2159		 * into which to save the header length and
2160		 * store the length there.  (The "jump always"
2161		 * instruction needs to have the k field set;
2162		 * it's added to the PC, so, as we're jumping
2163		 * over a single instruction, it should be 1.)
2164		 */
2165		sjcommon = new_stmt(JMP(BPF_JA));
2166		sjcommon->s.k = 1;
2167		sappend(s1, sjcommon);
2168
2169		/*
2170		 * Now for the code that handles the Prism header.
2171		 * Just load the length of the Prism header (144)
2172		 * into the A register.  Have the test for an AVS
2173		 * header branch here if we don't have an AVS header.
2174		 */
2175		s2 = new_stmt(BPF_LD|BPF_W|BPF_IMM);
2176		s2->s.k = 144;
2177		sappend(s1, s2);
2178		sjeq_avs_cookie->s.jf = s2;
2179
2180		/*
2181		 * Now allocate a register to hold that value and store
2182		 * it.  The code for the AVS header will jump here after
2183		 * loading the length of the AVS header.
2184		 */
2185		s2 = new_stmt(BPF_ST);
2186		s2->s.k = reg_off_ll;
2187		sappend(s1, s2);
2188		sjcommon->s.jf = s2;
2189
2190		/*
2191		 * Now move it into the X register.
2192		 */
2193		s2 = new_stmt(BPF_MISC|BPF_TAX);
2194		sappend(s1, s2);
2195
2196		return (s1);
2197	} else
2198		return (NULL);
2199}
2200
2201static struct slist *
2202gen_load_avs_llprefixlen()
2203{
2204	struct slist *s1, *s2;
2205
2206	/*
2207	 * Generate code to load the length of the AVS header into
2208	 * the register assigned to hold that length, if one has been
2209	 * assigned.  (If one hasn't been assigned, no code we've
2210	 * generated uses that prefix, so we don't need to generate any
2211	 * code to load it.)
2212	 */
2213	if (reg_off_ll != -1) {
2214		/*
2215		 * The 4 bytes at an offset of 4 from the beginning of
2216		 * the AVS header are the length of the AVS header.
2217		 * That field is big-endian.
2218		 */
2219		s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2220		s1->s.k = 4;
2221
2222		/*
2223		 * Now allocate a register to hold that value and store
2224		 * it.
2225		 */
2226		s2 = new_stmt(BPF_ST);
2227		s2->s.k = reg_off_ll;
2228		sappend(s1, s2);
2229
2230		/*
2231		 * Now move it into the X register.
2232		 */
2233		s2 = new_stmt(BPF_MISC|BPF_TAX);
2234		sappend(s1, s2);
2235
2236		return (s1);
2237	} else
2238		return (NULL);
2239}
2240
2241static struct slist *
2242gen_load_radiotap_llprefixlen()
2243{
2244	struct slist *s1, *s2;
2245
2246	/*
2247	 * Generate code to load the length of the radiotap header into
2248	 * the register assigned to hold that length, if one has been
2249	 * assigned.  (If one hasn't been assigned, no code we've
2250	 * generated uses that prefix, so we don't need to generate any
2251	 * code to load it.)
2252	 */
2253	if (reg_off_ll != -1) {
2254		/*
2255		 * The 2 bytes at offsets of 2 and 3 from the beginning
2256		 * of the radiotap header are the length of the radiotap
2257		 * header; unfortunately, it's little-endian, so we have
2258		 * to load it a byte at a time and construct the value.
2259		 */
2260
2261		/*
2262		 * Load the high-order byte, at an offset of 3, shift it
2263		 * left a byte, and put the result in the X register.
2264		 */
2265		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2266		s1->s.k = 3;
2267		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
2268		sappend(s1, s2);
2269		s2->s.k = 8;
2270		s2 = new_stmt(BPF_MISC|BPF_TAX);
2271		sappend(s1, s2);
2272
2273		/*
2274		 * Load the next byte, at an offset of 2, and OR the
2275		 * value from the X register into it.
2276		 */
2277		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2278		sappend(s1, s2);
2279		s2->s.k = 2;
2280		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
2281		sappend(s1, s2);
2282
2283		/*
2284		 * Now allocate a register to hold that value and store
2285		 * it.
2286		 */
2287		s2 = new_stmt(BPF_ST);
2288		s2->s.k = reg_off_ll;
2289		sappend(s1, s2);
2290
2291		/*
2292		 * Now move it into the X register.
2293		 */
2294		s2 = new_stmt(BPF_MISC|BPF_TAX);
2295		sappend(s1, s2);
2296
2297		return (s1);
2298	} else
2299		return (NULL);
2300}
2301
2302/*
2303 * At the moment we treat PPI as normal Radiotap encoded
2304 * packets. The difference is in the function that generates
2305 * the code at the beginning to compute the header length.
2306 * Since this code generator of PPI supports bare 802.11
2307 * encapsulation only (i.e. the encapsulated DLT should be
2308 * DLT_IEEE802_11) we generate code to check for this too;
2309 * that's done in finish_parse().
2310 */
2311static struct slist *
2312gen_load_ppi_llprefixlen()
2313{
2314	struct slist *s1, *s2;
2315
2316	/*
2317	 * Generate code to load the length of the radiotap header
2318	 * into the register assigned to hold that length, if one has
2319	 * been assigned.
2320	 */
2321	if (reg_off_ll != -1) {
2322		/*
2323		 * The 2 bytes at offsets of 2 and 3 from the beginning
2324		 * of the radiotap header are the length of the radiotap
2325		 * header; unfortunately, it's little-endian, so we have
2326		 * to load it a byte at a time and construct the value.
2327		 */
2328
2329		/*
2330		 * Load the high-order byte, at an offset of 3, shift it
2331		 * left a byte, and put the result in the X register.
2332		 */
2333		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2334		s1->s.k = 3;
2335		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
2336		sappend(s1, s2);
2337		s2->s.k = 8;
2338		s2 = new_stmt(BPF_MISC|BPF_TAX);
2339		sappend(s1, s2);
2340
2341		/*
2342		 * Load the next byte, at an offset of 2, and OR the
2343		 * value from the X register into it.
2344		 */
2345		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2346		sappend(s1, s2);
2347		s2->s.k = 2;
2348		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
2349		sappend(s1, s2);
2350
2351		/*
2352		 * Now allocate a register to hold that value and store
2353		 * it.
2354		 */
2355		s2 = new_stmt(BPF_ST);
2356		s2->s.k = reg_off_ll;
2357		sappend(s1, s2);
2358
2359		/*
2360		 * Now move it into the X register.
2361		 */
2362		s2 = new_stmt(BPF_MISC|BPF_TAX);
2363		sappend(s1, s2);
2364
2365		return (s1);
2366	} else
2367		return (NULL);
2368}
2369
2370/*
2371 * Load a value relative to the beginning of the link-layer header after the 802.11
2372 * header, i.e. LLC_SNAP.
2373 * The link-layer header doesn't necessarily begin at the beginning
2374 * of the packet data; there might be a variable-length prefix containing
2375 * radio information.
2376 */
2377static struct slist *
2378gen_load_802_11_header_len(struct slist *s, struct slist *snext)
2379{
2380	struct slist *s2;
2381	struct slist *sjset_data_frame_1;
2382	struct slist *sjset_data_frame_2;
2383	struct slist *sjset_qos;
2384	struct slist *sjset_radiotap_flags;
2385	struct slist *sjset_radiotap_tsft;
2386	struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
2387	struct slist *s_roundup;
2388
2389	if (reg_off_macpl == -1) {
2390		/*
2391		 * No register has been assigned to the offset of
2392		 * the MAC-layer payload, which means nobody needs
2393		 * it; don't bother computing it - just return
2394		 * what we already have.
2395		 */
2396		return (s);
2397	}
2398
2399	/*
2400	 * This code is not compatible with the optimizer, as
2401	 * we are generating jmp instructions within a normal
2402	 * slist of instructions
2403	 */
2404	no_optimize = 1;
2405
2406	/*
2407	 * If "s" is non-null, it has code to arrange that the X register
2408	 * contains the length of the prefix preceding the link-layer
2409	 * header.
2410	 *
2411	 * Otherwise, the length of the prefix preceding the link-layer
2412	 * header is "off_ll".
2413	 */
2414	if (s == NULL) {
2415		/*
2416		 * There is no variable-length header preceding the
2417		 * link-layer header.
2418		 *
2419		 * Load the length of the fixed-length prefix preceding
2420		 * the link-layer header (if any) into the X register,
2421		 * and store it in the reg_off_macpl register.
2422		 * That length is off_ll.
2423		 */
2424		s = new_stmt(BPF_LDX|BPF_IMM);
2425		s->s.k = off_ll;
2426	}
2427
2428	/*
2429	 * The X register contains the offset of the beginning of the
2430	 * link-layer header; add 24, which is the minimum length
2431	 * of the MAC header for a data frame, to that, and store it
2432	 * in reg_off_macpl, and then load the Frame Control field,
2433	 * which is at the offset in the X register, with an indexed load.
2434	 */
2435	s2 = new_stmt(BPF_MISC|BPF_TXA);
2436	sappend(s, s2);
2437	s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
2438	s2->s.k = 24;
2439	sappend(s, s2);
2440	s2 = new_stmt(BPF_ST);
2441	s2->s.k = reg_off_macpl;
2442	sappend(s, s2);
2443
2444	s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
2445	s2->s.k = 0;
2446	sappend(s, s2);
2447
2448	/*
2449	 * Check the Frame Control field to see if this is a data frame;
2450	 * a data frame has the 0x08 bit (b3) in that field set and the
2451	 * 0x04 bit (b2) clear.
2452	 */
2453	sjset_data_frame_1 = new_stmt(JMP(BPF_JSET));
2454	sjset_data_frame_1->s.k = 0x08;
2455	sappend(s, sjset_data_frame_1);
2456
2457	/*
2458	 * If b3 is set, test b2, otherwise go to the first statement of
2459	 * the rest of the program.
2460	 */
2461	sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(JMP(BPF_JSET));
2462	sjset_data_frame_2->s.k = 0x04;
2463	sappend(s, sjset_data_frame_2);
2464	sjset_data_frame_1->s.jf = snext;
2465
2466	/*
2467	 * If b2 is not set, this is a data frame; test the QoS bit.
2468	 * Otherwise, go to the first statement of the rest of the
2469	 * program.
2470	 */
2471	sjset_data_frame_2->s.jt = snext;
2472	sjset_data_frame_2->s.jf = sjset_qos = new_stmt(JMP(BPF_JSET));
2473	sjset_qos->s.k = 0x80;	/* QoS bit */
2474	sappend(s, sjset_qos);
2475
2476	/*
2477	 * If it's set, add 2 to reg_off_macpl, to skip the QoS
2478	 * field.
2479	 * Otherwise, go to the first statement of the rest of the
2480	 * program.
2481	 */
2482	sjset_qos->s.jt = s2 = new_stmt(BPF_LD|BPF_MEM);
2483	s2->s.k = reg_off_macpl;
2484	sappend(s, s2);
2485	s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
2486	s2->s.k = 2;
2487	sappend(s, s2);
2488	s2 = new_stmt(BPF_ST);
2489	s2->s.k = reg_off_macpl;
2490	sappend(s, s2);
2491
2492	/*
2493	 * If we have a radiotap header, look at it to see whether
2494	 * there's Atheros padding between the MAC-layer header
2495	 * and the payload.
2496	 *
2497	 * Note: all of the fields in the radiotap header are
2498	 * little-endian, so we byte-swap all of the values
2499	 * we test against, as they will be loaded as big-endian
2500	 * values.
2501	 */
2502	if (linktype == DLT_IEEE802_11_RADIO) {
2503		/*
2504		 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2505		 * in the presence flag?
2506		 */
2507		sjset_qos->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_W);
2508		s2->s.k = 4;
2509		sappend(s, s2);
2510
2511		sjset_radiotap_flags = new_stmt(JMP(BPF_JSET));
2512		sjset_radiotap_flags->s.k = SWAPLONG(0x00000002);
2513		sappend(s, sjset_radiotap_flags);
2514
2515		/*
2516		 * If not, skip all of this.
2517		 */
2518		sjset_radiotap_flags->s.jf = snext;
2519
2520		/*
2521		 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2522		 */
2523		sjset_radiotap_tsft = sjset_radiotap_flags->s.jt =
2524		    new_stmt(JMP(BPF_JSET));
2525		sjset_radiotap_tsft->s.k = SWAPLONG(0x00000001);
2526		sappend(s, sjset_radiotap_tsft);
2527
2528		/*
2529		 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2530		 * at an offset of 16 from the beginning of the raw packet
2531		 * data (8 bytes for the radiotap header and 8 bytes for
2532		 * the TSFT field).
2533		 *
2534		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2535		 * is set.
2536		 */
2537		sjset_radiotap_tsft->s.jt = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2538		s2->s.k = 16;
2539		sappend(s, s2);
2540
2541		sjset_tsft_datapad = new_stmt(JMP(BPF_JSET));
2542		sjset_tsft_datapad->s.k = 0x20;
2543		sappend(s, sjset_tsft_datapad);
2544
2545		/*
2546		 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2547		 * at an offset of 8 from the beginning of the raw packet
2548		 * data (8 bytes for the radiotap header).
2549		 *
2550		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2551		 * is set.
2552		 */
2553		sjset_radiotap_tsft->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2554		s2->s.k = 8;
2555		sappend(s, s2);
2556
2557		sjset_notsft_datapad = new_stmt(JMP(BPF_JSET));
2558		sjset_notsft_datapad->s.k = 0x20;
2559		sappend(s, sjset_notsft_datapad);
2560
2561		/*
2562		 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2563		 * set, round the length of the 802.11 header to
2564		 * a multiple of 4.  Do that by adding 3 and then
2565		 * dividing by and multiplying by 4, which we do by
2566		 * ANDing with ~3.
2567		 */
2568		s_roundup = new_stmt(BPF_LD|BPF_MEM);
2569		s_roundup->s.k = reg_off_macpl;
2570		sappend(s, s_roundup);
2571		s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
2572		s2->s.k = 3;
2573		sappend(s, s2);
2574		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_IMM);
2575		s2->s.k = ~3;
2576		sappend(s, s2);
2577		s2 = new_stmt(BPF_ST);
2578		s2->s.k = reg_off_macpl;
2579		sappend(s, s2);
2580
2581		sjset_tsft_datapad->s.jt = s_roundup;
2582		sjset_tsft_datapad->s.jf = snext;
2583		sjset_notsft_datapad->s.jt = s_roundup;
2584		sjset_notsft_datapad->s.jf = snext;
2585	} else
2586		sjset_qos->s.jf = snext;
2587
2588	return s;
2589}
2590
2591static void
2592insert_compute_vloffsets(b)
2593	struct block *b;
2594{
2595	struct slist *s;
2596
2597	/*
2598	 * For link-layer types that have a variable-length header
2599	 * preceding the link-layer header, generate code to load
2600	 * the offset of the link-layer header into the register
2601	 * assigned to that offset, if any.
2602	 */
2603	switch (linktype) {
2604
2605	case DLT_PRISM_HEADER:
2606		s = gen_load_prism_llprefixlen();
2607		break;
2608
2609	case DLT_IEEE802_11_RADIO_AVS:
2610		s = gen_load_avs_llprefixlen();
2611		break;
2612
2613	case DLT_IEEE802_11_RADIO:
2614		s = gen_load_radiotap_llprefixlen();
2615		break;
2616
2617	case DLT_PPI:
2618		s = gen_load_ppi_llprefixlen();
2619		break;
2620
2621	default:
2622		s = NULL;
2623		break;
2624	}
2625
2626	/*
2627	 * For link-layer types that have a variable-length link-layer
2628	 * header, generate code to load the offset of the MAC-layer
2629	 * payload into the register assigned to that offset, if any.
2630	 */
2631	switch (linktype) {
2632
2633	case DLT_IEEE802_11:
2634	case DLT_PRISM_HEADER:
2635	case DLT_IEEE802_11_RADIO_AVS:
2636	case DLT_IEEE802_11_RADIO:
2637	case DLT_PPI:
2638		s = gen_load_802_11_header_len(s, b->stmts);
2639		break;
2640	}
2641
2642	/*
2643	 * If we have any offset-loading code, append all the
2644	 * existing statements in the block to those statements,
2645	 * and make the resulting list the list of statements
2646	 * for the block.
2647	 */
2648	if (s != NULL) {
2649		sappend(s, b->stmts);
2650		b->stmts = s;
2651	}
2652}
2653
2654static struct block *
2655gen_ppi_dlt_check(void)
2656{
2657	struct slist *s_load_dlt;
2658	struct block *b;
2659
2660	if (linktype == DLT_PPI)
2661	{
2662		/* Create the statements that check for the DLT
2663		 */
2664		s_load_dlt = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2665		s_load_dlt->s.k = 4;
2666
2667		b = new_block(JMP(BPF_JEQ));
2668
2669		b->stmts = s_load_dlt;
2670		b->s.k = SWAPLONG(DLT_IEEE802_11);
2671	}
2672	else
2673	{
2674		b = NULL;
2675	}
2676
2677	return b;
2678}
2679
2680static struct slist *
2681gen_prism_llprefixlen(void)
2682{
2683	struct slist *s;
2684
2685	if (reg_off_ll == -1) {
2686		/*
2687		 * We haven't yet assigned a register for the length
2688		 * of the radio header; allocate one.
2689		 */
2690		reg_off_ll = alloc_reg();
2691	}
2692
2693	/*
2694	 * Load the register containing the radio length
2695	 * into the X register.
2696	 */
2697	s = new_stmt(BPF_LDX|BPF_MEM);
2698	s->s.k = reg_off_ll;
2699	return s;
2700}
2701
2702static struct slist *
2703gen_avs_llprefixlen(void)
2704{
2705	struct slist *s;
2706
2707	if (reg_off_ll == -1) {
2708		/*
2709		 * We haven't yet assigned a register for the length
2710		 * of the AVS header; allocate one.
2711		 */
2712		reg_off_ll = alloc_reg();
2713	}
2714
2715	/*
2716	 * Load the register containing the AVS length
2717	 * into the X register.
2718	 */
2719	s = new_stmt(BPF_LDX|BPF_MEM);
2720	s->s.k = reg_off_ll;
2721	return s;
2722}
2723
2724static struct slist *
2725gen_radiotap_llprefixlen(void)
2726{
2727	struct slist *s;
2728
2729	if (reg_off_ll == -1) {
2730		/*
2731		 * We haven't yet assigned a register for the length
2732		 * of the radiotap header; allocate one.
2733		 */
2734		reg_off_ll = alloc_reg();
2735	}
2736
2737	/*
2738	 * Load the register containing the radiotap length
2739	 * into the X register.
2740	 */
2741	s = new_stmt(BPF_LDX|BPF_MEM);
2742	s->s.k = reg_off_ll;
2743	return s;
2744}
2745
2746/*
2747 * At the moment we treat PPI as normal Radiotap encoded
2748 * packets. The difference is in the function that generates
2749 * the code at the beginning to compute the header length.
2750 * Since this code generator of PPI supports bare 802.11
2751 * encapsulation only (i.e. the encapsulated DLT should be
2752 * DLT_IEEE802_11) we generate code to check for this too.
2753 */
2754static struct slist *
2755gen_ppi_llprefixlen(void)
2756{
2757	struct slist *s;
2758
2759	if (reg_off_ll == -1) {
2760		/*
2761		 * We haven't yet assigned a register for the length
2762		 * of the radiotap header; allocate one.
2763		 */
2764		reg_off_ll = alloc_reg();
2765	}
2766
2767	/*
2768	 * Load the register containing the PPI length
2769	 * into the X register.
2770	 */
2771	s = new_stmt(BPF_LDX|BPF_MEM);
2772	s->s.k = reg_off_ll;
2773	return s;
2774}
2775
2776/*
2777 * Generate code to compute the link-layer header length, if necessary,
2778 * putting it into the X register, and to return either a pointer to a
2779 * "struct slist" for the list of statements in that code, or NULL if
2780 * no code is necessary.
2781 */
2782static struct slist *
2783gen_llprefixlen(void)
2784{
2785	switch (linktype) {
2786
2787	case DLT_PRISM_HEADER:
2788		return gen_prism_llprefixlen();
2789
2790	case DLT_IEEE802_11_RADIO_AVS:
2791		return gen_avs_llprefixlen();
2792
2793	case DLT_IEEE802_11_RADIO:
2794		return gen_radiotap_llprefixlen();
2795
2796	case DLT_PPI:
2797		return gen_ppi_llprefixlen();
2798
2799	default:
2800		return NULL;
2801	}
2802}
2803
2804/*
2805 * Generate code to load the register containing the offset of the
2806 * MAC-layer payload into the X register; if no register for that offset
2807 * has been allocated, allocate it first.
2808 */
2809static struct slist *
2810gen_off_macpl(void)
2811{
2812	struct slist *s;
2813
2814	if (off_macpl_is_variable) {
2815		if (reg_off_macpl == -1) {
2816			/*
2817			 * We haven't yet assigned a register for the offset
2818			 * of the MAC-layer payload; allocate one.
2819			 */
2820			reg_off_macpl = alloc_reg();
2821		}
2822
2823		/*
2824		 * Load the register containing the offset of the MAC-layer
2825		 * payload into the X register.
2826		 */
2827		s = new_stmt(BPF_LDX|BPF_MEM);
2828		s->s.k = reg_off_macpl;
2829		return s;
2830	} else {
2831		/*
2832		 * That offset isn't variable, so we don't need to
2833		 * generate any code.
2834		 */
2835		return NULL;
2836	}
2837}
2838
2839/*
2840 * Map an Ethernet type to the equivalent PPP type.
2841 */
2842static int
2843ethertype_to_ppptype(proto)
2844	int proto;
2845{
2846	switch (proto) {
2847
2848	case ETHERTYPE_IP:
2849		proto = PPP_IP;
2850		break;
2851
2852	case ETHERTYPE_IPV6:
2853		proto = PPP_IPV6;
2854		break;
2855
2856	case ETHERTYPE_DN:
2857		proto = PPP_DECNET;
2858		break;
2859
2860	case ETHERTYPE_ATALK:
2861		proto = PPP_APPLE;
2862		break;
2863
2864	case ETHERTYPE_NS:
2865		proto = PPP_NS;
2866		break;
2867
2868	case LLCSAP_ISONS:
2869		proto = PPP_OSI;
2870		break;
2871
2872	case LLCSAP_8021D:
2873		/*
2874		 * I'm assuming the "Bridging PDU"s that go
2875		 * over PPP are Spanning Tree Protocol
2876		 * Bridging PDUs.
2877		 */
2878		proto = PPP_BRPDU;
2879		break;
2880
2881	case LLCSAP_IPX:
2882		proto = PPP_IPX;
2883		break;
2884	}
2885	return (proto);
2886}
2887
2888/*
2889 * Generate code to match a particular packet type by matching the
2890 * link-layer type field or fields in the 802.2 LLC header.
2891 *
2892 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2893 * value, if <= ETHERMTU.
2894 */
2895static struct block *
2896gen_linktype(proto)
2897	register int proto;
2898{
2899	struct block *b0, *b1, *b2;
2900
2901	/* are we checking MPLS-encapsulated packets? */
2902	if (label_stack_depth > 0) {
2903		switch (proto) {
2904		case ETHERTYPE_IP:
2905		case PPP_IP:
2906			/* FIXME add other L3 proto IDs */
2907			return gen_mpls_linktype(Q_IP);
2908
2909		case ETHERTYPE_IPV6:
2910		case PPP_IPV6:
2911			/* FIXME add other L3 proto IDs */
2912			return gen_mpls_linktype(Q_IPV6);
2913
2914		default:
2915			bpf_error("unsupported protocol over mpls");
2916			/* NOTREACHED */
2917		}
2918	}
2919
2920	/*
2921	 * Are we testing PPPoE packets?
2922	 */
2923	if (is_pppoes) {
2924		/*
2925		 * The PPPoE session header is part of the
2926		 * MAC-layer payload, so all references
2927		 * should be relative to the beginning of
2928		 * that payload.
2929		 */
2930
2931		/*
2932		 * We use Ethernet protocol types inside libpcap;
2933		 * map them to the corresponding PPP protocol types.
2934		 */
2935		proto = ethertype_to_ppptype(proto);
2936		return gen_cmp(OR_MACPL, off_linktype, BPF_H, (bpf_int32)proto);
2937	}
2938
2939	switch (linktype) {
2940
2941	case DLT_EN10MB:
2942	case DLT_NETANALYZER:
2943	case DLT_NETANALYZER_TRANSPARENT:
2944		return gen_ether_linktype(proto);
2945		/*NOTREACHED*/
2946		break;
2947
2948	case DLT_C_HDLC:
2949		switch (proto) {
2950
2951		case LLCSAP_ISONS:
2952			proto = (proto << 8 | LLCSAP_ISONS);
2953			/* fall through */
2954
2955		default:
2956			return gen_cmp(OR_LINK, off_linktype, BPF_H,
2957			    (bpf_int32)proto);
2958			/*NOTREACHED*/
2959			break;
2960		}
2961		break;
2962
2963	case DLT_IEEE802_11:
2964	case DLT_PRISM_HEADER:
2965	case DLT_IEEE802_11_RADIO_AVS:
2966	case DLT_IEEE802_11_RADIO:
2967	case DLT_PPI:
2968		/*
2969		 * Check that we have a data frame.
2970		 */
2971		b0 = gen_check_802_11_data_frame();
2972
2973		/*
2974		 * Now check for the specified link-layer type.
2975		 */
2976		b1 = gen_llc_linktype(proto);
2977		gen_and(b0, b1);
2978		return b1;
2979		/*NOTREACHED*/
2980		break;
2981
2982	case DLT_FDDI:
2983		/*
2984		 * XXX - check for asynchronous frames, as per RFC 1103.
2985		 */
2986		return gen_llc_linktype(proto);
2987		/*NOTREACHED*/
2988		break;
2989
2990	case DLT_IEEE802:
2991		/*
2992		 * XXX - check for LLC PDUs, as per IEEE 802.5.
2993		 */
2994		return gen_llc_linktype(proto);
2995		/*NOTREACHED*/
2996		break;
2997
2998	case DLT_ATM_RFC1483:
2999	case DLT_ATM_CLIP:
3000	case DLT_IP_OVER_FC:
3001		return gen_llc_linktype(proto);
3002		/*NOTREACHED*/
3003		break;
3004
3005	case DLT_SUNATM:
3006		/*
3007		 * If "is_lane" is set, check for a LANE-encapsulated
3008		 * version of this protocol, otherwise check for an
3009		 * LLC-encapsulated version of this protocol.
3010		 *
3011		 * We assume LANE means Ethernet, not Token Ring.
3012		 */
3013		if (is_lane) {
3014			/*
3015			 * Check that the packet doesn't begin with an
3016			 * LE Control marker.  (We've already generated
3017			 * a test for LANE.)
3018			 */
3019			b0 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
3020			    0xFF00);
3021			gen_not(b0);
3022
3023			/*
3024			 * Now generate an Ethernet test.
3025			 */
3026			b1 = gen_ether_linktype(proto);
3027			gen_and(b0, b1);
3028			return b1;
3029		} else {
3030			/*
3031			 * Check for LLC encapsulation and then check the
3032			 * protocol.
3033			 */
3034			b0 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
3035			b1 = gen_llc_linktype(proto);
3036			gen_and(b0, b1);
3037			return b1;
3038		}
3039		/*NOTREACHED*/
3040		break;
3041
3042	case DLT_LINUX_SLL:
3043		return gen_linux_sll_linktype(proto);
3044		/*NOTREACHED*/
3045		break;
3046
3047	case DLT_SLIP:
3048	case DLT_SLIP_BSDOS:
3049	case DLT_RAW:
3050		/*
3051		 * These types don't provide any type field; packets
3052		 * are always IPv4 or IPv6.
3053		 *
3054		 * XXX - for IPv4, check for a version number of 4, and,
3055		 * for IPv6, check for a version number of 6?
3056		 */
3057		switch (proto) {
3058
3059		case ETHERTYPE_IP:
3060			/* Check for a version number of 4. */
3061			return gen_mcmp(OR_LINK, 0, BPF_B, 0x40, 0xF0);
3062
3063		case ETHERTYPE_IPV6:
3064			/* Check for a version number of 6. */
3065			return gen_mcmp(OR_LINK, 0, BPF_B, 0x60, 0xF0);
3066
3067		default:
3068			return gen_false();		/* always false */
3069		}
3070		/*NOTREACHED*/
3071		break;
3072
3073	case DLT_IPV4:
3074		/*
3075		 * Raw IPv4, so no type field.
3076		 */
3077		if (proto == ETHERTYPE_IP)
3078			return gen_true();		/* always true */
3079
3080		/* Checking for something other than IPv4; always false */
3081		return gen_false();
3082		/*NOTREACHED*/
3083		break;
3084
3085	case DLT_IPV6:
3086		/*
3087		 * Raw IPv6, so no type field.
3088		 */
3089		if (proto == ETHERTYPE_IPV6)
3090			return gen_true();		/* always true */
3091
3092		/* Checking for something other than IPv6; always false */
3093		return gen_false();
3094		/*NOTREACHED*/
3095		break;
3096
3097	case DLT_PPP:
3098	case DLT_PPP_PPPD:
3099	case DLT_PPP_SERIAL:
3100	case DLT_PPP_ETHER:
3101		/*
3102		 * We use Ethernet protocol types inside libpcap;
3103		 * map them to the corresponding PPP protocol types.
3104		 */
3105		proto = ethertype_to_ppptype(proto);
3106		return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
3107		/*NOTREACHED*/
3108		break;
3109
3110	case DLT_PPP_BSDOS:
3111		/*
3112		 * We use Ethernet protocol types inside libpcap;
3113		 * map them to the corresponding PPP protocol types.
3114		 */
3115		switch (proto) {
3116
3117		case ETHERTYPE_IP:
3118			/*
3119			 * Also check for Van Jacobson-compressed IP.
3120			 * XXX - do this for other forms of PPP?
3121			 */
3122			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_IP);
3123			b1 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJC);
3124			gen_or(b0, b1);
3125			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJNC);
3126			gen_or(b1, b0);
3127			return b0;
3128
3129		default:
3130			proto = ethertype_to_ppptype(proto);
3131			return gen_cmp(OR_LINK, off_linktype, BPF_H,
3132				(bpf_int32)proto);
3133		}
3134		/*NOTREACHED*/
3135		break;
3136
3137	case DLT_NULL:
3138	case DLT_LOOP:
3139	case DLT_ENC:
3140		/*
3141		 * For DLT_NULL, the link-layer header is a 32-bit
3142		 * word containing an AF_ value in *host* byte order,
3143		 * and for DLT_ENC, the link-layer header begins
3144		 * with a 32-bit work containing an AF_ value in
3145		 * host byte order.
3146		 *
3147		 * In addition, if we're reading a saved capture file,
3148		 * the host byte order in the capture may not be the
3149		 * same as the host byte order on this machine.
3150		 *
3151		 * For DLT_LOOP, the link-layer header is a 32-bit
3152		 * word containing an AF_ value in *network* byte order.
3153		 *
3154		 * XXX - AF_ values may, unfortunately, be platform-
3155		 * dependent; for example, FreeBSD's AF_INET6 is 24
3156		 * whilst NetBSD's and OpenBSD's is 26.
3157		 *
3158		 * This means that, when reading a capture file, just
3159		 * checking for our AF_INET6 value won't work if the
3160		 * capture file came from another OS.
3161		 */
3162		switch (proto) {
3163
3164		case ETHERTYPE_IP:
3165			proto = AF_INET;
3166			break;
3167
3168#ifdef INET6
3169		case ETHERTYPE_IPV6:
3170			proto = AF_INET6;
3171			break;
3172#endif
3173
3174		default:
3175			/*
3176			 * Not a type on which we support filtering.
3177			 * XXX - support those that have AF_ values
3178			 * #defined on this platform, at least?
3179			 */
3180			return gen_false();
3181		}
3182
3183		if (linktype == DLT_NULL || linktype == DLT_ENC) {
3184			/*
3185			 * The AF_ value is in host byte order, but
3186			 * the BPF interpreter will convert it to
3187			 * network byte order.
3188			 *
3189			 * If this is a save file, and it's from a
3190			 * machine with the opposite byte order to
3191			 * ours, we byte-swap the AF_ value.
3192			 *
3193			 * Then we run it through "htonl()", and
3194			 * generate code to compare against the result.
3195			 */
3196			if (bpf_pcap->sf.rfile != NULL &&
3197			    bpf_pcap->sf.swapped)
3198				proto = SWAPLONG(proto);
3199			proto = htonl(proto);
3200		}
3201		return (gen_cmp(OR_LINK, 0, BPF_W, (bpf_int32)proto));
3202
3203#ifdef HAVE_NET_PFVAR_H
3204	case DLT_PFLOG:
3205		/*
3206		 * af field is host byte order in contrast to the rest of
3207		 * the packet.
3208		 */
3209		if (proto == ETHERTYPE_IP)
3210			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
3211			    BPF_B, (bpf_int32)AF_INET));
3212		else if (proto == ETHERTYPE_IPV6)
3213			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
3214			    BPF_B, (bpf_int32)AF_INET6));
3215		else
3216			return gen_false();
3217		/*NOTREACHED*/
3218		break;
3219#endif /* HAVE_NET_PFVAR_H */
3220
3221	case DLT_ARCNET:
3222	case DLT_ARCNET_LINUX:
3223		/*
3224		 * XXX should we check for first fragment if the protocol
3225		 * uses PHDS?
3226		 */
3227		switch (proto) {
3228
3229		default:
3230			return gen_false();
3231
3232		case ETHERTYPE_IPV6:
3233			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3234				(bpf_int32)ARCTYPE_INET6));
3235
3236		case ETHERTYPE_IP:
3237			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3238				     (bpf_int32)ARCTYPE_IP);
3239			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3240				     (bpf_int32)ARCTYPE_IP_OLD);
3241			gen_or(b0, b1);
3242			return (b1);
3243
3244		case ETHERTYPE_ARP:
3245			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3246				     (bpf_int32)ARCTYPE_ARP);
3247			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3248				     (bpf_int32)ARCTYPE_ARP_OLD);
3249			gen_or(b0, b1);
3250			return (b1);
3251
3252		case ETHERTYPE_REVARP:
3253			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3254					(bpf_int32)ARCTYPE_REVARP));
3255
3256		case ETHERTYPE_ATALK:
3257			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3258					(bpf_int32)ARCTYPE_ATALK));
3259		}
3260		/*NOTREACHED*/
3261		break;
3262
3263	case DLT_LTALK:
3264		switch (proto) {
3265		case ETHERTYPE_ATALK:
3266			return gen_true();
3267		default:
3268			return gen_false();
3269		}
3270		/*NOTREACHED*/
3271		break;
3272
3273	case DLT_FRELAY:
3274		/*
3275		 * XXX - assumes a 2-byte Frame Relay header with
3276		 * DLCI and flags.  What if the address is longer?
3277		 */
3278		switch (proto) {
3279
3280		case ETHERTYPE_IP:
3281			/*
3282			 * Check for the special NLPID for IP.
3283			 */
3284			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0xcc);
3285
3286		case ETHERTYPE_IPV6:
3287			/*
3288			 * Check for the special NLPID for IPv6.
3289			 */
3290			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0x8e);
3291
3292		case LLCSAP_ISONS:
3293			/*
3294			 * Check for several OSI protocols.
3295			 *
3296			 * Frame Relay packets typically have an OSI
3297			 * NLPID at the beginning; we check for each
3298			 * of them.
3299			 *
3300			 * What we check for is the NLPID and a frame
3301			 * control field of UI, i.e. 0x03 followed
3302			 * by the NLPID.
3303			 */
3304			b0 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3305			b1 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3306			b2 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3307			gen_or(b1, b2);
3308			gen_or(b0, b2);
3309			return b2;
3310
3311		default:
3312			return gen_false();
3313		}
3314		/*NOTREACHED*/
3315		break;
3316
3317	case DLT_MFR:
3318		bpf_error("Multi-link Frame Relay link-layer type filtering not implemented");
3319
3320        case DLT_JUNIPER_MFR:
3321        case DLT_JUNIPER_MLFR:
3322        case DLT_JUNIPER_MLPPP:
3323	case DLT_JUNIPER_ATM1:
3324	case DLT_JUNIPER_ATM2:
3325	case DLT_JUNIPER_PPPOE:
3326	case DLT_JUNIPER_PPPOE_ATM:
3327        case DLT_JUNIPER_GGSN:
3328        case DLT_JUNIPER_ES:
3329        case DLT_JUNIPER_MONITOR:
3330        case DLT_JUNIPER_SERVICES:
3331        case DLT_JUNIPER_ETHER:
3332        case DLT_JUNIPER_PPP:
3333        case DLT_JUNIPER_FRELAY:
3334        case DLT_JUNIPER_CHDLC:
3335        case DLT_JUNIPER_VP:
3336        case DLT_JUNIPER_ST:
3337        case DLT_JUNIPER_ISM:
3338        case DLT_JUNIPER_VS:
3339        case DLT_JUNIPER_SRX_E2E:
3340        case DLT_JUNIPER_FIBRECHANNEL:
3341	case DLT_JUNIPER_ATM_CEMIC:
3342
3343		/* just lets verify the magic number for now -
3344		 * on ATM we may have up to 6 different encapsulations on the wire
3345		 * and need a lot of heuristics to figure out that the payload
3346		 * might be;
3347		 *
3348		 * FIXME encapsulation specific BPF_ filters
3349		 */
3350		return gen_mcmp(OR_LINK, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3351
3352	case DLT_IPNET:
3353		return gen_ipnet_linktype(proto);
3354
3355	case DLT_LINUX_IRDA:
3356		bpf_error("IrDA link-layer type filtering not implemented");
3357
3358	case DLT_DOCSIS:
3359		bpf_error("DOCSIS link-layer type filtering not implemented");
3360
3361	case DLT_MTP2:
3362	case DLT_MTP2_WITH_PHDR:
3363		bpf_error("MTP2 link-layer type filtering not implemented");
3364
3365	case DLT_ERF:
3366		bpf_error("ERF link-layer type filtering not implemented");
3367
3368	case DLT_PFSYNC:
3369		bpf_error("PFSYNC link-layer type filtering not implemented");
3370
3371	case DLT_LINUX_LAPD:
3372		bpf_error("LAPD link-layer type filtering not implemented");
3373
3374	case DLT_USB:
3375	case DLT_USB_LINUX:
3376	case DLT_USB_LINUX_MMAPPED:
3377		bpf_error("USB link-layer type filtering not implemented");
3378
3379	case DLT_BLUETOOTH_HCI_H4:
3380	case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
3381		bpf_error("Bluetooth link-layer type filtering not implemented");
3382
3383	case DLT_CAN20B:
3384	case DLT_CAN_SOCKETCAN:
3385		bpf_error("CAN link-layer type filtering not implemented");
3386
3387	case DLT_IEEE802_15_4:
3388	case DLT_IEEE802_15_4_LINUX:
3389	case DLT_IEEE802_15_4_NONASK_PHY:
3390	case DLT_IEEE802_15_4_NOFCS:
3391		bpf_error("IEEE 802.15.4 link-layer type filtering not implemented");
3392
3393	case DLT_IEEE802_16_MAC_CPS_RADIO:
3394		bpf_error("IEEE 802.16 link-layer type filtering not implemented");
3395
3396	case DLT_SITA:
3397		bpf_error("SITA link-layer type filtering not implemented");
3398
3399	case DLT_RAIF1:
3400		bpf_error("RAIF1 link-layer type filtering not implemented");
3401
3402	case DLT_IPMB:
3403		bpf_error("IPMB link-layer type filtering not implemented");
3404
3405	case DLT_AX25_KISS:
3406		bpf_error("AX.25 link-layer type filtering not implemented");
3407	}
3408
3409	/*
3410	 * All the types that have no encapsulation should either be
3411	 * handled as DLT_SLIP, DLT_SLIP_BSDOS, and DLT_RAW are, if
3412	 * all packets are IP packets, or should be handled in some
3413	 * special case, if none of them are (if some are and some
3414	 * aren't, the lack of encapsulation is a problem, as we'd
3415	 * have to find some other way of determining the packet type).
3416	 *
3417	 * Therefore, if "off_linktype" is -1, there's an error.
3418	 */
3419	if (off_linktype == (u_int)-1)
3420		abort();
3421
3422	/*
3423	 * Any type not handled above should always have an Ethernet
3424	 * type at an offset of "off_linktype".
3425	 */
3426	return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
3427}
3428
3429/*
3430 * Check for an LLC SNAP packet with a given organization code and
3431 * protocol type; we check the entire contents of the 802.2 LLC and
3432 * snap headers, checking for DSAP and SSAP of SNAP and a control
3433 * field of 0x03 in the LLC header, and for the specified organization
3434 * code and protocol type in the SNAP header.
3435 */
3436static struct block *
3437gen_snap(orgcode, ptype)
3438	bpf_u_int32 orgcode;
3439	bpf_u_int32 ptype;
3440{
3441	u_char snapblock[8];
3442
3443	snapblock[0] = LLCSAP_SNAP;	/* DSAP = SNAP */
3444	snapblock[1] = LLCSAP_SNAP;	/* SSAP = SNAP */
3445	snapblock[2] = 0x03;		/* control = UI */
3446	snapblock[3] = (orgcode >> 16);	/* upper 8 bits of organization code */
3447	snapblock[4] = (orgcode >> 8);	/* middle 8 bits of organization code */
3448	snapblock[5] = (orgcode >> 0);	/* lower 8 bits of organization code */
3449	snapblock[6] = (ptype >> 8);	/* upper 8 bits of protocol type */
3450	snapblock[7] = (ptype >> 0);	/* lower 8 bits of protocol type */
3451	return gen_bcmp(OR_MACPL, 0, 8, snapblock);
3452}
3453
3454/*
3455 * Generate code to match a particular packet type, for link-layer types
3456 * using 802.2 LLC headers.
3457 *
3458 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3459 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3460 *
3461 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3462 * value, if <= ETHERMTU.  We use that to determine whether to
3463 * match the DSAP or both DSAP and LSAP or to check the OUI and
3464 * protocol ID in a SNAP header.
3465 */
3466static struct block *
3467gen_llc_linktype(proto)
3468	int proto;
3469{
3470	/*
3471	 * XXX - handle token-ring variable-length header.
3472	 */
3473	switch (proto) {
3474
3475	case LLCSAP_IP:
3476	case LLCSAP_ISONS:
3477	case LLCSAP_NETBEUI:
3478		/*
3479		 * XXX - should we check both the DSAP and the
3480		 * SSAP, like this, or should we check just the
3481		 * DSAP, as we do for other types <= ETHERMTU
3482		 * (i.e., other SAP values)?
3483		 */
3484		return gen_cmp(OR_MACPL, 0, BPF_H, (bpf_u_int32)
3485			     ((proto << 8) | proto));
3486
3487	case LLCSAP_IPX:
3488		/*
3489		 * XXX - are there ever SNAP frames for IPX on
3490		 * non-Ethernet 802.x networks?
3491		 */
3492		return gen_cmp(OR_MACPL, 0, BPF_B,
3493		    (bpf_int32)LLCSAP_IPX);
3494
3495	case ETHERTYPE_ATALK:
3496		/*
3497		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3498		 * SNAP packets with an organization code of
3499		 * 0x080007 (Apple, for Appletalk) and a protocol
3500		 * type of ETHERTYPE_ATALK (Appletalk).
3501		 *
3502		 * XXX - check for an organization code of
3503		 * encapsulated Ethernet as well?
3504		 */
3505		return gen_snap(0x080007, ETHERTYPE_ATALK);
3506
3507	default:
3508		/*
3509		 * XXX - we don't have to check for IPX 802.3
3510		 * here, but should we check for the IPX Ethertype?
3511		 */
3512		if (proto <= ETHERMTU) {
3513			/*
3514			 * This is an LLC SAP value, so check
3515			 * the DSAP.
3516			 */
3517			return gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)proto);
3518		} else {
3519			/*
3520			 * This is an Ethernet type; we assume that it's
3521			 * unlikely that it'll appear in the right place
3522			 * at random, and therefore check only the
3523			 * location that would hold the Ethernet type
3524			 * in a SNAP frame with an organization code of
3525			 * 0x000000 (encapsulated Ethernet).
3526			 *
3527			 * XXX - if we were to check for the SNAP DSAP and
3528			 * LSAP, as per XXX, and were also to check for an
3529			 * organization code of 0x000000 (encapsulated
3530			 * Ethernet), we'd do
3531			 *
3532			 *	return gen_snap(0x000000, proto);
3533			 *
3534			 * here; for now, we don't, as per the above.
3535			 * I don't know whether it's worth the extra CPU
3536			 * time to do the right check or not.
3537			 */
3538			return gen_cmp(OR_MACPL, 6, BPF_H, (bpf_int32)proto);
3539		}
3540	}
3541}
3542
3543static struct block *
3544gen_hostop(addr, mask, dir, proto, src_off, dst_off)
3545	bpf_u_int32 addr;
3546	bpf_u_int32 mask;
3547	int dir, proto;
3548	u_int src_off, dst_off;
3549{
3550	struct block *b0, *b1;
3551	u_int offset;
3552
3553	switch (dir) {
3554
3555	case Q_SRC:
3556		offset = src_off;
3557		break;
3558
3559	case Q_DST:
3560		offset = dst_off;
3561		break;
3562
3563	case Q_AND:
3564		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
3565		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
3566		gen_and(b0, b1);
3567		return b1;
3568
3569	case Q_OR:
3570	case Q_DEFAULT:
3571		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
3572		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
3573		gen_or(b0, b1);
3574		return b1;
3575
3576	default:
3577		abort();
3578	}
3579	b0 = gen_linktype(proto);
3580	b1 = gen_mcmp(OR_NET, offset, BPF_W, (bpf_int32)addr, mask);
3581	gen_and(b0, b1);
3582	return b1;
3583}
3584
3585#ifdef INET6
3586static struct block *
3587gen_hostop6(addr, mask, dir, proto, src_off, dst_off)
3588	struct in6_addr *addr;
3589	struct in6_addr *mask;
3590	int dir, proto;
3591	u_int src_off, dst_off;
3592{
3593	struct block *b0, *b1;
3594	u_int offset;
3595	u_int32_t *a, *m;
3596
3597	switch (dir) {
3598
3599	case Q_SRC:
3600		offset = src_off;
3601		break;
3602
3603	case Q_DST:
3604		offset = dst_off;
3605		break;
3606
3607	case Q_AND:
3608		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
3609		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
3610		gen_and(b0, b1);
3611		return b1;
3612
3613	case Q_OR:
3614	case Q_DEFAULT:
3615		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
3616		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
3617		gen_or(b0, b1);
3618		return b1;
3619
3620	default:
3621		abort();
3622	}
3623	/* this order is important */
3624	a = (u_int32_t *)addr;
3625	m = (u_int32_t *)mask;
3626	b1 = gen_mcmp(OR_NET, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
3627	b0 = gen_mcmp(OR_NET, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
3628	gen_and(b0, b1);
3629	b0 = gen_mcmp(OR_NET, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
3630	gen_and(b0, b1);
3631	b0 = gen_mcmp(OR_NET, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
3632	gen_and(b0, b1);
3633	b0 = gen_linktype(proto);
3634	gen_and(b0, b1);
3635	return b1;
3636}
3637#endif
3638
3639static struct block *
3640gen_ehostop(eaddr, dir)
3641	register const u_char *eaddr;
3642	register int dir;
3643{
3644	register struct block *b0, *b1;
3645
3646	switch (dir) {
3647	case Q_SRC:
3648		return gen_bcmp(OR_LINK, off_mac + 6, 6, eaddr);
3649
3650	case Q_DST:
3651		return gen_bcmp(OR_LINK, off_mac + 0, 6, eaddr);
3652
3653	case Q_AND:
3654		b0 = gen_ehostop(eaddr, Q_SRC);
3655		b1 = gen_ehostop(eaddr, Q_DST);
3656		gen_and(b0, b1);
3657		return b1;
3658
3659	case Q_DEFAULT:
3660	case Q_OR:
3661		b0 = gen_ehostop(eaddr, Q_SRC);
3662		b1 = gen_ehostop(eaddr, Q_DST);
3663		gen_or(b0, b1);
3664		return b1;
3665
3666	case Q_ADDR1:
3667		bpf_error("'addr1' is only supported on 802.11 with 802.11 headers");
3668		break;
3669
3670	case Q_ADDR2:
3671		bpf_error("'addr2' is only supported on 802.11 with 802.11 headers");
3672		break;
3673
3674	case Q_ADDR3:
3675		bpf_error("'addr3' is only supported on 802.11 with 802.11 headers");
3676		break;
3677
3678	case Q_ADDR4:
3679		bpf_error("'addr4' is only supported on 802.11 with 802.11 headers");
3680		break;
3681
3682	case Q_RA:
3683		bpf_error("'ra' is only supported on 802.11 with 802.11 headers");
3684		break;
3685
3686	case Q_TA:
3687		bpf_error("'ta' is only supported on 802.11 with 802.11 headers");
3688		break;
3689	}
3690	abort();
3691	/* NOTREACHED */
3692}
3693
3694/*
3695 * Like gen_ehostop, but for DLT_FDDI
3696 */
3697static struct block *
3698gen_fhostop(eaddr, dir)
3699	register const u_char *eaddr;
3700	register int dir;
3701{
3702	struct block *b0, *b1;
3703
3704	switch (dir) {
3705	case Q_SRC:
3706#ifdef PCAP_FDDIPAD
3707		return gen_bcmp(OR_LINK, 6 + 1 + pcap_fddipad, 6, eaddr);
3708#else
3709		return gen_bcmp(OR_LINK, 6 + 1, 6, eaddr);
3710#endif
3711
3712	case Q_DST:
3713#ifdef PCAP_FDDIPAD
3714		return gen_bcmp(OR_LINK, 0 + 1 + pcap_fddipad, 6, eaddr);
3715#else
3716		return gen_bcmp(OR_LINK, 0 + 1, 6, eaddr);
3717#endif
3718
3719	case Q_AND:
3720		b0 = gen_fhostop(eaddr, Q_SRC);
3721		b1 = gen_fhostop(eaddr, Q_DST);
3722		gen_and(b0, b1);
3723		return b1;
3724
3725	case Q_DEFAULT:
3726	case Q_OR:
3727		b0 = gen_fhostop(eaddr, Q_SRC);
3728		b1 = gen_fhostop(eaddr, Q_DST);
3729		gen_or(b0, b1);
3730		return b1;
3731
3732	case Q_ADDR1:
3733		bpf_error("'addr1' is only supported on 802.11");
3734		break;
3735
3736	case Q_ADDR2:
3737		bpf_error("'addr2' is only supported on 802.11");
3738		break;
3739
3740	case Q_ADDR3:
3741		bpf_error("'addr3' is only supported on 802.11");
3742		break;
3743
3744	case Q_ADDR4:
3745		bpf_error("'addr4' is only supported on 802.11");
3746		break;
3747
3748	case Q_RA:
3749		bpf_error("'ra' is only supported on 802.11");
3750		break;
3751
3752	case Q_TA:
3753		bpf_error("'ta' is only supported on 802.11");
3754		break;
3755	}
3756	abort();
3757	/* NOTREACHED */
3758}
3759
3760/*
3761 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
3762 */
3763static struct block *
3764gen_thostop(eaddr, dir)
3765	register const u_char *eaddr;
3766	register int dir;
3767{
3768	register struct block *b0, *b1;
3769
3770	switch (dir) {
3771	case Q_SRC:
3772		return gen_bcmp(OR_LINK, 8, 6, eaddr);
3773
3774	case Q_DST:
3775		return gen_bcmp(OR_LINK, 2, 6, eaddr);
3776
3777	case Q_AND:
3778		b0 = gen_thostop(eaddr, Q_SRC);
3779		b1 = gen_thostop(eaddr, Q_DST);
3780		gen_and(b0, b1);
3781		return b1;
3782
3783	case Q_DEFAULT:
3784	case Q_OR:
3785		b0 = gen_thostop(eaddr, Q_SRC);
3786		b1 = gen_thostop(eaddr, Q_DST);
3787		gen_or(b0, b1);
3788		return b1;
3789
3790	case Q_ADDR1:
3791		bpf_error("'addr1' is only supported on 802.11");
3792		break;
3793
3794	case Q_ADDR2:
3795		bpf_error("'addr2' is only supported on 802.11");
3796		break;
3797
3798	case Q_ADDR3:
3799		bpf_error("'addr3' is only supported on 802.11");
3800		break;
3801
3802	case Q_ADDR4:
3803		bpf_error("'addr4' is only supported on 802.11");
3804		break;
3805
3806	case Q_RA:
3807		bpf_error("'ra' is only supported on 802.11");
3808		break;
3809
3810	case Q_TA:
3811		bpf_error("'ta' is only supported on 802.11");
3812		break;
3813	}
3814	abort();
3815	/* NOTREACHED */
3816}
3817
3818/*
3819 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
3820 * various 802.11 + radio headers.
3821 */
3822static struct block *
3823gen_wlanhostop(eaddr, dir)
3824	register const u_char *eaddr;
3825	register int dir;
3826{
3827	register struct block *b0, *b1, *b2;
3828	register struct slist *s;
3829
3830#ifdef ENABLE_WLAN_FILTERING_PATCH
3831	/*
3832	 * TODO GV 20070613
3833	 * We need to disable the optimizer because the optimizer is buggy
3834	 * and wipes out some LD instructions generated by the below
3835	 * code to validate the Frame Control bits
3836	 */
3837	no_optimize = 1;
3838#endif /* ENABLE_WLAN_FILTERING_PATCH */
3839
3840	switch (dir) {
3841	case Q_SRC:
3842		/*
3843		 * Oh, yuk.
3844		 *
3845		 *	For control frames, there is no SA.
3846		 *
3847		 *	For management frames, SA is at an
3848		 *	offset of 10 from the beginning of
3849		 *	the packet.
3850		 *
3851		 *	For data frames, SA is at an offset
3852		 *	of 10 from the beginning of the packet
3853		 *	if From DS is clear, at an offset of
3854		 *	16 from the beginning of the packet
3855		 *	if From DS is set and To DS is clear,
3856		 *	and an offset of 24 from the beginning
3857		 *	of the packet if From DS is set and To DS
3858		 *	is set.
3859		 */
3860
3861		/*
3862		 * Generate the tests to be done for data frames
3863		 * with From DS set.
3864		 *
3865		 * First, check for To DS set, i.e. check "link[1] & 0x01".
3866		 */
3867		s = gen_load_a(OR_LINK, 1, BPF_B);
3868		b1 = new_block(JMP(BPF_JSET));
3869		b1->s.k = 0x01;	/* To DS */
3870		b1->stmts = s;
3871
3872		/*
3873		 * If To DS is set, the SA is at 24.
3874		 */
3875		b0 = gen_bcmp(OR_LINK, 24, 6, eaddr);
3876		gen_and(b1, b0);
3877
3878		/*
3879		 * Now, check for To DS not set, i.e. check
3880		 * "!(link[1] & 0x01)".
3881		 */
3882		s = gen_load_a(OR_LINK, 1, BPF_B);
3883		b2 = new_block(JMP(BPF_JSET));
3884		b2->s.k = 0x01;	/* To DS */
3885		b2->stmts = s;
3886		gen_not(b2);
3887
3888		/*
3889		 * If To DS is not set, the SA is at 16.
3890		 */
3891		b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
3892		gen_and(b2, b1);
3893
3894		/*
3895		 * Now OR together the last two checks.  That gives
3896		 * the complete set of checks for data frames with
3897		 * From DS set.
3898		 */
3899		gen_or(b1, b0);
3900
3901		/*
3902		 * Now check for From DS being set, and AND that with
3903		 * the ORed-together checks.
3904		 */
3905		s = gen_load_a(OR_LINK, 1, BPF_B);
3906		b1 = new_block(JMP(BPF_JSET));
3907		b1->s.k = 0x02;	/* From DS */
3908		b1->stmts = s;
3909		gen_and(b1, b0);
3910
3911		/*
3912		 * Now check for data frames with From DS not set.
3913		 */
3914		s = gen_load_a(OR_LINK, 1, BPF_B);
3915		b2 = new_block(JMP(BPF_JSET));
3916		b2->s.k = 0x02;	/* From DS */
3917		b2->stmts = s;
3918		gen_not(b2);
3919
3920		/*
3921		 * If From DS isn't set, the SA is at 10.
3922		 */
3923		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
3924		gen_and(b2, b1);
3925
3926		/*
3927		 * Now OR together the checks for data frames with
3928		 * From DS not set and for data frames with From DS
3929		 * set; that gives the checks done for data frames.
3930		 */
3931		gen_or(b1, b0);
3932
3933		/*
3934		 * Now check for a data frame.
3935		 * I.e, check "link[0] & 0x08".
3936		 */
3937		s = gen_load_a(OR_LINK, 0, BPF_B);
3938		b1 = new_block(JMP(BPF_JSET));
3939		b1->s.k = 0x08;
3940		b1->stmts = s;
3941
3942		/*
3943		 * AND that with the checks done for data frames.
3944		 */
3945		gen_and(b1, b0);
3946
3947		/*
3948		 * If the high-order bit of the type value is 0, this
3949		 * is a management frame.
3950		 * I.e, check "!(link[0] & 0x08)".
3951		 */
3952		s = gen_load_a(OR_LINK, 0, BPF_B);
3953		b2 = new_block(JMP(BPF_JSET));
3954		b2->s.k = 0x08;
3955		b2->stmts = s;
3956		gen_not(b2);
3957
3958		/*
3959		 * For management frames, the SA is at 10.
3960		 */
3961		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
3962		gen_and(b2, b1);
3963
3964		/*
3965		 * OR that with the checks done for data frames.
3966		 * That gives the checks done for management and
3967		 * data frames.
3968		 */
3969		gen_or(b1, b0);
3970
3971		/*
3972		 * If the low-order bit of the type value is 1,
3973		 * this is either a control frame or a frame
3974		 * with a reserved type, and thus not a
3975		 * frame with an SA.
3976		 *
3977		 * I.e., check "!(link[0] & 0x04)".
3978		 */
3979		s = gen_load_a(OR_LINK, 0, BPF_B);
3980		b1 = new_block(JMP(BPF_JSET));
3981		b1->s.k = 0x04;
3982		b1->stmts = s;
3983		gen_not(b1);
3984
3985		/*
3986		 * AND that with the checks for data and management
3987		 * frames.
3988		 */
3989		gen_and(b1, b0);
3990		return b0;
3991
3992	case Q_DST:
3993		/*
3994		 * Oh, yuk.
3995		 *
3996		 *	For control frames, there is no DA.
3997		 *
3998		 *	For management frames, DA is at an
3999		 *	offset of 4 from the beginning of
4000		 *	the packet.
4001		 *
4002		 *	For data frames, DA is at an offset
4003		 *	of 4 from the beginning of the packet
4004		 *	if To DS is clear and at an offset of
4005		 *	16 from the beginning of the packet
4006		 *	if To DS is set.
4007		 */
4008
4009		/*
4010		 * Generate the tests to be done for data frames.
4011		 *
4012		 * First, check for To DS set, i.e. "link[1] & 0x01".
4013		 */
4014		s = gen_load_a(OR_LINK, 1, BPF_B);
4015		b1 = new_block(JMP(BPF_JSET));
4016		b1->s.k = 0x01;	/* To DS */
4017		b1->stmts = s;
4018
4019		/*
4020		 * If To DS is set, the DA is at 16.
4021		 */
4022		b0 = gen_bcmp(OR_LINK, 16, 6, eaddr);
4023		gen_and(b1, b0);
4024
4025		/*
4026		 * Now, check for To DS not set, i.e. check
4027		 * "!(link[1] & 0x01)".
4028		 */
4029		s = gen_load_a(OR_LINK, 1, BPF_B);
4030		b2 = new_block(JMP(BPF_JSET));
4031		b2->s.k = 0x01;	/* To DS */
4032		b2->stmts = s;
4033		gen_not(b2);
4034
4035		/*
4036		 * If To DS is not set, the DA is at 4.
4037		 */
4038		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
4039		gen_and(b2, b1);
4040
4041		/*
4042		 * Now OR together the last two checks.  That gives
4043		 * the complete set of checks for data frames.
4044		 */
4045		gen_or(b1, b0);
4046
4047		/*
4048		 * Now check for a data frame.
4049		 * I.e, check "link[0] & 0x08".
4050		 */
4051		s = gen_load_a(OR_LINK, 0, BPF_B);
4052		b1 = new_block(JMP(BPF_JSET));
4053		b1->s.k = 0x08;
4054		b1->stmts = s;
4055
4056		/*
4057		 * AND that with the checks done for data frames.
4058		 */
4059		gen_and(b1, b0);
4060
4061		/*
4062		 * If the high-order bit of the type value is 0, this
4063		 * is a management frame.
4064		 * I.e, check "!(link[0] & 0x08)".
4065		 */
4066		s = gen_load_a(OR_LINK, 0, BPF_B);
4067		b2 = new_block(JMP(BPF_JSET));
4068		b2->s.k = 0x08;
4069		b2->stmts = s;
4070		gen_not(b2);
4071
4072		/*
4073		 * For management frames, the DA is at 4.
4074		 */
4075		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
4076		gen_and(b2, b1);
4077
4078		/*
4079		 * OR that with the checks done for data frames.
4080		 * That gives the checks done for management and
4081		 * data frames.
4082		 */
4083		gen_or(b1, b0);
4084
4085		/*
4086		 * If the low-order bit of the type value is 1,
4087		 * this is either a control frame or a frame
4088		 * with a reserved type, and thus not a
4089		 * frame with an SA.
4090		 *
4091		 * I.e., check "!(link[0] & 0x04)".
4092		 */
4093		s = gen_load_a(OR_LINK, 0, BPF_B);
4094		b1 = new_block(JMP(BPF_JSET));
4095		b1->s.k = 0x04;
4096		b1->stmts = s;
4097		gen_not(b1);
4098
4099		/*
4100		 * AND that with the checks for data and management
4101		 * frames.
4102		 */
4103		gen_and(b1, b0);
4104		return b0;
4105
4106	case Q_RA:
4107		/*
4108		 * Not present in management frames; addr1 in other
4109		 * frames.
4110		 */
4111
4112		/*
4113		 * If the high-order bit of the type value is 0, this
4114		 * is a management frame.
4115		 * I.e, check "(link[0] & 0x08)".
4116		 */
4117		s = gen_load_a(OR_LINK, 0, BPF_B);
4118		b1 = new_block(JMP(BPF_JSET));
4119		b1->s.k = 0x08;
4120		b1->stmts = s;
4121
4122		/*
4123		 * Check addr1.
4124		 */
4125		b0 = gen_bcmp(OR_LINK, 4, 6, eaddr);
4126
4127		/*
4128		 * AND that with the check of addr1.
4129		 */
4130		gen_and(b1, b0);
4131		return (b0);
4132
4133	case Q_TA:
4134		/*
4135		 * Not present in management frames; addr2, if present,
4136		 * in other frames.
4137		 */
4138
4139		/*
4140		 * Not present in CTS or ACK control frames.
4141		 */
4142		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4143			IEEE80211_FC0_TYPE_MASK);
4144		gen_not(b0);
4145		b1 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4146			IEEE80211_FC0_SUBTYPE_MASK);
4147		gen_not(b1);
4148		b2 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4149			IEEE80211_FC0_SUBTYPE_MASK);
4150		gen_not(b2);
4151		gen_and(b1, b2);
4152		gen_or(b0, b2);
4153
4154		/*
4155		 * If the high-order bit of the type value is 0, this
4156		 * is a management frame.
4157		 * I.e, check "(link[0] & 0x08)".
4158		 */
4159		s = gen_load_a(OR_LINK, 0, BPF_B);
4160		b1 = new_block(JMP(BPF_JSET));
4161		b1->s.k = 0x08;
4162		b1->stmts = s;
4163
4164		/*
4165		 * AND that with the check for frames other than
4166		 * CTS and ACK frames.
4167		 */
4168		gen_and(b1, b2);
4169
4170		/*
4171		 * Check addr2.
4172		 */
4173		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
4174		gen_and(b2, b1);
4175		return b1;
4176
4177	/*
4178	 * XXX - add BSSID keyword?
4179	 */
4180	case Q_ADDR1:
4181		return (gen_bcmp(OR_LINK, 4, 6, eaddr));
4182
4183	case Q_ADDR2:
4184		/*
4185		 * Not present in CTS or ACK control frames.
4186		 */
4187		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4188			IEEE80211_FC0_TYPE_MASK);
4189		gen_not(b0);
4190		b1 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4191			IEEE80211_FC0_SUBTYPE_MASK);
4192		gen_not(b1);
4193		b2 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4194			IEEE80211_FC0_SUBTYPE_MASK);
4195		gen_not(b2);
4196		gen_and(b1, b2);
4197		gen_or(b0, b2);
4198		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
4199		gen_and(b2, b1);
4200		return b1;
4201
4202	case Q_ADDR3:
4203		/*
4204		 * Not present in control frames.
4205		 */
4206		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4207			IEEE80211_FC0_TYPE_MASK);
4208		gen_not(b0);
4209		b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
4210		gen_and(b0, b1);
4211		return b1;
4212
4213	case Q_ADDR4:
4214		/*
4215		 * Present only if the direction mask has both "From DS"
4216		 * and "To DS" set.  Neither control frames nor management
4217		 * frames should have both of those set, so we don't
4218		 * check the frame type.
4219		 */
4220		b0 = gen_mcmp(OR_LINK, 1, BPF_B,
4221			IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4222		b1 = gen_bcmp(OR_LINK, 24, 6, eaddr);
4223		gen_and(b0, b1);
4224		return b1;
4225
4226	case Q_AND:
4227		b0 = gen_wlanhostop(eaddr, Q_SRC);
4228		b1 = gen_wlanhostop(eaddr, Q_DST);
4229		gen_and(b0, b1);
4230		return b1;
4231
4232	case Q_DEFAULT:
4233	case Q_OR:
4234		b0 = gen_wlanhostop(eaddr, Q_SRC);
4235		b1 = gen_wlanhostop(eaddr, Q_DST);
4236		gen_or(b0, b1);
4237		return b1;
4238	}
4239	abort();
4240	/* NOTREACHED */
4241}
4242
4243/*
4244 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4245 * (We assume that the addresses are IEEE 48-bit MAC addresses,
4246 * as the RFC states.)
4247 */
4248static struct block *
4249gen_ipfchostop(eaddr, dir)
4250	register const u_char *eaddr;
4251	register int dir;
4252{
4253	register struct block *b0, *b1;
4254
4255	switch (dir) {
4256	case Q_SRC:
4257		return gen_bcmp(OR_LINK, 10, 6, eaddr);
4258
4259	case Q_DST:
4260		return gen_bcmp(OR_LINK, 2, 6, eaddr);
4261
4262	case Q_AND:
4263		b0 = gen_ipfchostop(eaddr, Q_SRC);
4264		b1 = gen_ipfchostop(eaddr, Q_DST);
4265		gen_and(b0, b1);
4266		return b1;
4267
4268	case Q_DEFAULT:
4269	case Q_OR:
4270		b0 = gen_ipfchostop(eaddr, Q_SRC);
4271		b1 = gen_ipfchostop(eaddr, Q_DST);
4272		gen_or(b0, b1);
4273		return b1;
4274
4275	case Q_ADDR1:
4276		bpf_error("'addr1' is only supported on 802.11");
4277		break;
4278
4279	case Q_ADDR2:
4280		bpf_error("'addr2' is only supported on 802.11");
4281		break;
4282
4283	case Q_ADDR3:
4284		bpf_error("'addr3' is only supported on 802.11");
4285		break;
4286
4287	case Q_ADDR4:
4288		bpf_error("'addr4' is only supported on 802.11");
4289		break;
4290
4291	case Q_RA:
4292		bpf_error("'ra' is only supported on 802.11");
4293		break;
4294
4295	case Q_TA:
4296		bpf_error("'ta' is only supported on 802.11");
4297		break;
4298	}
4299	abort();
4300	/* NOTREACHED */
4301}
4302
4303/*
4304 * This is quite tricky because there may be pad bytes in front of the
4305 * DECNET header, and then there are two possible data packet formats that
4306 * carry both src and dst addresses, plus 5 packet types in a format that
4307 * carries only the src node, plus 2 types that use a different format and
4308 * also carry just the src node.
4309 *
4310 * Yuck.
4311 *
4312 * Instead of doing those all right, we just look for data packets with
4313 * 0 or 1 bytes of padding.  If you want to look at other packets, that
4314 * will require a lot more hacking.
4315 *
4316 * To add support for filtering on DECNET "areas" (network numbers)
4317 * one would want to add a "mask" argument to this routine.  That would
4318 * make the filter even more inefficient, although one could be clever
4319 * and not generate masking instructions if the mask is 0xFFFF.
4320 */
4321static struct block *
4322gen_dnhostop(addr, dir)
4323	bpf_u_int32 addr;
4324	int dir;
4325{
4326	struct block *b0, *b1, *b2, *tmp;
4327	u_int offset_lh;	/* offset if long header is received */
4328	u_int offset_sh;	/* offset if short header is received */
4329
4330	switch (dir) {
4331
4332	case Q_DST:
4333		offset_sh = 1;	/* follows flags */
4334		offset_lh = 7;	/* flgs,darea,dsubarea,HIORD */
4335		break;
4336
4337	case Q_SRC:
4338		offset_sh = 3;	/* follows flags, dstnode */
4339		offset_lh = 15;	/* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4340		break;
4341
4342	case Q_AND:
4343		/* Inefficient because we do our Calvinball dance twice */
4344		b0 = gen_dnhostop(addr, Q_SRC);
4345		b1 = gen_dnhostop(addr, Q_DST);
4346		gen_and(b0, b1);
4347		return b1;
4348
4349	case Q_OR:
4350	case Q_DEFAULT:
4351		/* Inefficient because we do our Calvinball dance twice */
4352		b0 = gen_dnhostop(addr, Q_SRC);
4353		b1 = gen_dnhostop(addr, Q_DST);
4354		gen_or(b0, b1);
4355		return b1;
4356
4357	case Q_ISO:
4358		bpf_error("ISO host filtering not implemented");
4359
4360	default:
4361		abort();
4362	}
4363	b0 = gen_linktype(ETHERTYPE_DN);
4364	/* Check for pad = 1, long header case */
4365	tmp = gen_mcmp(OR_NET, 2, BPF_H,
4366	    (bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF));
4367	b1 = gen_cmp(OR_NET, 2 + 1 + offset_lh,
4368	    BPF_H, (bpf_int32)ntohs((u_short)addr));
4369	gen_and(tmp, b1);
4370	/* Check for pad = 0, long header case */
4371	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7);
4372	b2 = gen_cmp(OR_NET, 2 + offset_lh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4373	gen_and(tmp, b2);
4374	gen_or(b2, b1);
4375	/* Check for pad = 1, short header case */
4376	tmp = gen_mcmp(OR_NET, 2, BPF_H,
4377	    (bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF));
4378	b2 = gen_cmp(OR_NET, 2 + 1 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4379	gen_and(tmp, b2);
4380	gen_or(b2, b1);
4381	/* Check for pad = 0, short header case */
4382	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7);
4383	b2 = gen_cmp(OR_NET, 2 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4384	gen_and(tmp, b2);
4385	gen_or(b2, b1);
4386
4387	/* Combine with test for linktype */
4388	gen_and(b0, b1);
4389	return b1;
4390}
4391
4392/*
4393 * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4394 * test the bottom-of-stack bit, and then check the version number
4395 * field in the IP header.
4396 */
4397static struct block *
4398gen_mpls_linktype(proto)
4399	int proto;
4400{
4401	struct block *b0, *b1;
4402
4403        switch (proto) {
4404
4405        case Q_IP:
4406                /* match the bottom-of-stack bit */
4407                b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
4408                /* match the IPv4 version number */
4409                b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x40, 0xf0);
4410                gen_and(b0, b1);
4411                return b1;
4412
4413       case Q_IPV6:
4414                /* match the bottom-of-stack bit */
4415                b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
4416                /* match the IPv4 version number */
4417                b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x60, 0xf0);
4418                gen_and(b0, b1);
4419                return b1;
4420
4421       default:
4422                abort();
4423        }
4424}
4425
4426static struct block *
4427gen_host(addr, mask, proto, dir, type)
4428	bpf_u_int32 addr;
4429	bpf_u_int32 mask;
4430	int proto;
4431	int dir;
4432	int type;
4433{
4434	struct block *b0, *b1;
4435	const char *typestr;
4436
4437	if (type == Q_NET)
4438		typestr = "net";
4439	else
4440		typestr = "host";
4441
4442	switch (proto) {
4443
4444	case Q_DEFAULT:
4445		b0 = gen_host(addr, mask, Q_IP, dir, type);
4446		/*
4447		 * Only check for non-IPv4 addresses if we're not
4448		 * checking MPLS-encapsulated packets.
4449		 */
4450		if (label_stack_depth == 0) {
4451			b1 = gen_host(addr, mask, Q_ARP, dir, type);
4452			gen_or(b0, b1);
4453			b0 = gen_host(addr, mask, Q_RARP, dir, type);
4454			gen_or(b1, b0);
4455		}
4456		return b0;
4457
4458	case Q_IP:
4459		return gen_hostop(addr, mask, dir, ETHERTYPE_IP, 12, 16);
4460
4461	case Q_RARP:
4462		return gen_hostop(addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
4463
4464	case Q_ARP:
4465		return gen_hostop(addr, mask, dir, ETHERTYPE_ARP, 14, 24);
4466
4467	case Q_TCP:
4468		bpf_error("'tcp' modifier applied to %s", typestr);
4469
4470	case Q_SCTP:
4471		bpf_error("'sctp' modifier applied to %s", typestr);
4472
4473	case Q_UDP:
4474		bpf_error("'udp' modifier applied to %s", typestr);
4475
4476	case Q_ICMP:
4477		bpf_error("'icmp' modifier applied to %s", typestr);
4478
4479	case Q_IGMP:
4480		bpf_error("'igmp' modifier applied to %s", typestr);
4481
4482	case Q_IGRP:
4483		bpf_error("'igrp' modifier applied to %s", typestr);
4484
4485	case Q_PIM:
4486		bpf_error("'pim' modifier applied to %s", typestr);
4487
4488	case Q_VRRP:
4489		bpf_error("'vrrp' modifier applied to %s", typestr);
4490
4491	case Q_CARP:
4492		bpf_error("'carp' modifier applied to %s", typestr);
4493
4494	case Q_ATALK:
4495		bpf_error("ATALK host filtering not implemented");
4496
4497	case Q_AARP:
4498		bpf_error("AARP host filtering not implemented");
4499
4500	case Q_DECNET:
4501		return gen_dnhostop(addr, dir);
4502
4503	case Q_SCA:
4504		bpf_error("SCA host filtering not implemented");
4505
4506	case Q_LAT:
4507		bpf_error("LAT host filtering not implemented");
4508
4509	case Q_MOPDL:
4510		bpf_error("MOPDL host filtering not implemented");
4511
4512	case Q_MOPRC:
4513		bpf_error("MOPRC host filtering not implemented");
4514
4515	case Q_IPV6:
4516		bpf_error("'ip6' modifier applied to ip host");
4517
4518	case Q_ICMPV6:
4519		bpf_error("'icmp6' modifier applied to %s", typestr);
4520
4521	case Q_AH:
4522		bpf_error("'ah' modifier applied to %s", typestr);
4523
4524	case Q_ESP:
4525		bpf_error("'esp' modifier applied to %s", typestr);
4526
4527	case Q_ISO:
4528		bpf_error("ISO host filtering not implemented");
4529
4530	case Q_ESIS:
4531		bpf_error("'esis' modifier applied to %s", typestr);
4532
4533	case Q_ISIS:
4534		bpf_error("'isis' modifier applied to %s", typestr);
4535
4536	case Q_CLNP:
4537		bpf_error("'clnp' modifier applied to %s", typestr);
4538
4539	case Q_STP:
4540		bpf_error("'stp' modifier applied to %s", typestr);
4541
4542	case Q_IPX:
4543		bpf_error("IPX host filtering not implemented");
4544
4545	case Q_NETBEUI:
4546		bpf_error("'netbeui' modifier applied to %s", typestr);
4547
4548	case Q_RADIO:
4549		bpf_error("'radio' modifier applied to %s", typestr);
4550
4551	default:
4552		abort();
4553	}
4554	/* NOTREACHED */
4555}
4556
4557#ifdef INET6
4558static struct block *
4559gen_host6(addr, mask, proto, dir, type)
4560	struct in6_addr *addr;
4561	struct in6_addr *mask;
4562	int proto;
4563	int dir;
4564	int type;
4565{
4566	const char *typestr;
4567
4568	if (type == Q_NET)
4569		typestr = "net";
4570	else
4571		typestr = "host";
4572
4573	switch (proto) {
4574
4575	case Q_DEFAULT:
4576		return gen_host6(addr, mask, Q_IPV6, dir, type);
4577
4578	case Q_IP:
4579		bpf_error("'ip' modifier applied to ip6 %s", typestr);
4580
4581	case Q_RARP:
4582		bpf_error("'rarp' modifier applied to ip6 %s", typestr);
4583
4584	case Q_ARP:
4585		bpf_error("'arp' modifier applied to ip6 %s", typestr);
4586
4587	case Q_SCTP:
4588		bpf_error("'sctp' modifier applied to %s", typestr);
4589
4590	case Q_TCP:
4591		bpf_error("'tcp' modifier applied to %s", typestr);
4592
4593	case Q_UDP:
4594		bpf_error("'udp' modifier applied to %s", typestr);
4595
4596	case Q_ICMP:
4597		bpf_error("'icmp' modifier applied to %s", typestr);
4598
4599	case Q_IGMP:
4600		bpf_error("'igmp' modifier applied to %s", typestr);
4601
4602	case Q_IGRP:
4603		bpf_error("'igrp' modifier applied to %s", typestr);
4604
4605	case Q_PIM:
4606		bpf_error("'pim' modifier applied to %s", typestr);
4607
4608	case Q_VRRP:
4609		bpf_error("'vrrp' modifier applied to %s", typestr);
4610
4611	case Q_CARP:
4612		bpf_error("'carp' modifier applied to %s", typestr);
4613
4614	case Q_ATALK:
4615		bpf_error("ATALK host filtering not implemented");
4616
4617	case Q_AARP:
4618		bpf_error("AARP host filtering not implemented");
4619
4620	case Q_DECNET:
4621		bpf_error("'decnet' modifier applied to ip6 %s", typestr);
4622
4623	case Q_SCA:
4624		bpf_error("SCA host filtering not implemented");
4625
4626	case Q_LAT:
4627		bpf_error("LAT host filtering not implemented");
4628
4629	case Q_MOPDL:
4630		bpf_error("MOPDL host filtering not implemented");
4631
4632	case Q_MOPRC:
4633		bpf_error("MOPRC host filtering not implemented");
4634
4635	case Q_IPV6:
4636		return gen_hostop6(addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
4637
4638	case Q_ICMPV6:
4639		bpf_error("'icmp6' modifier applied to %s", typestr);
4640
4641	case Q_AH:
4642		bpf_error("'ah' modifier applied to %s", typestr);
4643
4644	case Q_ESP:
4645		bpf_error("'esp' modifier applied to %s", typestr);
4646
4647	case Q_ISO:
4648		bpf_error("ISO host filtering not implemented");
4649
4650	case Q_ESIS:
4651		bpf_error("'esis' modifier applied to %s", typestr);
4652
4653	case Q_ISIS:
4654		bpf_error("'isis' modifier applied to %s", typestr);
4655
4656	case Q_CLNP:
4657		bpf_error("'clnp' modifier applied to %s", typestr);
4658
4659	case Q_STP:
4660		bpf_error("'stp' modifier applied to %s", typestr);
4661
4662	case Q_IPX:
4663		bpf_error("IPX host filtering not implemented");
4664
4665	case Q_NETBEUI:
4666		bpf_error("'netbeui' modifier applied to %s", typestr);
4667
4668	case Q_RADIO:
4669		bpf_error("'radio' modifier applied to %s", typestr);
4670
4671	default:
4672		abort();
4673	}
4674	/* NOTREACHED */
4675}
4676#endif
4677
4678#ifndef INET6
4679static struct block *
4680gen_gateway(eaddr, alist, proto, dir)
4681	const u_char *eaddr;
4682	bpf_u_int32 **alist;
4683	int proto;
4684	int dir;
4685{
4686	struct block *b0, *b1, *tmp;
4687
4688	if (dir != 0)
4689		bpf_error("direction applied to 'gateway'");
4690
4691	switch (proto) {
4692	case Q_DEFAULT:
4693	case Q_IP:
4694	case Q_ARP:
4695	case Q_RARP:
4696		switch (linktype) {
4697		case DLT_EN10MB:
4698		case DLT_NETANALYZER:
4699		case DLT_NETANALYZER_TRANSPARENT:
4700			b0 = gen_ehostop(eaddr, Q_OR);
4701			break;
4702		case DLT_FDDI:
4703			b0 = gen_fhostop(eaddr, Q_OR);
4704			break;
4705		case DLT_IEEE802:
4706			b0 = gen_thostop(eaddr, Q_OR);
4707			break;
4708		case DLT_IEEE802_11:
4709		case DLT_PRISM_HEADER:
4710		case DLT_IEEE802_11_RADIO_AVS:
4711		case DLT_IEEE802_11_RADIO:
4712		case DLT_PPI:
4713			b0 = gen_wlanhostop(eaddr, Q_OR);
4714			break;
4715		case DLT_SUNATM:
4716			if (!is_lane)
4717				bpf_error(
4718				    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4719			/*
4720			 * Check that the packet doesn't begin with an
4721			 * LE Control marker.  (We've already generated
4722			 * a test for LANE.)
4723			 */
4724			b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
4725			    BPF_H, 0xFF00);
4726			gen_not(b1);
4727
4728			/*
4729			 * Now check the MAC address.
4730			 */
4731			b0 = gen_ehostop(eaddr, Q_OR);
4732			gen_and(b1, b0);
4733			break;
4734		case DLT_IP_OVER_FC:
4735			b0 = gen_ipfchostop(eaddr, Q_OR);
4736			break;
4737		default:
4738			bpf_error(
4739			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4740		}
4741		b1 = gen_host(**alist++, 0xffffffff, proto, Q_OR, Q_HOST);
4742		while (*alist) {
4743			tmp = gen_host(**alist++, 0xffffffff, proto, Q_OR,
4744			    Q_HOST);
4745			gen_or(b1, tmp);
4746			b1 = tmp;
4747		}
4748		gen_not(b1);
4749		gen_and(b0, b1);
4750		return b1;
4751	}
4752	bpf_error("illegal modifier of 'gateway'");
4753	/* NOTREACHED */
4754}
4755#endif
4756
4757struct block *
4758gen_proto_abbrev(proto)
4759	int proto;
4760{
4761	struct block *b0;
4762	struct block *b1;
4763
4764	switch (proto) {
4765
4766	case Q_SCTP:
4767		b1 = gen_proto(IPPROTO_SCTP, Q_IP, Q_DEFAULT);
4768		b0 = gen_proto(IPPROTO_SCTP, Q_IPV6, Q_DEFAULT);
4769		gen_or(b0, b1);
4770		break;
4771
4772	case Q_TCP:
4773		b1 = gen_proto(IPPROTO_TCP, Q_IP, Q_DEFAULT);
4774		b0 = gen_proto(IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
4775		gen_or(b0, b1);
4776		break;
4777
4778	case Q_UDP:
4779		b1 = gen_proto(IPPROTO_UDP, Q_IP, Q_DEFAULT);
4780		b0 = gen_proto(IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
4781		gen_or(b0, b1);
4782		break;
4783
4784	case Q_ICMP:
4785		b1 = gen_proto(IPPROTO_ICMP, Q_IP, Q_DEFAULT);
4786		break;
4787
4788#ifndef	IPPROTO_IGMP
4789#define	IPPROTO_IGMP	2
4790#endif
4791
4792	case Q_IGMP:
4793		b1 = gen_proto(IPPROTO_IGMP, Q_IP, Q_DEFAULT);
4794		break;
4795
4796#ifndef	IPPROTO_IGRP
4797#define	IPPROTO_IGRP	9
4798#endif
4799	case Q_IGRP:
4800		b1 = gen_proto(IPPROTO_IGRP, Q_IP, Q_DEFAULT);
4801		break;
4802
4803#ifndef IPPROTO_PIM
4804#define IPPROTO_PIM	103
4805#endif
4806
4807	case Q_PIM:
4808		b1 = gen_proto(IPPROTO_PIM, Q_IP, Q_DEFAULT);
4809		b0 = gen_proto(IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
4810		gen_or(b0, b1);
4811		break;
4812
4813#ifndef IPPROTO_VRRP
4814#define IPPROTO_VRRP	112
4815#endif
4816
4817	case Q_VRRP:
4818		b1 = gen_proto(IPPROTO_VRRP, Q_IP, Q_DEFAULT);
4819		break;
4820
4821#ifndef IPPROTO_CARP
4822#define IPPROTO_CARP	112
4823#endif
4824
4825	case Q_CARP:
4826		b1 = gen_proto(IPPROTO_CARP, Q_IP, Q_DEFAULT);
4827		break;
4828
4829	case Q_IP:
4830		b1 =  gen_linktype(ETHERTYPE_IP);
4831		break;
4832
4833	case Q_ARP:
4834		b1 =  gen_linktype(ETHERTYPE_ARP);
4835		break;
4836
4837	case Q_RARP:
4838		b1 =  gen_linktype(ETHERTYPE_REVARP);
4839		break;
4840
4841	case Q_LINK:
4842		bpf_error("link layer applied in wrong context");
4843
4844	case Q_ATALK:
4845		b1 =  gen_linktype(ETHERTYPE_ATALK);
4846		break;
4847
4848	case Q_AARP:
4849		b1 =  gen_linktype(ETHERTYPE_AARP);
4850		break;
4851
4852	case Q_DECNET:
4853		b1 =  gen_linktype(ETHERTYPE_DN);
4854		break;
4855
4856	case Q_SCA:
4857		b1 =  gen_linktype(ETHERTYPE_SCA);
4858		break;
4859
4860	case Q_LAT:
4861		b1 =  gen_linktype(ETHERTYPE_LAT);
4862		break;
4863
4864	case Q_MOPDL:
4865		b1 =  gen_linktype(ETHERTYPE_MOPDL);
4866		break;
4867
4868	case Q_MOPRC:
4869		b1 =  gen_linktype(ETHERTYPE_MOPRC);
4870		break;
4871
4872	case Q_IPV6:
4873		b1 = gen_linktype(ETHERTYPE_IPV6);
4874		break;
4875
4876#ifndef IPPROTO_ICMPV6
4877#define IPPROTO_ICMPV6	58
4878#endif
4879	case Q_ICMPV6:
4880		b1 = gen_proto(IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
4881		break;
4882
4883#ifndef IPPROTO_AH
4884#define IPPROTO_AH	51
4885#endif
4886	case Q_AH:
4887		b1 = gen_proto(IPPROTO_AH, Q_IP, Q_DEFAULT);
4888		b0 = gen_proto(IPPROTO_AH, Q_IPV6, Q_DEFAULT);
4889		gen_or(b0, b1);
4890		break;
4891
4892#ifndef IPPROTO_ESP
4893#define IPPROTO_ESP	50
4894#endif
4895	case Q_ESP:
4896		b1 = gen_proto(IPPROTO_ESP, Q_IP, Q_DEFAULT);
4897		b0 = gen_proto(IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
4898		gen_or(b0, b1);
4899		break;
4900
4901	case Q_ISO:
4902		b1 = gen_linktype(LLCSAP_ISONS);
4903		break;
4904
4905	case Q_ESIS:
4906		b1 = gen_proto(ISO9542_ESIS, Q_ISO, Q_DEFAULT);
4907		break;
4908
4909	case Q_ISIS:
4910		b1 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
4911		break;
4912
4913	case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
4914		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
4915		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
4916		gen_or(b0, b1);
4917		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
4918		gen_or(b0, b1);
4919		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4920		gen_or(b0, b1);
4921		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4922		gen_or(b0, b1);
4923		break;
4924
4925	case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
4926		b0 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
4927		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
4928		gen_or(b0, b1);
4929		b0 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
4930		gen_or(b0, b1);
4931		b0 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4932		gen_or(b0, b1);
4933		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4934		gen_or(b0, b1);
4935		break;
4936
4937	case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
4938		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
4939		b1 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
4940		gen_or(b0, b1);
4941		b0 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
4942		gen_or(b0, b1);
4943		break;
4944
4945	case Q_ISIS_LSP:
4946		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
4947		b1 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
4948		gen_or(b0, b1);
4949		break;
4950
4951	case Q_ISIS_SNP:
4952		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4953		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4954		gen_or(b0, b1);
4955		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4956		gen_or(b0, b1);
4957		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4958		gen_or(b0, b1);
4959		break;
4960
4961	case Q_ISIS_CSNP:
4962		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4963		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4964		gen_or(b0, b1);
4965		break;
4966
4967	case Q_ISIS_PSNP:
4968		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4969		b1 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4970		gen_or(b0, b1);
4971		break;
4972
4973	case Q_CLNP:
4974		b1 = gen_proto(ISO8473_CLNP, Q_ISO, Q_DEFAULT);
4975		break;
4976
4977	case Q_STP:
4978		b1 = gen_linktype(LLCSAP_8021D);
4979		break;
4980
4981	case Q_IPX:
4982		b1 = gen_linktype(LLCSAP_IPX);
4983		break;
4984
4985	case Q_NETBEUI:
4986		b1 = gen_linktype(LLCSAP_NETBEUI);
4987		break;
4988
4989	case Q_RADIO:
4990		bpf_error("'radio' is not a valid protocol type");
4991
4992	default:
4993		abort();
4994	}
4995	return b1;
4996}
4997
4998static struct block *
4999gen_ipfrag()
5000{
5001	struct slist *s;
5002	struct block *b;
5003
5004	/* not IPv4 frag other than the first frag */
5005	s = gen_load_a(OR_NET, 6, BPF_H);
5006	b = new_block(JMP(BPF_JSET));
5007	b->s.k = 0x1fff;
5008	b->stmts = s;
5009	gen_not(b);
5010
5011	return b;
5012}
5013
5014/*
5015 * Generate a comparison to a port value in the transport-layer header
5016 * at the specified offset from the beginning of that header.
5017 *
5018 * XXX - this handles a variable-length prefix preceding the link-layer
5019 * header, such as the radiotap or AVS radio prefix, but doesn't handle
5020 * variable-length link-layer headers (such as Token Ring or 802.11
5021 * headers).
5022 */
5023static struct block *
5024gen_portatom(off, v)
5025	int off;
5026	bpf_int32 v;
5027{
5028	return gen_cmp(OR_TRAN_IPV4, off, BPF_H, v);
5029}
5030
5031static struct block *
5032gen_portatom6(off, v)
5033	int off;
5034	bpf_int32 v;
5035{
5036	return gen_cmp(OR_TRAN_IPV6, off, BPF_H, v);
5037}
5038
5039struct block *
5040gen_portop(port, proto, dir)
5041	int port, proto, dir;
5042{
5043	struct block *b0, *b1, *tmp;
5044
5045	/* ip proto 'proto' and not a fragment other than the first fragment */
5046	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
5047	b0 = gen_ipfrag();
5048	gen_and(tmp, b0);
5049
5050	switch (dir) {
5051	case Q_SRC:
5052		b1 = gen_portatom(0, (bpf_int32)port);
5053		break;
5054
5055	case Q_DST:
5056		b1 = gen_portatom(2, (bpf_int32)port);
5057		break;
5058
5059	case Q_OR:
5060	case Q_DEFAULT:
5061		tmp = gen_portatom(0, (bpf_int32)port);
5062		b1 = gen_portatom(2, (bpf_int32)port);
5063		gen_or(tmp, b1);
5064		break;
5065
5066	case Q_AND:
5067		tmp = gen_portatom(0, (bpf_int32)port);
5068		b1 = gen_portatom(2, (bpf_int32)port);
5069		gen_and(tmp, b1);
5070		break;
5071
5072	default:
5073		abort();
5074	}
5075	gen_and(b0, b1);
5076
5077	return b1;
5078}
5079
5080static struct block *
5081gen_port(port, ip_proto, dir)
5082	int port;
5083	int ip_proto;
5084	int dir;
5085{
5086	struct block *b0, *b1, *tmp;
5087
5088	/*
5089	 * ether proto ip
5090	 *
5091	 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5092	 * not LLC encapsulation with LLCSAP_IP.
5093	 *
5094	 * For IEEE 802 networks - which includes 802.5 token ring
5095	 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5096	 * says that SNAP encapsulation is used, not LLC encapsulation
5097	 * with LLCSAP_IP.
5098	 *
5099	 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5100	 * RFC 2225 say that SNAP encapsulation is used, not LLC
5101	 * encapsulation with LLCSAP_IP.
5102	 *
5103	 * So we always check for ETHERTYPE_IP.
5104	 */
5105	b0 =  gen_linktype(ETHERTYPE_IP);
5106
5107	switch (ip_proto) {
5108	case IPPROTO_UDP:
5109	case IPPROTO_TCP:
5110	case IPPROTO_SCTP:
5111		b1 = gen_portop(port, ip_proto, dir);
5112		break;
5113
5114	case PROTO_UNDEF:
5115		tmp = gen_portop(port, IPPROTO_TCP, dir);
5116		b1 = gen_portop(port, IPPROTO_UDP, dir);
5117		gen_or(tmp, b1);
5118		tmp = gen_portop(port, IPPROTO_SCTP, dir);
5119		gen_or(tmp, b1);
5120		break;
5121
5122	default:
5123		abort();
5124	}
5125	gen_and(b0, b1);
5126	return b1;
5127}
5128
5129struct block *
5130gen_portop6(port, proto, dir)
5131	int port, proto, dir;
5132{
5133	struct block *b0, *b1, *tmp;
5134
5135	/* ip6 proto 'proto' */
5136	/* XXX - catch the first fragment of a fragmented packet? */
5137	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
5138
5139	switch (dir) {
5140	case Q_SRC:
5141		b1 = gen_portatom6(0, (bpf_int32)port);
5142		break;
5143
5144	case Q_DST:
5145		b1 = gen_portatom6(2, (bpf_int32)port);
5146		break;
5147
5148	case Q_OR:
5149	case Q_DEFAULT:
5150		tmp = gen_portatom6(0, (bpf_int32)port);
5151		b1 = gen_portatom6(2, (bpf_int32)port);
5152		gen_or(tmp, b1);
5153		break;
5154
5155	case Q_AND:
5156		tmp = gen_portatom6(0, (bpf_int32)port);
5157		b1 = gen_portatom6(2, (bpf_int32)port);
5158		gen_and(tmp, b1);
5159		break;
5160
5161	default:
5162		abort();
5163	}
5164	gen_and(b0, b1);
5165
5166	return b1;
5167}
5168
5169static struct block *
5170gen_port6(port, ip_proto, dir)
5171	int port;
5172	int ip_proto;
5173	int dir;
5174{
5175	struct block *b0, *b1, *tmp;
5176
5177	/* link proto ip6 */
5178	b0 =  gen_linktype(ETHERTYPE_IPV6);
5179
5180	switch (ip_proto) {
5181	case IPPROTO_UDP:
5182	case IPPROTO_TCP:
5183	case IPPROTO_SCTP:
5184		b1 = gen_portop6(port, ip_proto, dir);
5185		break;
5186
5187	case PROTO_UNDEF:
5188		tmp = gen_portop6(port, IPPROTO_TCP, dir);
5189		b1 = gen_portop6(port, IPPROTO_UDP, dir);
5190		gen_or(tmp, b1);
5191		tmp = gen_portop6(port, IPPROTO_SCTP, dir);
5192		gen_or(tmp, b1);
5193		break;
5194
5195	default:
5196		abort();
5197	}
5198	gen_and(b0, b1);
5199	return b1;
5200}
5201
5202/* gen_portrange code */
5203static struct block *
5204gen_portrangeatom(off, v1, v2)
5205	int off;
5206	bpf_int32 v1, v2;
5207{
5208	struct block *b1, *b2;
5209
5210	if (v1 > v2) {
5211		/*
5212		 * Reverse the order of the ports, so v1 is the lower one.
5213		 */
5214		bpf_int32 vtemp;
5215
5216		vtemp = v1;
5217		v1 = v2;
5218		v2 = vtemp;
5219	}
5220
5221	b1 = gen_cmp_ge(OR_TRAN_IPV4, off, BPF_H, v1);
5222	b2 = gen_cmp_le(OR_TRAN_IPV4, off, BPF_H, v2);
5223
5224	gen_and(b1, b2);
5225
5226	return b2;
5227}
5228
5229struct block *
5230gen_portrangeop(port1, port2, proto, dir)
5231	int port1, port2;
5232	int proto;
5233	int dir;
5234{
5235	struct block *b0, *b1, *tmp;
5236
5237	/* ip proto 'proto' and not a fragment other than the first fragment */
5238	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
5239	b0 = gen_ipfrag();
5240	gen_and(tmp, b0);
5241
5242	switch (dir) {
5243	case Q_SRC:
5244		b1 = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5245		break;
5246
5247	case Q_DST:
5248		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5249		break;
5250
5251	case Q_OR:
5252	case Q_DEFAULT:
5253		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5254		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5255		gen_or(tmp, b1);
5256		break;
5257
5258	case Q_AND:
5259		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5260		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5261		gen_and(tmp, b1);
5262		break;
5263
5264	default:
5265		abort();
5266	}
5267	gen_and(b0, b1);
5268
5269	return b1;
5270}
5271
5272static struct block *
5273gen_portrange(port1, port2, ip_proto, dir)
5274	int port1, port2;
5275	int ip_proto;
5276	int dir;
5277{
5278	struct block *b0, *b1, *tmp;
5279
5280	/* link proto ip */
5281	b0 =  gen_linktype(ETHERTYPE_IP);
5282
5283	switch (ip_proto) {
5284	case IPPROTO_UDP:
5285	case IPPROTO_TCP:
5286	case IPPROTO_SCTP:
5287		b1 = gen_portrangeop(port1, port2, ip_proto, dir);
5288		break;
5289
5290	case PROTO_UNDEF:
5291		tmp = gen_portrangeop(port1, port2, IPPROTO_TCP, dir);
5292		b1 = gen_portrangeop(port1, port2, IPPROTO_UDP, dir);
5293		gen_or(tmp, b1);
5294		tmp = gen_portrangeop(port1, port2, IPPROTO_SCTP, dir);
5295		gen_or(tmp, b1);
5296		break;
5297
5298	default:
5299		abort();
5300	}
5301	gen_and(b0, b1);
5302	return b1;
5303}
5304
5305static struct block *
5306gen_portrangeatom6(off, v1, v2)
5307	int off;
5308	bpf_int32 v1, v2;
5309{
5310	struct block *b1, *b2;
5311
5312	if (v1 > v2) {
5313		/*
5314		 * Reverse the order of the ports, so v1 is the lower one.
5315		 */
5316		bpf_int32 vtemp;
5317
5318		vtemp = v1;
5319		v1 = v2;
5320		v2 = vtemp;
5321	}
5322
5323	b1 = gen_cmp_ge(OR_TRAN_IPV6, off, BPF_H, v1);
5324	b2 = gen_cmp_le(OR_TRAN_IPV6, off, BPF_H, v2);
5325
5326	gen_and(b1, b2);
5327
5328	return b2;
5329}
5330
5331struct block *
5332gen_portrangeop6(port1, port2, proto, dir)
5333	int port1, port2;
5334	int proto;
5335	int dir;
5336{
5337	struct block *b0, *b1, *tmp;
5338
5339	/* ip6 proto 'proto' */
5340	/* XXX - catch the first fragment of a fragmented packet? */
5341	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
5342
5343	switch (dir) {
5344	case Q_SRC:
5345		b1 = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5346		break;
5347
5348	case Q_DST:
5349		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5350		break;
5351
5352	case Q_OR:
5353	case Q_DEFAULT:
5354		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5355		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5356		gen_or(tmp, b1);
5357		break;
5358
5359	case Q_AND:
5360		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5361		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5362		gen_and(tmp, b1);
5363		break;
5364
5365	default:
5366		abort();
5367	}
5368	gen_and(b0, b1);
5369
5370	return b1;
5371}
5372
5373static struct block *
5374gen_portrange6(port1, port2, ip_proto, dir)
5375	int port1, port2;
5376	int ip_proto;
5377	int dir;
5378{
5379	struct block *b0, *b1, *tmp;
5380
5381	/* link proto ip6 */
5382	b0 =  gen_linktype(ETHERTYPE_IPV6);
5383
5384	switch (ip_proto) {
5385	case IPPROTO_UDP:
5386	case IPPROTO_TCP:
5387	case IPPROTO_SCTP:
5388		b1 = gen_portrangeop6(port1, port2, ip_proto, dir);
5389		break;
5390
5391	case PROTO_UNDEF:
5392		tmp = gen_portrangeop6(port1, port2, IPPROTO_TCP, dir);
5393		b1 = gen_portrangeop6(port1, port2, IPPROTO_UDP, dir);
5394		gen_or(tmp, b1);
5395		tmp = gen_portrangeop6(port1, port2, IPPROTO_SCTP, dir);
5396		gen_or(tmp, b1);
5397		break;
5398
5399	default:
5400		abort();
5401	}
5402	gen_and(b0, b1);
5403	return b1;
5404}
5405
5406static int
5407lookup_proto(name, proto)
5408	register const char *name;
5409	register int proto;
5410{
5411	register int v;
5412
5413	switch (proto) {
5414
5415	case Q_DEFAULT:
5416	case Q_IP:
5417	case Q_IPV6:
5418		v = pcap_nametoproto(name);
5419		if (v == PROTO_UNDEF)
5420			bpf_error("unknown ip proto '%s'", name);
5421		break;
5422
5423	case Q_LINK:
5424		/* XXX should look up h/w protocol type based on linktype */
5425		v = pcap_nametoeproto(name);
5426		if (v == PROTO_UNDEF) {
5427			v = pcap_nametollc(name);
5428			if (v == PROTO_UNDEF)
5429				bpf_error("unknown ether proto '%s'", name);
5430		}
5431		break;
5432
5433	case Q_ISO:
5434		if (strcmp(name, "esis") == 0)
5435			v = ISO9542_ESIS;
5436		else if (strcmp(name, "isis") == 0)
5437			v = ISO10589_ISIS;
5438		else if (strcmp(name, "clnp") == 0)
5439			v = ISO8473_CLNP;
5440		else
5441			bpf_error("unknown osi proto '%s'", name);
5442		break;
5443
5444	default:
5445		v = PROTO_UNDEF;
5446		break;
5447	}
5448	return v;
5449}
5450
5451#if 0
5452struct stmt *
5453gen_joinsp(s, n)
5454	struct stmt **s;
5455	int n;
5456{
5457	return NULL;
5458}
5459#endif
5460
5461static struct block *
5462gen_protochain(v, proto, dir)
5463	int v;
5464	int proto;
5465	int dir;
5466{
5467#ifdef NO_PROTOCHAIN
5468	return gen_proto(v, proto, dir);
5469#else
5470	struct block *b0, *b;
5471	struct slist *s[100];
5472	int fix2, fix3, fix4, fix5;
5473	int ahcheck, again, end;
5474	int i, max;
5475	int reg2 = alloc_reg();
5476
5477	memset(s, 0, sizeof(s));
5478	fix2 = fix3 = fix4 = fix5 = 0;
5479
5480	switch (proto) {
5481	case Q_IP:
5482	case Q_IPV6:
5483		break;
5484	case Q_DEFAULT:
5485		b0 = gen_protochain(v, Q_IP, dir);
5486		b = gen_protochain(v, Q_IPV6, dir);
5487		gen_or(b0, b);
5488		return b;
5489	default:
5490		bpf_error("bad protocol applied for 'protochain'");
5491		/*NOTREACHED*/
5492	}
5493
5494	/*
5495	 * We don't handle variable-length prefixes before the link-layer
5496	 * header, or variable-length link-layer headers, here yet.
5497	 * We might want to add BPF instructions to do the protochain
5498	 * work, to simplify that and, on platforms that have a BPF
5499	 * interpreter with the new instructions, let the filtering
5500	 * be done in the kernel.  (We already require a modified BPF
5501	 * engine to do the protochain stuff, to support backward
5502	 * branches, and backward branch support is unlikely to appear
5503	 * in kernel BPF engines.)
5504	 */
5505	switch (linktype) {
5506
5507	case DLT_IEEE802_11:
5508	case DLT_PRISM_HEADER:
5509	case DLT_IEEE802_11_RADIO_AVS:
5510	case DLT_IEEE802_11_RADIO:
5511	case DLT_PPI:
5512		bpf_error("'protochain' not supported with 802.11");
5513	}
5514
5515	no_optimize = 1; /*this code is not compatible with optimzer yet */
5516
5517	/*
5518	 * s[0] is a dummy entry to protect other BPF insn from damage
5519	 * by s[fix] = foo with uninitialized variable "fix".  It is somewhat
5520	 * hard to find interdependency made by jump table fixup.
5521	 */
5522	i = 0;
5523	s[i] = new_stmt(0);	/*dummy*/
5524	i++;
5525
5526	switch (proto) {
5527	case Q_IP:
5528		b0 = gen_linktype(ETHERTYPE_IP);
5529
5530		/* A = ip->ip_p */
5531		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
5532		s[i]->s.k = off_macpl + off_nl + 9;
5533		i++;
5534		/* X = ip->ip_hl << 2 */
5535		s[i] = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
5536		s[i]->s.k = off_macpl + off_nl;
5537		i++;
5538		break;
5539
5540	case Q_IPV6:
5541		b0 = gen_linktype(ETHERTYPE_IPV6);
5542
5543		/* A = ip6->ip_nxt */
5544		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
5545		s[i]->s.k = off_macpl + off_nl + 6;
5546		i++;
5547		/* X = sizeof(struct ip6_hdr) */
5548		s[i] = new_stmt(BPF_LDX|BPF_IMM);
5549		s[i]->s.k = 40;
5550		i++;
5551		break;
5552
5553	default:
5554		bpf_error("unsupported proto to gen_protochain");
5555		/*NOTREACHED*/
5556	}
5557
5558	/* again: if (A == v) goto end; else fall through; */
5559	again = i;
5560	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5561	s[i]->s.k = v;
5562	s[i]->s.jt = NULL;		/*later*/
5563	s[i]->s.jf = NULL;		/*update in next stmt*/
5564	fix5 = i;
5565	i++;
5566
5567#ifndef IPPROTO_NONE
5568#define IPPROTO_NONE	59
5569#endif
5570	/* if (A == IPPROTO_NONE) goto end */
5571	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5572	s[i]->s.jt = NULL;	/*later*/
5573	s[i]->s.jf = NULL;	/*update in next stmt*/
5574	s[i]->s.k = IPPROTO_NONE;
5575	s[fix5]->s.jf = s[i];
5576	fix2 = i;
5577	i++;
5578
5579	if (proto == Q_IPV6) {
5580		int v6start, v6end, v6advance, j;
5581
5582		v6start = i;
5583		/* if (A == IPPROTO_HOPOPTS) goto v6advance */
5584		s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5585		s[i]->s.jt = NULL;	/*later*/
5586		s[i]->s.jf = NULL;	/*update in next stmt*/
5587		s[i]->s.k = IPPROTO_HOPOPTS;
5588		s[fix2]->s.jf = s[i];
5589		i++;
5590		/* if (A == IPPROTO_DSTOPTS) goto v6advance */
5591		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5592		s[i]->s.jt = NULL;	/*later*/
5593		s[i]->s.jf = NULL;	/*update in next stmt*/
5594		s[i]->s.k = IPPROTO_DSTOPTS;
5595		i++;
5596		/* if (A == IPPROTO_ROUTING) goto v6advance */
5597		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5598		s[i]->s.jt = NULL;	/*later*/
5599		s[i]->s.jf = NULL;	/*update in next stmt*/
5600		s[i]->s.k = IPPROTO_ROUTING;
5601		i++;
5602		/* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
5603		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5604		s[i]->s.jt = NULL;	/*later*/
5605		s[i]->s.jf = NULL;	/*later*/
5606		s[i]->s.k = IPPROTO_FRAGMENT;
5607		fix3 = i;
5608		v6end = i;
5609		i++;
5610
5611		/* v6advance: */
5612		v6advance = i;
5613
5614		/*
5615		 * in short,
5616		 * A = P[X + packet head];
5617		 * X = X + (P[X + packet head + 1] + 1) * 8;
5618		 */
5619		/* A = P[X + packet head] */
5620		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5621		s[i]->s.k = off_macpl + off_nl;
5622		i++;
5623		/* MEM[reg2] = A */
5624		s[i] = new_stmt(BPF_ST);
5625		s[i]->s.k = reg2;
5626		i++;
5627		/* A = P[X + packet head + 1]; */
5628		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5629		s[i]->s.k = off_macpl + off_nl + 1;
5630		i++;
5631		/* A += 1 */
5632		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5633		s[i]->s.k = 1;
5634		i++;
5635		/* A *= 8 */
5636		s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
5637		s[i]->s.k = 8;
5638		i++;
5639		/* A += X */
5640		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_X);
5641		s[i]->s.k = 0;
5642		i++;
5643		/* X = A; */
5644		s[i] = new_stmt(BPF_MISC|BPF_TAX);
5645		i++;
5646		/* A = MEM[reg2] */
5647		s[i] = new_stmt(BPF_LD|BPF_MEM);
5648		s[i]->s.k = reg2;
5649		i++;
5650
5651		/* goto again; (must use BPF_JA for backward jump) */
5652		s[i] = new_stmt(BPF_JMP|BPF_JA);
5653		s[i]->s.k = again - i - 1;
5654		s[i - 1]->s.jf = s[i];
5655		i++;
5656
5657		/* fixup */
5658		for (j = v6start; j <= v6end; j++)
5659			s[j]->s.jt = s[v6advance];
5660	} else {
5661		/* nop */
5662		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5663		s[i]->s.k = 0;
5664		s[fix2]->s.jf = s[i];
5665		i++;
5666	}
5667
5668	/* ahcheck: */
5669	ahcheck = i;
5670	/* if (A == IPPROTO_AH) then fall through; else goto end; */
5671	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5672	s[i]->s.jt = NULL;	/*later*/
5673	s[i]->s.jf = NULL;	/*later*/
5674	s[i]->s.k = IPPROTO_AH;
5675	if (fix3)
5676		s[fix3]->s.jf = s[ahcheck];
5677	fix4 = i;
5678	i++;
5679
5680	/*
5681	 * in short,
5682	 * A = P[X];
5683	 * X = X + (P[X + 1] + 2) * 4;
5684	 */
5685	/* A = X */
5686	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
5687	i++;
5688	/* A = P[X + packet head]; */
5689	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5690	s[i]->s.k = off_macpl + off_nl;
5691	i++;
5692	/* MEM[reg2] = A */
5693	s[i] = new_stmt(BPF_ST);
5694	s[i]->s.k = reg2;
5695	i++;
5696	/* A = X */
5697	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
5698	i++;
5699	/* A += 1 */
5700	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5701	s[i]->s.k = 1;
5702	i++;
5703	/* X = A */
5704	s[i] = new_stmt(BPF_MISC|BPF_TAX);
5705	i++;
5706	/* A = P[X + packet head] */
5707	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5708	s[i]->s.k = off_macpl + off_nl;
5709	i++;
5710	/* A += 2 */
5711	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5712	s[i]->s.k = 2;
5713	i++;
5714	/* A *= 4 */
5715	s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
5716	s[i]->s.k = 4;
5717	i++;
5718	/* X = A; */
5719	s[i] = new_stmt(BPF_MISC|BPF_TAX);
5720	i++;
5721	/* A = MEM[reg2] */
5722	s[i] = new_stmt(BPF_LD|BPF_MEM);
5723	s[i]->s.k = reg2;
5724	i++;
5725
5726	/* goto again; (must use BPF_JA for backward jump) */
5727	s[i] = new_stmt(BPF_JMP|BPF_JA);
5728	s[i]->s.k = again - i - 1;
5729	i++;
5730
5731	/* end: nop */
5732	end = i;
5733	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5734	s[i]->s.k = 0;
5735	s[fix2]->s.jt = s[end];
5736	s[fix4]->s.jf = s[end];
5737	s[fix5]->s.jt = s[end];
5738	i++;
5739
5740	/*
5741	 * make slist chain
5742	 */
5743	max = i;
5744	for (i = 0; i < max - 1; i++)
5745		s[i]->next = s[i + 1];
5746	s[max - 1]->next = NULL;
5747
5748	/*
5749	 * emit final check
5750	 */
5751	b = new_block(JMP(BPF_JEQ));
5752	b->stmts = s[1];	/*remember, s[0] is dummy*/
5753	b->s.k = v;
5754
5755	free_reg(reg2);
5756
5757	gen_and(b0, b);
5758	return b;
5759#endif
5760}
5761
5762static struct block *
5763gen_check_802_11_data_frame()
5764{
5765	struct slist *s;
5766	struct block *b0, *b1;
5767
5768	/*
5769	 * A data frame has the 0x08 bit (b3) in the frame control field set
5770	 * and the 0x04 bit (b2) clear.
5771	 */
5772	s = gen_load_a(OR_LINK, 0, BPF_B);
5773	b0 = new_block(JMP(BPF_JSET));
5774	b0->s.k = 0x08;
5775	b0->stmts = s;
5776
5777	s = gen_load_a(OR_LINK, 0, BPF_B);
5778	b1 = new_block(JMP(BPF_JSET));
5779	b1->s.k = 0x04;
5780	b1->stmts = s;
5781	gen_not(b1);
5782
5783	gen_and(b1, b0);
5784
5785	return b0;
5786}
5787
5788/*
5789 * Generate code that checks whether the packet is a packet for protocol
5790 * <proto> and whether the type field in that protocol's header has
5791 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
5792 * IP packet and checks the protocol number in the IP header against <v>.
5793 *
5794 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
5795 * against Q_IP and Q_IPV6.
5796 */
5797static struct block *
5798gen_proto(v, proto, dir)
5799	int v;
5800	int proto;
5801	int dir;
5802{
5803	struct block *b0, *b1;
5804#ifndef CHASE_CHAIN
5805	struct block *b2;
5806#endif
5807
5808	if (dir != Q_DEFAULT)
5809		bpf_error("direction applied to 'proto'");
5810
5811	switch (proto) {
5812	case Q_DEFAULT:
5813		b0 = gen_proto(v, Q_IP, dir);
5814		b1 = gen_proto(v, Q_IPV6, dir);
5815		gen_or(b0, b1);
5816		return b1;
5817
5818	case Q_IP:
5819		/*
5820		 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5821		 * not LLC encapsulation with LLCSAP_IP.
5822		 *
5823		 * For IEEE 802 networks - which includes 802.5 token ring
5824		 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5825		 * says that SNAP encapsulation is used, not LLC encapsulation
5826		 * with LLCSAP_IP.
5827		 *
5828		 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5829		 * RFC 2225 say that SNAP encapsulation is used, not LLC
5830		 * encapsulation with LLCSAP_IP.
5831		 *
5832		 * So we always check for ETHERTYPE_IP.
5833		 */
5834		b0 = gen_linktype(ETHERTYPE_IP);
5835#ifndef CHASE_CHAIN
5836		b1 = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)v);
5837#else
5838		b1 = gen_protochain(v, Q_IP);
5839#endif
5840		gen_and(b0, b1);
5841		return b1;
5842
5843	case Q_ISO:
5844		switch (linktype) {
5845
5846		case DLT_FRELAY:
5847			/*
5848			 * Frame Relay packets typically have an OSI
5849			 * NLPID at the beginning; "gen_linktype(LLCSAP_ISONS)"
5850			 * generates code to check for all the OSI
5851			 * NLPIDs, so calling it and then adding a check
5852			 * for the particular NLPID for which we're
5853			 * looking is bogus, as we can just check for
5854			 * the NLPID.
5855			 *
5856			 * What we check for is the NLPID and a frame
5857			 * control field value of UI, i.e. 0x03 followed
5858			 * by the NLPID.
5859			 *
5860			 * XXX - assumes a 2-byte Frame Relay header with
5861			 * DLCI and flags.  What if the address is longer?
5862			 *
5863			 * XXX - what about SNAP-encapsulated frames?
5864			 */
5865			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | v);
5866			/*NOTREACHED*/
5867			break;
5868
5869		case DLT_C_HDLC:
5870			/*
5871			 * Cisco uses an Ethertype lookalike - for OSI,
5872			 * it's 0xfefe.
5873			 */
5874			b0 = gen_linktype(LLCSAP_ISONS<<8 | LLCSAP_ISONS);
5875			/* OSI in C-HDLC is stuffed with a fudge byte */
5876			b1 = gen_cmp(OR_NET_NOSNAP, 1, BPF_B, (long)v);
5877			gen_and(b0, b1);
5878			return b1;
5879
5880		default:
5881			b0 = gen_linktype(LLCSAP_ISONS);
5882			b1 = gen_cmp(OR_NET_NOSNAP, 0, BPF_B, (long)v);
5883			gen_and(b0, b1);
5884			return b1;
5885		}
5886
5887	case Q_ISIS:
5888		b0 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
5889		/*
5890		 * 4 is the offset of the PDU type relative to the IS-IS
5891		 * header.
5892		 */
5893		b1 = gen_cmp(OR_NET_NOSNAP, 4, BPF_B, (long)v);
5894		gen_and(b0, b1);
5895		return b1;
5896
5897	case Q_ARP:
5898		bpf_error("arp does not encapsulate another protocol");
5899		/* NOTREACHED */
5900
5901	case Q_RARP:
5902		bpf_error("rarp does not encapsulate another protocol");
5903		/* NOTREACHED */
5904
5905	case Q_ATALK:
5906		bpf_error("atalk encapsulation is not specifiable");
5907		/* NOTREACHED */
5908
5909	case Q_DECNET:
5910		bpf_error("decnet encapsulation is not specifiable");
5911		/* NOTREACHED */
5912
5913	case Q_SCA:
5914		bpf_error("sca does not encapsulate another protocol");
5915		/* NOTREACHED */
5916
5917	case Q_LAT:
5918		bpf_error("lat does not encapsulate another protocol");
5919		/* NOTREACHED */
5920
5921	case Q_MOPRC:
5922		bpf_error("moprc does not encapsulate another protocol");
5923		/* NOTREACHED */
5924
5925	case Q_MOPDL:
5926		bpf_error("mopdl does not encapsulate another protocol");
5927		/* NOTREACHED */
5928
5929	case Q_LINK:
5930		return gen_linktype(v);
5931
5932	case Q_UDP:
5933		bpf_error("'udp proto' is bogus");
5934		/* NOTREACHED */
5935
5936	case Q_TCP:
5937		bpf_error("'tcp proto' is bogus");
5938		/* NOTREACHED */
5939
5940	case Q_SCTP:
5941		bpf_error("'sctp proto' is bogus");
5942		/* NOTREACHED */
5943
5944	case Q_ICMP:
5945		bpf_error("'icmp proto' is bogus");
5946		/* NOTREACHED */
5947
5948	case Q_IGMP:
5949		bpf_error("'igmp proto' is bogus");
5950		/* NOTREACHED */
5951
5952	case Q_IGRP:
5953		bpf_error("'igrp proto' is bogus");
5954		/* NOTREACHED */
5955
5956	case Q_PIM:
5957		bpf_error("'pim proto' is bogus");
5958		/* NOTREACHED */
5959
5960	case Q_VRRP:
5961		bpf_error("'vrrp proto' is bogus");
5962		/* NOTREACHED */
5963
5964	case Q_CARP:
5965		bpf_error("'carp proto' is bogus");
5966		/* NOTREACHED */
5967
5968	case Q_IPV6:
5969		b0 = gen_linktype(ETHERTYPE_IPV6);
5970#ifndef CHASE_CHAIN
5971		/*
5972		 * Also check for a fragment header before the final
5973		 * header.
5974		 */
5975		b2 = gen_cmp(OR_NET, 6, BPF_B, IPPROTO_FRAGMENT);
5976		b1 = gen_cmp(OR_NET, 40, BPF_B, (bpf_int32)v);
5977		gen_and(b2, b1);
5978		b2 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)v);
5979		gen_or(b2, b1);
5980#else
5981		b1 = gen_protochain(v, Q_IPV6);
5982#endif
5983		gen_and(b0, b1);
5984		return b1;
5985
5986	case Q_ICMPV6:
5987		bpf_error("'icmp6 proto' is bogus");
5988
5989	case Q_AH:
5990		bpf_error("'ah proto' is bogus");
5991
5992	case Q_ESP:
5993		bpf_error("'ah proto' is bogus");
5994
5995	case Q_STP:
5996		bpf_error("'stp proto' is bogus");
5997
5998	case Q_IPX:
5999		bpf_error("'ipx proto' is bogus");
6000
6001	case Q_NETBEUI:
6002		bpf_error("'netbeui proto' is bogus");
6003
6004	case Q_RADIO:
6005		bpf_error("'radio proto' is bogus");
6006
6007	default:
6008		abort();
6009		/* NOTREACHED */
6010	}
6011	/* NOTREACHED */
6012}
6013
6014struct block *
6015gen_scode(name, q)
6016	register const char *name;
6017	struct qual q;
6018{
6019	int proto = q.proto;
6020	int dir = q.dir;
6021	int tproto;
6022	u_char *eaddr;
6023	bpf_u_int32 mask, addr;
6024#ifndef INET6
6025	bpf_u_int32 **alist;
6026#else
6027	int tproto6;
6028	struct sockaddr_in *sin4;
6029	struct sockaddr_in6 *sin6;
6030	struct addrinfo *res, *res0;
6031	struct in6_addr mask128;
6032#endif /*INET6*/
6033	struct block *b, *tmp;
6034	int port, real_proto;
6035	int port1, port2;
6036
6037	switch (q.addr) {
6038
6039	case Q_NET:
6040		addr = pcap_nametonetaddr(name);
6041		if (addr == 0)
6042			bpf_error("unknown network '%s'", name);
6043		/* Left justify network addr and calculate its network mask */
6044		mask = 0xffffffff;
6045		while (addr && (addr & 0xff000000) == 0) {
6046			addr <<= 8;
6047			mask <<= 8;
6048		}
6049		return gen_host(addr, mask, proto, dir, q.addr);
6050
6051	case Q_DEFAULT:
6052	case Q_HOST:
6053		if (proto == Q_LINK) {
6054			switch (linktype) {
6055
6056			case DLT_EN10MB:
6057			case DLT_NETANALYZER:
6058			case DLT_NETANALYZER_TRANSPARENT:
6059				eaddr = pcap_ether_hostton(name);
6060				if (eaddr == NULL)
6061					bpf_error(
6062					    "unknown ether host '%s'", name);
6063				b = gen_ehostop(eaddr, dir);
6064				free(eaddr);
6065				return b;
6066
6067			case DLT_FDDI:
6068				eaddr = pcap_ether_hostton(name);
6069				if (eaddr == NULL)
6070					bpf_error(
6071					    "unknown FDDI host '%s'", name);
6072				b = gen_fhostop(eaddr, dir);
6073				free(eaddr);
6074				return b;
6075
6076			case DLT_IEEE802:
6077				eaddr = pcap_ether_hostton(name);
6078				if (eaddr == NULL)
6079					bpf_error(
6080					    "unknown token ring host '%s'", name);
6081				b = gen_thostop(eaddr, dir);
6082				free(eaddr);
6083				return b;
6084
6085			case DLT_IEEE802_11:
6086			case DLT_PRISM_HEADER:
6087			case DLT_IEEE802_11_RADIO_AVS:
6088			case DLT_IEEE802_11_RADIO:
6089			case DLT_PPI:
6090				eaddr = pcap_ether_hostton(name);
6091				if (eaddr == NULL)
6092					bpf_error(
6093					    "unknown 802.11 host '%s'", name);
6094				b = gen_wlanhostop(eaddr, dir);
6095				free(eaddr);
6096				return b;
6097
6098			case DLT_IP_OVER_FC:
6099				eaddr = pcap_ether_hostton(name);
6100				if (eaddr == NULL)
6101					bpf_error(
6102					    "unknown Fibre Channel host '%s'", name);
6103				b = gen_ipfchostop(eaddr, dir);
6104				free(eaddr);
6105				return b;
6106
6107			case DLT_SUNATM:
6108				if (!is_lane)
6109					break;
6110
6111				/*
6112				 * Check that the packet doesn't begin
6113				 * with an LE Control marker.  (We've
6114				 * already generated a test for LANE.)
6115				 */
6116				tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
6117				    BPF_H, 0xFF00);
6118				gen_not(tmp);
6119
6120				eaddr = pcap_ether_hostton(name);
6121				if (eaddr == NULL)
6122					bpf_error(
6123					    "unknown ether host '%s'", name);
6124				b = gen_ehostop(eaddr, dir);
6125				gen_and(tmp, b);
6126				free(eaddr);
6127				return b;
6128			}
6129
6130			bpf_error("only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6131		} else if (proto == Q_DECNET) {
6132			unsigned short dn_addr = __pcap_nametodnaddr(name);
6133			/*
6134			 * I don't think DECNET hosts can be multihomed, so
6135			 * there is no need to build up a list of addresses
6136			 */
6137			return (gen_host(dn_addr, 0, proto, dir, q.addr));
6138		} else {
6139#ifndef INET6
6140			alist = pcap_nametoaddr(name);
6141			if (alist == NULL || *alist == NULL)
6142				bpf_error("unknown host '%s'", name);
6143			tproto = proto;
6144			if (off_linktype == (u_int)-1 && tproto == Q_DEFAULT)
6145				tproto = Q_IP;
6146			b = gen_host(**alist++, 0xffffffff, tproto, dir, q.addr);
6147			while (*alist) {
6148				tmp = gen_host(**alist++, 0xffffffff,
6149					       tproto, dir, q.addr);
6150				gen_or(b, tmp);
6151				b = tmp;
6152			}
6153			return b;
6154#else
6155			memset(&mask128, 0xff, sizeof(mask128));
6156			res0 = res = pcap_nametoaddrinfo(name);
6157			if (res == NULL)
6158				bpf_error("unknown host '%s'", name);
6159			ai = res;
6160			b = tmp = NULL;
6161			tproto = tproto6 = proto;
6162			if (off_linktype == -1 && tproto == Q_DEFAULT) {
6163				tproto = Q_IP;
6164				tproto6 = Q_IPV6;
6165			}
6166			for (res = res0; res; res = res->ai_next) {
6167				switch (res->ai_family) {
6168				case AF_INET:
6169					if (tproto == Q_IPV6)
6170						continue;
6171
6172					sin4 = (struct sockaddr_in *)
6173						res->ai_addr;
6174					tmp = gen_host(ntohl(sin4->sin_addr.s_addr),
6175						0xffffffff, tproto, dir, q.addr);
6176					break;
6177				case AF_INET6:
6178					if (tproto6 == Q_IP)
6179						continue;
6180
6181					sin6 = (struct sockaddr_in6 *)
6182						res->ai_addr;
6183					tmp = gen_host6(&sin6->sin6_addr,
6184						&mask128, tproto6, dir, q.addr);
6185					break;
6186				default:
6187					continue;
6188				}
6189				if (b)
6190					gen_or(b, tmp);
6191				b = tmp;
6192			}
6193			ai = NULL;
6194			freeaddrinfo(res0);
6195			if (b == NULL) {
6196				bpf_error("unknown host '%s'%s", name,
6197				    (proto == Q_DEFAULT)
6198					? ""
6199					: " for specified address family");
6200			}
6201			return b;
6202#endif /*INET6*/
6203		}
6204
6205	case Q_PORT:
6206		if (proto != Q_DEFAULT &&
6207		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6208			bpf_error("illegal qualifier of 'port'");
6209		if (pcap_nametoport(name, &port, &real_proto) == 0)
6210			bpf_error("unknown port '%s'", name);
6211		if (proto == Q_UDP) {
6212			if (real_proto == IPPROTO_TCP)
6213				bpf_error("port '%s' is tcp", name);
6214			else if (real_proto == IPPROTO_SCTP)
6215				bpf_error("port '%s' is sctp", name);
6216			else
6217				/* override PROTO_UNDEF */
6218				real_proto = IPPROTO_UDP;
6219		}
6220		if (proto == Q_TCP) {
6221			if (real_proto == IPPROTO_UDP)
6222				bpf_error("port '%s' is udp", name);
6223
6224			else if (real_proto == IPPROTO_SCTP)
6225				bpf_error("port '%s' is sctp", name);
6226			else
6227				/* override PROTO_UNDEF */
6228				real_proto = IPPROTO_TCP;
6229		}
6230		if (proto == Q_SCTP) {
6231			if (real_proto == IPPROTO_UDP)
6232				bpf_error("port '%s' is udp", name);
6233
6234			else if (real_proto == IPPROTO_TCP)
6235				bpf_error("port '%s' is tcp", name);
6236			else
6237				/* override PROTO_UNDEF */
6238				real_proto = IPPROTO_SCTP;
6239		}
6240		if (port < 0)
6241			bpf_error("illegal port number %d < 0", port);
6242		if (port > 65535)
6243			bpf_error("illegal port number %d > 65535", port);
6244		b = gen_port(port, real_proto, dir);
6245		gen_or(gen_port6(port, real_proto, dir), b);
6246		return b;
6247
6248	case Q_PORTRANGE:
6249		if (proto != Q_DEFAULT &&
6250		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6251			bpf_error("illegal qualifier of 'portrange'");
6252		if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0)
6253			bpf_error("unknown port in range '%s'", name);
6254		if (proto == Q_UDP) {
6255			if (real_proto == IPPROTO_TCP)
6256				bpf_error("port in range '%s' is tcp", name);
6257			else if (real_proto == IPPROTO_SCTP)
6258				bpf_error("port in range '%s' is sctp", name);
6259			else
6260				/* override PROTO_UNDEF */
6261				real_proto = IPPROTO_UDP;
6262		}
6263		if (proto == Q_TCP) {
6264			if (real_proto == IPPROTO_UDP)
6265				bpf_error("port in range '%s' is udp", name);
6266			else if (real_proto == IPPROTO_SCTP)
6267				bpf_error("port in range '%s' is sctp", name);
6268			else
6269				/* override PROTO_UNDEF */
6270				real_proto = IPPROTO_TCP;
6271		}
6272		if (proto == Q_SCTP) {
6273			if (real_proto == IPPROTO_UDP)
6274				bpf_error("port in range '%s' is udp", name);
6275			else if (real_proto == IPPROTO_TCP)
6276				bpf_error("port in range '%s' is tcp", name);
6277			else
6278				/* override PROTO_UNDEF */
6279				real_proto = IPPROTO_SCTP;
6280		}
6281		if (port1 < 0)
6282			bpf_error("illegal port number %d < 0", port1);
6283		if (port1 > 65535)
6284			bpf_error("illegal port number %d > 65535", port1);
6285		if (port2 < 0)
6286			bpf_error("illegal port number %d < 0", port2);
6287		if (port2 > 65535)
6288			bpf_error("illegal port number %d > 65535", port2);
6289
6290		b = gen_portrange(port1, port2, real_proto, dir);
6291		gen_or(gen_portrange6(port1, port2, real_proto, dir), b);
6292		return b;
6293
6294	case Q_GATEWAY:
6295#ifndef INET6
6296		eaddr = pcap_ether_hostton(name);
6297		if (eaddr == NULL)
6298			bpf_error("unknown ether host: %s", name);
6299
6300		alist = pcap_nametoaddr(name);
6301		if (alist == NULL || *alist == NULL)
6302			bpf_error("unknown host '%s'", name);
6303		b = gen_gateway(eaddr, alist, proto, dir);
6304		free(eaddr);
6305		return b;
6306#else
6307		bpf_error("'gateway' not supported in this configuration");
6308#endif /*INET6*/
6309
6310	case Q_PROTO:
6311		real_proto = lookup_proto(name, proto);
6312		if (real_proto >= 0)
6313			return gen_proto(real_proto, proto, dir);
6314		else
6315			bpf_error("unknown protocol: %s", name);
6316
6317	case Q_PROTOCHAIN:
6318		real_proto = lookup_proto(name, proto);
6319		if (real_proto >= 0)
6320			return gen_protochain(real_proto, proto, dir);
6321		else
6322			bpf_error("unknown protocol: %s", name);
6323
6324	case Q_UNDEF:
6325		syntax();
6326		/* NOTREACHED */
6327	}
6328	abort();
6329	/* NOTREACHED */
6330}
6331
6332struct block *
6333gen_mcode(s1, s2, masklen, q)
6334	register const char *s1, *s2;
6335	register int masklen;
6336	struct qual q;
6337{
6338	register int nlen, mlen;
6339	bpf_u_int32 n, m;
6340
6341	nlen = __pcap_atoin(s1, &n);
6342	/* Promote short ipaddr */
6343	n <<= 32 - nlen;
6344
6345	if (s2 != NULL) {
6346		mlen = __pcap_atoin(s2, &m);
6347		/* Promote short ipaddr */
6348		m <<= 32 - mlen;
6349		if ((n & ~m) != 0)
6350			bpf_error("non-network bits set in \"%s mask %s\"",
6351			    s1, s2);
6352	} else {
6353		/* Convert mask len to mask */
6354		if (masklen > 32)
6355			bpf_error("mask length must be <= 32");
6356		if (masklen == 0) {
6357			/*
6358			 * X << 32 is not guaranteed by C to be 0; it's
6359			 * undefined.
6360			 */
6361			m = 0;
6362		} else
6363			m = 0xffffffff << (32 - masklen);
6364		if ((n & ~m) != 0)
6365			bpf_error("non-network bits set in \"%s/%d\"",
6366			    s1, masklen);
6367	}
6368
6369	switch (q.addr) {
6370
6371	case Q_NET:
6372		return gen_host(n, m, q.proto, q.dir, q.addr);
6373
6374	default:
6375		bpf_error("Mask syntax for networks only");
6376		/* NOTREACHED */
6377	}
6378	/* NOTREACHED */
6379	return NULL;
6380}
6381
6382struct block *
6383gen_ncode(s, v, q)
6384	register const char *s;
6385	bpf_u_int32 v;
6386	struct qual q;
6387{
6388	bpf_u_int32 mask;
6389	int proto = q.proto;
6390	int dir = q.dir;
6391	register int vlen;
6392
6393	if (s == NULL)
6394		vlen = 32;
6395	else if (q.proto == Q_DECNET)
6396		vlen = __pcap_atodn(s, &v);
6397	else
6398		vlen = __pcap_atoin(s, &v);
6399
6400	switch (q.addr) {
6401
6402	case Q_DEFAULT:
6403	case Q_HOST:
6404	case Q_NET:
6405		if (proto == Q_DECNET)
6406			return gen_host(v, 0, proto, dir, q.addr);
6407		else if (proto == Q_LINK) {
6408			bpf_error("illegal link layer address");
6409		} else {
6410			mask = 0xffffffff;
6411			if (s == NULL && q.addr == Q_NET) {
6412				/* Promote short net number */
6413				while (v && (v & 0xff000000) == 0) {
6414					v <<= 8;
6415					mask <<= 8;
6416				}
6417			} else {
6418				/* Promote short ipaddr */
6419				v <<= 32 - vlen;
6420				mask <<= 32 - vlen;
6421			}
6422			return gen_host(v, mask, proto, dir, q.addr);
6423		}
6424
6425	case Q_PORT:
6426		if (proto == Q_UDP)
6427			proto = IPPROTO_UDP;
6428		else if (proto == Q_TCP)
6429			proto = IPPROTO_TCP;
6430		else if (proto == Q_SCTP)
6431			proto = IPPROTO_SCTP;
6432		else if (proto == Q_DEFAULT)
6433			proto = PROTO_UNDEF;
6434		else
6435			bpf_error("illegal qualifier of 'port'");
6436
6437		if (v > 65535)
6438			bpf_error("illegal port number %u > 65535", v);
6439
6440	    {
6441		struct block *b;
6442		b = gen_port((int)v, proto, dir);
6443		gen_or(gen_port6((int)v, proto, dir), b);
6444		return b;
6445	    }
6446
6447	case Q_PORTRANGE:
6448		if (proto == Q_UDP)
6449			proto = IPPROTO_UDP;
6450		else if (proto == Q_TCP)
6451			proto = IPPROTO_TCP;
6452		else if (proto == Q_SCTP)
6453			proto = IPPROTO_SCTP;
6454		else if (proto == Q_DEFAULT)
6455			proto = PROTO_UNDEF;
6456		else
6457			bpf_error("illegal qualifier of 'portrange'");
6458
6459		if (v > 65535)
6460			bpf_error("illegal port number %u > 65535", v);
6461
6462	    {
6463		struct block *b;
6464		b = gen_portrange((int)v, (int)v, proto, dir);
6465		gen_or(gen_portrange6((int)v, (int)v, proto, dir), b);
6466		return b;
6467	    }
6468
6469	case Q_GATEWAY:
6470		bpf_error("'gateway' requires a name");
6471		/* NOTREACHED */
6472
6473	case Q_PROTO:
6474		return gen_proto((int)v, proto, dir);
6475
6476	case Q_PROTOCHAIN:
6477		return gen_protochain((int)v, proto, dir);
6478
6479	case Q_UNDEF:
6480		syntax();
6481		/* NOTREACHED */
6482
6483	default:
6484		abort();
6485		/* NOTREACHED */
6486	}
6487	/* NOTREACHED */
6488}
6489
6490#ifdef INET6
6491struct block *
6492gen_mcode6(s1, s2, masklen, q)
6493	register const char *s1, *s2;
6494	register int masklen;
6495	struct qual q;
6496{
6497	struct addrinfo *res;
6498	struct in6_addr *addr;
6499	struct in6_addr mask;
6500	struct block *b;
6501	u_int32_t *a, *m;
6502
6503	if (s2)
6504		bpf_error("no mask %s supported", s2);
6505
6506	res = pcap_nametoaddrinfo(s1);
6507	if (!res)
6508		bpf_error("invalid ip6 address %s", s1);
6509	ai = res;
6510	if (res->ai_next)
6511		bpf_error("%s resolved to multiple address", s1);
6512	addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
6513
6514	if (sizeof(mask) * 8 < masklen)
6515		bpf_error("mask length must be <= %u", (unsigned int)(sizeof(mask) * 8));
6516	memset(&mask, 0, sizeof(mask));
6517	memset(&mask, 0xff, masklen / 8);
6518	if (masklen % 8) {
6519		mask.s6_addr[masklen / 8] =
6520			(0xff << (8 - masklen % 8)) & 0xff;
6521	}
6522
6523	a = (u_int32_t *)addr;
6524	m = (u_int32_t *)&mask;
6525	if ((a[0] & ~m[0]) || (a[1] & ~m[1])
6526	 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
6527		bpf_error("non-network bits set in \"%s/%d\"", s1, masklen);
6528	}
6529
6530	switch (q.addr) {
6531
6532	case Q_DEFAULT:
6533	case Q_HOST:
6534		if (masklen != 128)
6535			bpf_error("Mask syntax for networks only");
6536		/* FALLTHROUGH */
6537
6538	case Q_NET:
6539		b = gen_host6(addr, &mask, q.proto, q.dir, q.addr);
6540		ai = NULL;
6541		freeaddrinfo(res);
6542		return b;
6543
6544	default:
6545		bpf_error("invalid qualifier against IPv6 address");
6546		/* NOTREACHED */
6547	}
6548	return NULL;
6549}
6550#endif /*INET6*/
6551
6552struct block *
6553gen_ecode(eaddr, q)
6554	register const u_char *eaddr;
6555	struct qual q;
6556{
6557	struct block *b, *tmp;
6558
6559	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
6560		switch (linktype) {
6561		case DLT_EN10MB:
6562		case DLT_NETANALYZER:
6563		case DLT_NETANALYZER_TRANSPARENT:
6564			return gen_ehostop(eaddr, (int)q.dir);
6565		case DLT_FDDI:
6566			return gen_fhostop(eaddr, (int)q.dir);
6567		case DLT_IEEE802:
6568			return gen_thostop(eaddr, (int)q.dir);
6569		case DLT_IEEE802_11:
6570		case DLT_PRISM_HEADER:
6571		case DLT_IEEE802_11_RADIO_AVS:
6572		case DLT_IEEE802_11_RADIO:
6573		case DLT_PPI:
6574			return gen_wlanhostop(eaddr, (int)q.dir);
6575		case DLT_SUNATM:
6576			if (is_lane) {
6577				/*
6578				 * Check that the packet doesn't begin with an
6579				 * LE Control marker.  (We've already generated
6580				 * a test for LANE.)
6581				 */
6582				tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
6583					0xFF00);
6584				gen_not(tmp);
6585
6586				/*
6587				 * Now check the MAC address.
6588				 */
6589				b = gen_ehostop(eaddr, (int)q.dir);
6590				gen_and(tmp, b);
6591				return b;
6592			}
6593			break;
6594		case DLT_IP_OVER_FC:
6595			return gen_ipfchostop(eaddr, (int)q.dir);
6596		default:
6597			bpf_error("ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
6598			break;
6599		}
6600	}
6601	bpf_error("ethernet address used in non-ether expression");
6602	/* NOTREACHED */
6603	return NULL;
6604}
6605
6606void
6607sappend(s0, s1)
6608	struct slist *s0, *s1;
6609{
6610	/*
6611	 * This is definitely not the best way to do this, but the
6612	 * lists will rarely get long.
6613	 */
6614	while (s0->next)
6615		s0 = s0->next;
6616	s0->next = s1;
6617}
6618
6619static struct slist *
6620xfer_to_x(a)
6621	struct arth *a;
6622{
6623	struct slist *s;
6624
6625	s = new_stmt(BPF_LDX|BPF_MEM);
6626	s->s.k = a->regno;
6627	return s;
6628}
6629
6630static struct slist *
6631xfer_to_a(a)
6632	struct arth *a;
6633{
6634	struct slist *s;
6635
6636	s = new_stmt(BPF_LD|BPF_MEM);
6637	s->s.k = a->regno;
6638	return s;
6639}
6640
6641/*
6642 * Modify "index" to use the value stored into its register as an
6643 * offset relative to the beginning of the header for the protocol
6644 * "proto", and allocate a register and put an item "size" bytes long
6645 * (1, 2, or 4) at that offset into that register, making it the register
6646 * for "index".
6647 */
6648struct arth *
6649gen_load(proto, inst, size)
6650	int proto;
6651	struct arth *inst;
6652	int size;
6653{
6654	struct slist *s, *tmp;
6655	struct block *b;
6656	int regno = alloc_reg();
6657
6658	free_reg(inst->regno);
6659	switch (size) {
6660
6661	default:
6662		bpf_error("data size must be 1, 2, or 4");
6663
6664	case 1:
6665		size = BPF_B;
6666		break;
6667
6668	case 2:
6669		size = BPF_H;
6670		break;
6671
6672	case 4:
6673		size = BPF_W;
6674		break;
6675	}
6676	switch (proto) {
6677	default:
6678		bpf_error("unsupported index operation");
6679
6680	case Q_RADIO:
6681		/*
6682		 * The offset is relative to the beginning of the packet
6683		 * data, if we have a radio header.  (If we don't, this
6684		 * is an error.)
6685		 */
6686		if (linktype != DLT_IEEE802_11_RADIO_AVS &&
6687		    linktype != DLT_IEEE802_11_RADIO &&
6688		    linktype != DLT_PRISM_HEADER)
6689			bpf_error("radio information not present in capture");
6690
6691		/*
6692		 * Load into the X register the offset computed into the
6693		 * register specified by "index".
6694		 */
6695		s = xfer_to_x(inst);
6696
6697		/*
6698		 * Load the item at that offset.
6699		 */
6700		tmp = new_stmt(BPF_LD|BPF_IND|size);
6701		sappend(s, tmp);
6702		sappend(inst->s, s);
6703		break;
6704
6705	case Q_LINK:
6706		/*
6707		 * The offset is relative to the beginning of
6708		 * the link-layer header.
6709		 *
6710		 * XXX - what about ATM LANE?  Should the index be
6711		 * relative to the beginning of the AAL5 frame, so
6712		 * that 0 refers to the beginning of the LE Control
6713		 * field, or relative to the beginning of the LAN
6714		 * frame, so that 0 refers, for Ethernet LANE, to
6715		 * the beginning of the destination address?
6716		 */
6717		s = gen_llprefixlen();
6718
6719		/*
6720		 * If "s" is non-null, it has code to arrange that the
6721		 * X register contains the length of the prefix preceding
6722		 * the link-layer header.  Add to it the offset computed
6723		 * into the register specified by "index", and move that
6724		 * into the X register.  Otherwise, just load into the X
6725		 * register the offset computed into the register specified
6726		 * by "index".
6727		 */
6728		if (s != NULL) {
6729			sappend(s, xfer_to_a(inst));
6730			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6731			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6732		} else
6733			s = xfer_to_x(inst);
6734
6735		/*
6736		 * Load the item at the sum of the offset we've put in the
6737		 * X register and the offset of the start of the link
6738		 * layer header (which is 0 if the radio header is
6739		 * variable-length; that header length is what we put
6740		 * into the X register and then added to the index).
6741		 */
6742		tmp = new_stmt(BPF_LD|BPF_IND|size);
6743		tmp->s.k = off_ll;
6744		sappend(s, tmp);
6745		sappend(inst->s, s);
6746		break;
6747
6748	case Q_IP:
6749	case Q_ARP:
6750	case Q_RARP:
6751	case Q_ATALK:
6752	case Q_DECNET:
6753	case Q_SCA:
6754	case Q_LAT:
6755	case Q_MOPRC:
6756	case Q_MOPDL:
6757	case Q_IPV6:
6758		/*
6759		 * The offset is relative to the beginning of
6760		 * the network-layer header.
6761		 * XXX - are there any cases where we want
6762		 * off_nl_nosnap?
6763		 */
6764		s = gen_off_macpl();
6765
6766		/*
6767		 * If "s" is non-null, it has code to arrange that the
6768		 * X register contains the offset of the MAC-layer
6769		 * payload.  Add to it the offset computed into the
6770		 * register specified by "index", and move that into
6771		 * the X register.  Otherwise, just load into the X
6772		 * register the offset computed into the register specified
6773		 * by "index".
6774		 */
6775		if (s != NULL) {
6776			sappend(s, xfer_to_a(inst));
6777			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6778			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6779		} else
6780			s = xfer_to_x(inst);
6781
6782		/*
6783		 * Load the item at the sum of the offset we've put in the
6784		 * X register, the offset of the start of the network
6785		 * layer header from the beginning of the MAC-layer
6786		 * payload, and the purported offset of the start of the
6787		 * MAC-layer payload (which might be 0 if there's a
6788		 * variable-length prefix before the link-layer header
6789		 * or the link-layer header itself is variable-length;
6790		 * the variable-length offset of the start of the
6791		 * MAC-layer payload is what we put into the X register
6792		 * and then added to the index).
6793		 */
6794		tmp = new_stmt(BPF_LD|BPF_IND|size);
6795		tmp->s.k = off_macpl + off_nl;
6796		sappend(s, tmp);
6797		sappend(inst->s, s);
6798
6799		/*
6800		 * Do the computation only if the packet contains
6801		 * the protocol in question.
6802		 */
6803		b = gen_proto_abbrev(proto);
6804		if (inst->b)
6805			gen_and(inst->b, b);
6806		inst->b = b;
6807		break;
6808
6809	case Q_SCTP:
6810	case Q_TCP:
6811	case Q_UDP:
6812	case Q_ICMP:
6813	case Q_IGMP:
6814	case Q_IGRP:
6815	case Q_PIM:
6816	case Q_VRRP:
6817	case Q_CARP:
6818		/*
6819		 * The offset is relative to the beginning of
6820		 * the transport-layer header.
6821		 *
6822		 * Load the X register with the length of the IPv4 header
6823		 * (plus the offset of the link-layer header, if it's
6824		 * a variable-length header), in bytes.
6825		 *
6826		 * XXX - are there any cases where we want
6827		 * off_nl_nosnap?
6828		 * XXX - we should, if we're built with
6829		 * IPv6 support, generate code to load either
6830		 * IPv4, IPv6, or both, as appropriate.
6831		 */
6832		s = gen_loadx_iphdrlen();
6833
6834		/*
6835		 * The X register now contains the sum of the length
6836		 * of any variable-length header preceding the link-layer
6837		 * header, any variable-length link-layer header, and the
6838		 * length of the network-layer header.
6839		 *
6840		 * Load into the A register the offset relative to
6841		 * the beginning of the transport layer header,
6842		 * add the X register to that, move that to the
6843		 * X register, and load with an offset from the
6844		 * X register equal to the offset of the network
6845		 * layer header relative to the beginning of
6846		 * the MAC-layer payload plus the fixed-length
6847		 * portion of the offset of the MAC-layer payload
6848		 * from the beginning of the raw packet data.
6849		 */
6850		sappend(s, xfer_to_a(inst));
6851		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6852		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6853		sappend(s, tmp = new_stmt(BPF_LD|BPF_IND|size));
6854		tmp->s.k = off_macpl + off_nl;
6855		sappend(inst->s, s);
6856
6857		/*
6858		 * Do the computation only if the packet contains
6859		 * the protocol in question - which is true only
6860		 * if this is an IP datagram and is the first or
6861		 * only fragment of that datagram.
6862		 */
6863		gen_and(gen_proto_abbrev(proto), b = gen_ipfrag());
6864		if (inst->b)
6865			gen_and(inst->b, b);
6866		gen_and(gen_proto_abbrev(Q_IP), b);
6867		inst->b = b;
6868		break;
6869	case Q_ICMPV6:
6870		bpf_error("IPv6 upper-layer protocol is not supported by proto[x]");
6871		/*NOTREACHED*/
6872	}
6873	inst->regno = regno;
6874	s = new_stmt(BPF_ST);
6875	s->s.k = regno;
6876	sappend(inst->s, s);
6877
6878	return inst;
6879}
6880
6881struct block *
6882gen_relation(code, a0, a1, reversed)
6883	int code;
6884	struct arth *a0, *a1;
6885	int reversed;
6886{
6887	struct slist *s0, *s1, *s2;
6888	struct block *b, *tmp;
6889
6890	s0 = xfer_to_x(a1);
6891	s1 = xfer_to_a(a0);
6892	if (code == BPF_JEQ) {
6893		s2 = new_stmt(BPF_ALU|BPF_SUB|BPF_X);
6894		b = new_block(JMP(code));
6895		sappend(s1, s2);
6896	}
6897	else
6898		b = new_block(BPF_JMP|code|BPF_X);
6899	if (reversed)
6900		gen_not(b);
6901
6902	sappend(s0, s1);
6903	sappend(a1->s, s0);
6904	sappend(a0->s, a1->s);
6905
6906	b->stmts = a0->s;
6907
6908	free_reg(a0->regno);
6909	free_reg(a1->regno);
6910
6911	/* 'and' together protocol checks */
6912	if (a0->b) {
6913		if (a1->b) {
6914			gen_and(a0->b, tmp = a1->b);
6915		}
6916		else
6917			tmp = a0->b;
6918	} else
6919		tmp = a1->b;
6920
6921	if (tmp)
6922		gen_and(tmp, b);
6923
6924	return b;
6925}
6926
6927struct arth *
6928gen_loadlen()
6929{
6930	int regno = alloc_reg();
6931	struct arth *a = (struct arth *)newchunk(sizeof(*a));
6932	struct slist *s;
6933
6934	s = new_stmt(BPF_LD|BPF_LEN);
6935	s->next = new_stmt(BPF_ST);
6936	s->next->s.k = regno;
6937	a->s = s;
6938	a->regno = regno;
6939
6940	return a;
6941}
6942
6943struct arth *
6944gen_loadi(val)
6945	int val;
6946{
6947	struct arth *a;
6948	struct slist *s;
6949	int reg;
6950
6951	a = (struct arth *)newchunk(sizeof(*a));
6952
6953	reg = alloc_reg();
6954
6955	s = new_stmt(BPF_LD|BPF_IMM);
6956	s->s.k = val;
6957	s->next = new_stmt(BPF_ST);
6958	s->next->s.k = reg;
6959	a->s = s;
6960	a->regno = reg;
6961
6962	return a;
6963}
6964
6965struct arth *
6966gen_neg(a)
6967	struct arth *a;
6968{
6969	struct slist *s;
6970
6971	s = xfer_to_a(a);
6972	sappend(a->s, s);
6973	s = new_stmt(BPF_ALU|BPF_NEG);
6974	s->s.k = 0;
6975	sappend(a->s, s);
6976	s = new_stmt(BPF_ST);
6977	s->s.k = a->regno;
6978	sappend(a->s, s);
6979
6980	return a;
6981}
6982
6983struct arth *
6984gen_arth(code, a0, a1)
6985	int code;
6986	struct arth *a0, *a1;
6987{
6988	struct slist *s0, *s1, *s2;
6989
6990	s0 = xfer_to_x(a1);
6991	s1 = xfer_to_a(a0);
6992	s2 = new_stmt(BPF_ALU|BPF_X|code);
6993
6994	sappend(s1, s2);
6995	sappend(s0, s1);
6996	sappend(a1->s, s0);
6997	sappend(a0->s, a1->s);
6998
6999	free_reg(a0->regno);
7000	free_reg(a1->regno);
7001
7002	s0 = new_stmt(BPF_ST);
7003	a0->regno = s0->s.k = alloc_reg();
7004	sappend(a0->s, s0);
7005
7006	return a0;
7007}
7008
7009/*
7010 * Here we handle simple allocation of the scratch registers.
7011 * If too many registers are alloc'd, the allocator punts.
7012 */
7013static int regused[BPF_MEMWORDS];
7014static int curreg;
7015
7016/*
7017 * Initialize the table of used registers and the current register.
7018 */
7019static void
7020init_regs()
7021{
7022	curreg = 0;
7023	memset(regused, 0, sizeof regused);
7024}
7025
7026/*
7027 * Return the next free register.
7028 */
7029static int
7030alloc_reg()
7031{
7032	int n = BPF_MEMWORDS;
7033
7034	while (--n >= 0) {
7035		if (regused[curreg])
7036			curreg = (curreg + 1) % BPF_MEMWORDS;
7037		else {
7038			regused[curreg] = 1;
7039			return curreg;
7040		}
7041	}
7042	bpf_error("too many registers needed to evaluate expression");
7043	/* NOTREACHED */
7044	return 0;
7045}
7046
7047/*
7048 * Return a register to the table so it can
7049 * be used later.
7050 */
7051static void
7052free_reg(n)
7053	int n;
7054{
7055	regused[n] = 0;
7056}
7057
7058static struct block *
7059gen_len(jmp, n)
7060	int jmp, n;
7061{
7062	struct slist *s;
7063	struct block *b;
7064
7065	s = new_stmt(BPF_LD|BPF_LEN);
7066	b = new_block(JMP(jmp));
7067	b->stmts = s;
7068	b->s.k = n;
7069
7070	return b;
7071}
7072
7073struct block *
7074gen_greater(n)
7075	int n;
7076{
7077	return gen_len(BPF_JGE, n);
7078}
7079
7080/*
7081 * Actually, this is less than or equal.
7082 */
7083struct block *
7084gen_less(n)
7085	int n;
7086{
7087	struct block *b;
7088
7089	b = gen_len(BPF_JGT, n);
7090	gen_not(b);
7091
7092	return b;
7093}
7094
7095/*
7096 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
7097 * the beginning of the link-layer header.
7098 * XXX - that means you can't test values in the radiotap header, but
7099 * as that header is difficult if not impossible to parse generally
7100 * without a loop, that might not be a severe problem.  A new keyword
7101 * "radio" could be added for that, although what you'd really want
7102 * would be a way of testing particular radio header values, which
7103 * would generate code appropriate to the radio header in question.
7104 */
7105struct block *
7106gen_byteop(op, idx, val)
7107	int op, idx, val;
7108{
7109	struct block *b;
7110	struct slist *s;
7111
7112	switch (op) {
7113	default:
7114		abort();
7115
7116	case '=':
7117		return gen_cmp(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7118
7119	case '<':
7120		b = gen_cmp_lt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7121		return b;
7122
7123	case '>':
7124		b = gen_cmp_gt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7125		return b;
7126
7127	case '|':
7128		s = new_stmt(BPF_ALU|BPF_OR|BPF_K);
7129		break;
7130
7131	case '&':
7132		s = new_stmt(BPF_ALU|BPF_AND|BPF_K);
7133		break;
7134	}
7135	s->s.k = val;
7136	b = new_block(JMP(BPF_JEQ));
7137	b->stmts = s;
7138	gen_not(b);
7139
7140	return b;
7141}
7142
7143static u_char abroadcast[] = { 0x0 };
7144
7145struct block *
7146gen_broadcast(proto)
7147	int proto;
7148{
7149	bpf_u_int32 hostmask;
7150	struct block *b0, *b1, *b2;
7151	static u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7152
7153	switch (proto) {
7154
7155	case Q_DEFAULT:
7156	case Q_LINK:
7157		switch (linktype) {
7158		case DLT_ARCNET:
7159		case DLT_ARCNET_LINUX:
7160			return gen_ahostop(abroadcast, Q_DST);
7161		case DLT_EN10MB:
7162		case DLT_NETANALYZER:
7163		case DLT_NETANALYZER_TRANSPARENT:
7164			return gen_ehostop(ebroadcast, Q_DST);
7165		case DLT_FDDI:
7166			return gen_fhostop(ebroadcast, Q_DST);
7167		case DLT_IEEE802:
7168			return gen_thostop(ebroadcast, Q_DST);
7169		case DLT_IEEE802_11:
7170		case DLT_PRISM_HEADER:
7171		case DLT_IEEE802_11_RADIO_AVS:
7172		case DLT_IEEE802_11_RADIO:
7173		case DLT_PPI:
7174			return gen_wlanhostop(ebroadcast, Q_DST);
7175		case DLT_IP_OVER_FC:
7176			return gen_ipfchostop(ebroadcast, Q_DST);
7177		case DLT_SUNATM:
7178			if (is_lane) {
7179				/*
7180				 * Check that the packet doesn't begin with an
7181				 * LE Control marker.  (We've already generated
7182				 * a test for LANE.)
7183				 */
7184				b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
7185				    BPF_H, 0xFF00);
7186				gen_not(b1);
7187
7188				/*
7189				 * Now check the MAC address.
7190				 */
7191				b0 = gen_ehostop(ebroadcast, Q_DST);
7192				gen_and(b1, b0);
7193				return b0;
7194			}
7195			break;
7196		default:
7197			bpf_error("not a broadcast link");
7198		}
7199		break;
7200
7201	case Q_IP:
7202		/*
7203		 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
7204		 * as an indication that we don't know the netmask, and fail
7205		 * in that case.
7206		 */
7207		if (netmask == PCAP_NETMASK_UNKNOWN)
7208			bpf_error("netmask not known, so 'ip broadcast' not supported");
7209		b0 = gen_linktype(ETHERTYPE_IP);
7210		hostmask = ~netmask;
7211		b1 = gen_mcmp(OR_NET, 16, BPF_W, (bpf_int32)0, hostmask);
7212		b2 = gen_mcmp(OR_NET, 16, BPF_W,
7213			      (bpf_int32)(~0 & hostmask), hostmask);
7214		gen_or(b1, b2);
7215		gen_and(b0, b2);
7216		return b2;
7217	}
7218	bpf_error("only link-layer/IP broadcast filters supported");
7219	/* NOTREACHED */
7220	return NULL;
7221}
7222
7223/*
7224 * Generate code to test the low-order bit of a MAC address (that's
7225 * the bottom bit of the *first* byte).
7226 */
7227static struct block *
7228gen_mac_multicast(offset)
7229	int offset;
7230{
7231	register struct block *b0;
7232	register struct slist *s;
7233
7234	/* link[offset] & 1 != 0 */
7235	s = gen_load_a(OR_LINK, offset, BPF_B);
7236	b0 = new_block(JMP(BPF_JSET));
7237	b0->s.k = 1;
7238	b0->stmts = s;
7239	return b0;
7240}
7241
7242struct block *
7243gen_multicast(proto)
7244	int proto;
7245{
7246	register struct block *b0, *b1, *b2;
7247	register struct slist *s;
7248
7249	switch (proto) {
7250
7251	case Q_DEFAULT:
7252	case Q_LINK:
7253		switch (linktype) {
7254		case DLT_ARCNET:
7255		case DLT_ARCNET_LINUX:
7256			/* all ARCnet multicasts use the same address */
7257			return gen_ahostop(abroadcast, Q_DST);
7258		case DLT_EN10MB:
7259		case DLT_NETANALYZER:
7260		case DLT_NETANALYZER_TRANSPARENT:
7261			/* ether[0] & 1 != 0 */
7262			return gen_mac_multicast(0);
7263		case DLT_FDDI:
7264			/*
7265			 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
7266			 *
7267			 * XXX - was that referring to bit-order issues?
7268			 */
7269			/* fddi[1] & 1 != 0 */
7270			return gen_mac_multicast(1);
7271		case DLT_IEEE802:
7272			/* tr[2] & 1 != 0 */
7273			return gen_mac_multicast(2);
7274		case DLT_IEEE802_11:
7275		case DLT_PRISM_HEADER:
7276		case DLT_IEEE802_11_RADIO_AVS:
7277		case DLT_IEEE802_11_RADIO:
7278		case DLT_PPI:
7279			/*
7280			 * Oh, yuk.
7281			 *
7282			 *	For control frames, there is no DA.
7283			 *
7284			 *	For management frames, DA is at an
7285			 *	offset of 4 from the beginning of
7286			 *	the packet.
7287			 *
7288			 *	For data frames, DA is at an offset
7289			 *	of 4 from the beginning of the packet
7290			 *	if To DS is clear and at an offset of
7291			 *	16 from the beginning of the packet
7292			 *	if To DS is set.
7293			 */
7294
7295			/*
7296			 * Generate the tests to be done for data frames.
7297			 *
7298			 * First, check for To DS set, i.e. "link[1] & 0x01".
7299			 */
7300			s = gen_load_a(OR_LINK, 1, BPF_B);
7301			b1 = new_block(JMP(BPF_JSET));
7302			b1->s.k = 0x01;	/* To DS */
7303			b1->stmts = s;
7304
7305			/*
7306			 * If To DS is set, the DA is at 16.
7307			 */
7308			b0 = gen_mac_multicast(16);
7309			gen_and(b1, b0);
7310
7311			/*
7312			 * Now, check for To DS not set, i.e. check
7313			 * "!(link[1] & 0x01)".
7314			 */
7315			s = gen_load_a(OR_LINK, 1, BPF_B);
7316			b2 = new_block(JMP(BPF_JSET));
7317			b2->s.k = 0x01;	/* To DS */
7318			b2->stmts = s;
7319			gen_not(b2);
7320
7321			/*
7322			 * If To DS is not set, the DA is at 4.
7323			 */
7324			b1 = gen_mac_multicast(4);
7325			gen_and(b2, b1);
7326
7327			/*
7328			 * Now OR together the last two checks.  That gives
7329			 * the complete set of checks for data frames.
7330			 */
7331			gen_or(b1, b0);
7332
7333			/*
7334			 * Now check for a data frame.
7335			 * I.e, check "link[0] & 0x08".
7336			 */
7337			s = gen_load_a(OR_LINK, 0, BPF_B);
7338			b1 = new_block(JMP(BPF_JSET));
7339			b1->s.k = 0x08;
7340			b1->stmts = s;
7341
7342			/*
7343			 * AND that with the checks done for data frames.
7344			 */
7345			gen_and(b1, b0);
7346
7347			/*
7348			 * If the high-order bit of the type value is 0, this
7349			 * is a management frame.
7350			 * I.e, check "!(link[0] & 0x08)".
7351			 */
7352			s = gen_load_a(OR_LINK, 0, BPF_B);
7353			b2 = new_block(JMP(BPF_JSET));
7354			b2->s.k = 0x08;
7355			b2->stmts = s;
7356			gen_not(b2);
7357
7358			/*
7359			 * For management frames, the DA is at 4.
7360			 */
7361			b1 = gen_mac_multicast(4);
7362			gen_and(b2, b1);
7363
7364			/*
7365			 * OR that with the checks done for data frames.
7366			 * That gives the checks done for management and
7367			 * data frames.
7368			 */
7369			gen_or(b1, b0);
7370
7371			/*
7372			 * If the low-order bit of the type value is 1,
7373			 * this is either a control frame or a frame
7374			 * with a reserved type, and thus not a
7375			 * frame with an SA.
7376			 *
7377			 * I.e., check "!(link[0] & 0x04)".
7378			 */
7379			s = gen_load_a(OR_LINK, 0, BPF_B);
7380			b1 = new_block(JMP(BPF_JSET));
7381			b1->s.k = 0x04;
7382			b1->stmts = s;
7383			gen_not(b1);
7384
7385			/*
7386			 * AND that with the checks for data and management
7387			 * frames.
7388			 */
7389			gen_and(b1, b0);
7390			return b0;
7391		case DLT_IP_OVER_FC:
7392			b0 = gen_mac_multicast(2);
7393			return b0;
7394		case DLT_SUNATM:
7395			if (is_lane) {
7396				/*
7397				 * Check that the packet doesn't begin with an
7398				 * LE Control marker.  (We've already generated
7399				 * a test for LANE.)
7400				 */
7401				b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
7402				    BPF_H, 0xFF00);
7403				gen_not(b1);
7404
7405				/* ether[off_mac] & 1 != 0 */
7406				b0 = gen_mac_multicast(off_mac);
7407				gen_and(b1, b0);
7408				return b0;
7409			}
7410			break;
7411		default:
7412			break;
7413		}
7414		/* Link not known to support multicasts */
7415		break;
7416
7417	case Q_IP:
7418		b0 = gen_linktype(ETHERTYPE_IP);
7419		b1 = gen_cmp_ge(OR_NET, 16, BPF_B, (bpf_int32)224);
7420		gen_and(b0, b1);
7421		return b1;
7422
7423	case Q_IPV6:
7424		b0 = gen_linktype(ETHERTYPE_IPV6);
7425		b1 = gen_cmp(OR_NET, 24, BPF_B, (bpf_int32)255);
7426		gen_and(b0, b1);
7427		return b1;
7428	}
7429	bpf_error("link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
7430	/* NOTREACHED */
7431	return NULL;
7432}
7433
7434/*
7435 * Filter on inbound (dir == 0) or outbound (dir == 1) traffic.
7436 * Outbound traffic is sent by this machine, while inbound traffic is
7437 * sent by a remote machine (and may include packets destined for a
7438 * unicast or multicast link-layer address we are not subscribing to).
7439 * These are the same definitions implemented by pcap_setdirection().
7440 * Capturing only unicast traffic destined for this host is probably
7441 * better accomplished using a higher-layer filter.
7442 */
7443struct block *
7444gen_inbound(dir)
7445	int dir;
7446{
7447	register struct block *b0;
7448
7449	/*
7450	 * Only some data link types support inbound/outbound qualifiers.
7451	 */
7452	switch (linktype) {
7453	case DLT_SLIP:
7454		b0 = gen_relation(BPF_JEQ,
7455			  gen_load(Q_LINK, gen_loadi(0), 1),
7456			  gen_loadi(0),
7457			  dir);
7458		break;
7459
7460	case DLT_IPNET:
7461		if (dir) {
7462			/* match outgoing packets */
7463			b0 = gen_cmp(OR_LINK, 2, BPF_H, IPNET_OUTBOUND);
7464		} else {
7465			/* match incoming packets */
7466			b0 = gen_cmp(OR_LINK, 2, BPF_H, IPNET_INBOUND);
7467		}
7468		break;
7469
7470	case DLT_LINUX_SLL:
7471		/* match outgoing packets */
7472		b0 = gen_cmp(OR_LINK, 0, BPF_H, LINUX_SLL_OUTGOING);
7473		if (!dir) {
7474			/* to filter on inbound traffic, invert the match */
7475			gen_not(b0);
7476		}
7477		break;
7478
7479#ifdef HAVE_NET_PFVAR_H
7480	case DLT_PFLOG:
7481		b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, dir), BPF_B,
7482		    (bpf_int32)((dir == 0) ? PF_IN : PF_OUT));
7483		break;
7484#endif
7485
7486	case DLT_PPP_PPPD:
7487		if (dir) {
7488			/* match outgoing packets */
7489			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_OUT);
7490		} else {
7491			/* match incoming packets */
7492			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_IN);
7493		}
7494		break;
7495
7496        case DLT_JUNIPER_MFR:
7497        case DLT_JUNIPER_MLFR:
7498        case DLT_JUNIPER_MLPPP:
7499	case DLT_JUNIPER_ATM1:
7500	case DLT_JUNIPER_ATM2:
7501	case DLT_JUNIPER_PPPOE:
7502	case DLT_JUNIPER_PPPOE_ATM:
7503        case DLT_JUNIPER_GGSN:
7504        case DLT_JUNIPER_ES:
7505        case DLT_JUNIPER_MONITOR:
7506        case DLT_JUNIPER_SERVICES:
7507        case DLT_JUNIPER_ETHER:
7508        case DLT_JUNIPER_PPP:
7509        case DLT_JUNIPER_FRELAY:
7510        case DLT_JUNIPER_CHDLC:
7511        case DLT_JUNIPER_VP:
7512        case DLT_JUNIPER_ST:
7513        case DLT_JUNIPER_ISM:
7514        case DLT_JUNIPER_VS:
7515        case DLT_JUNIPER_SRX_E2E:
7516        case DLT_JUNIPER_FIBRECHANNEL:
7517	case DLT_JUNIPER_ATM_CEMIC:
7518
7519		/* juniper flags (including direction) are stored
7520		 * the byte after the 3-byte magic number */
7521		if (dir) {
7522			/* match outgoing packets */
7523			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 0, 0x01);
7524		} else {
7525			/* match incoming packets */
7526			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 1, 0x01);
7527		}
7528		break;
7529
7530	default:
7531		/*
7532		 * If we have packet meta-data indicating a direction,
7533		 * check it, otherwise give up as this link-layer type
7534		 * has nothing in the packet data.
7535		 */
7536#if defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
7537		/*
7538		 * We infer that this is Linux with PF_PACKET support.
7539		 * If this is a *live* capture, we can look at
7540		 * special meta-data in the filter expression;
7541		 * if it's a savefile, we can't.
7542		 */
7543		if (bpf_pcap->sf.rfile != NULL) {
7544			/* We have a FILE *, so this is a savefile */
7545			bpf_error("inbound/outbound not supported on linktype %d when reading savefiles",
7546			    linktype);
7547			b0 = NULL;
7548			/* NOTREACHED */
7549		}
7550		/* match outgoing packets */
7551		b0 = gen_cmp(OR_LINK, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H,
7552		             PACKET_OUTGOING);
7553		if (!dir) {
7554			/* to filter on inbound traffic, invert the match */
7555			gen_not(b0);
7556		}
7557#else /* defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7558		bpf_error("inbound/outbound not supported on linktype %d",
7559		    linktype);
7560		b0 = NULL;
7561		/* NOTREACHED */
7562#endif /* defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7563	}
7564	return (b0);
7565}
7566
7567#ifdef HAVE_NET_PFVAR_H
7568/* PF firewall log matched interface */
7569struct block *
7570gen_pf_ifname(const char *ifname)
7571{
7572	struct block *b0;
7573	u_int len, off;
7574
7575	if (linktype != DLT_PFLOG) {
7576		bpf_error("ifname supported only on PF linktype");
7577		/* NOTREACHED */
7578	}
7579	len = sizeof(((struct pfloghdr *)0)->ifname);
7580	off = offsetof(struct pfloghdr, ifname);
7581	if (strlen(ifname) >= len) {
7582		bpf_error("ifname interface names can only be %d characters",
7583		    len-1);
7584		/* NOTREACHED */
7585	}
7586	b0 = gen_bcmp(OR_LINK, off, strlen(ifname), (const u_char *)ifname);
7587	return (b0);
7588}
7589
7590/* PF firewall log ruleset name */
7591struct block *
7592gen_pf_ruleset(char *ruleset)
7593{
7594	struct block *b0;
7595
7596	if (linktype != DLT_PFLOG) {
7597		bpf_error("ruleset supported only on PF linktype");
7598		/* NOTREACHED */
7599	}
7600
7601	if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
7602		bpf_error("ruleset names can only be %ld characters",
7603		    (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
7604		/* NOTREACHED */
7605	}
7606
7607	b0 = gen_bcmp(OR_LINK, offsetof(struct pfloghdr, ruleset),
7608	    strlen(ruleset), (const u_char *)ruleset);
7609	return (b0);
7610}
7611
7612/* PF firewall log rule number */
7613struct block *
7614gen_pf_rnr(int rnr)
7615{
7616	struct block *b0;
7617
7618	if (linktype != DLT_PFLOG) {
7619		bpf_error("rnr supported only on PF linktype");
7620		/* NOTREACHED */
7621	}
7622
7623	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, rulenr), BPF_W,
7624		 (bpf_int32)rnr);
7625	return (b0);
7626}
7627
7628/* PF firewall log sub-rule number */
7629struct block *
7630gen_pf_srnr(int srnr)
7631{
7632	struct block *b0;
7633
7634	if (linktype != DLT_PFLOG) {
7635		bpf_error("srnr supported only on PF linktype");
7636		/* NOTREACHED */
7637	}
7638
7639	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, subrulenr), BPF_W,
7640	    (bpf_int32)srnr);
7641	return (b0);
7642}
7643
7644/* PF firewall log reason code */
7645struct block *
7646gen_pf_reason(int reason)
7647{
7648	struct block *b0;
7649
7650	if (linktype != DLT_PFLOG) {
7651		bpf_error("reason supported only on PF linktype");
7652		/* NOTREACHED */
7653	}
7654
7655	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, reason), BPF_B,
7656	    (bpf_int32)reason);
7657	return (b0);
7658}
7659
7660/* PF firewall log action */
7661struct block *
7662gen_pf_action(int action)
7663{
7664	struct block *b0;
7665
7666	if (linktype != DLT_PFLOG) {
7667		bpf_error("action supported only on PF linktype");
7668		/* NOTREACHED */
7669	}
7670
7671	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, action), BPF_B,
7672	    (bpf_int32)action);
7673	return (b0);
7674}
7675#else /* !HAVE_NET_PFVAR_H */
7676struct block *
7677gen_pf_ifname(const char *ifname)
7678{
7679	bpf_error("libpcap was compiled without pf support");
7680	/* NOTREACHED */
7681	return (NULL);
7682}
7683
7684struct block *
7685gen_pf_ruleset(char *ruleset)
7686{
7687	bpf_error("libpcap was compiled on a machine without pf support");
7688	/* NOTREACHED */
7689	return (NULL);
7690}
7691
7692struct block *
7693gen_pf_rnr(int rnr)
7694{
7695	bpf_error("libpcap was compiled on a machine without pf support");
7696	/* NOTREACHED */
7697	return (NULL);
7698}
7699
7700struct block *
7701gen_pf_srnr(int srnr)
7702{
7703	bpf_error("libpcap was compiled on a machine without pf support");
7704	/* NOTREACHED */
7705	return (NULL);
7706}
7707
7708struct block *
7709gen_pf_reason(int reason)
7710{
7711	bpf_error("libpcap was compiled on a machine without pf support");
7712	/* NOTREACHED */
7713	return (NULL);
7714}
7715
7716struct block *
7717gen_pf_action(int action)
7718{
7719	bpf_error("libpcap was compiled on a machine without pf support");
7720	/* NOTREACHED */
7721	return (NULL);
7722}
7723#endif /* HAVE_NET_PFVAR_H */
7724
7725/* IEEE 802.11 wireless header */
7726struct block *
7727gen_p80211_type(int type, int mask)
7728{
7729	struct block *b0;
7730
7731	switch (linktype) {
7732
7733	case DLT_IEEE802_11:
7734	case DLT_PRISM_HEADER:
7735	case DLT_IEEE802_11_RADIO_AVS:
7736	case DLT_IEEE802_11_RADIO:
7737		b0 = gen_mcmp(OR_LINK, 0, BPF_B, (bpf_int32)type,
7738		    (bpf_int32)mask);
7739		break;
7740
7741	default:
7742		bpf_error("802.11 link-layer types supported only on 802.11");
7743		/* NOTREACHED */
7744	}
7745
7746	return (b0);
7747}
7748
7749struct block *
7750gen_p80211_fcdir(int fcdir)
7751{
7752	struct block *b0;
7753
7754	switch (linktype) {
7755
7756	case DLT_IEEE802_11:
7757	case DLT_PRISM_HEADER:
7758	case DLT_IEEE802_11_RADIO_AVS:
7759	case DLT_IEEE802_11_RADIO:
7760		break;
7761
7762	default:
7763		bpf_error("frame direction supported only with 802.11 headers");
7764		/* NOTREACHED */
7765	}
7766
7767	b0 = gen_mcmp(OR_LINK, 1, BPF_B, (bpf_int32)fcdir,
7768		(bpf_u_int32)IEEE80211_FC1_DIR_MASK);
7769
7770	return (b0);
7771}
7772
7773struct block *
7774gen_acode(eaddr, q)
7775	register const u_char *eaddr;
7776	struct qual q;
7777{
7778	switch (linktype) {
7779
7780	case DLT_ARCNET:
7781	case DLT_ARCNET_LINUX:
7782		if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
7783		    q.proto == Q_LINK)
7784			return (gen_ahostop(eaddr, (int)q.dir));
7785		else {
7786			bpf_error("ARCnet address used in non-arc expression");
7787			/* NOTREACHED */
7788		}
7789		break;
7790
7791	default:
7792		bpf_error("aid supported only on ARCnet");
7793		/* NOTREACHED */
7794	}
7795	bpf_error("ARCnet address used in non-arc expression");
7796	/* NOTREACHED */
7797	return NULL;
7798}
7799
7800static struct block *
7801gen_ahostop(eaddr, dir)
7802	register const u_char *eaddr;
7803	register int dir;
7804{
7805	register struct block *b0, *b1;
7806
7807	switch (dir) {
7808	/* src comes first, different from Ethernet */
7809	case Q_SRC:
7810		return gen_bcmp(OR_LINK, 0, 1, eaddr);
7811
7812	case Q_DST:
7813		return gen_bcmp(OR_LINK, 1, 1, eaddr);
7814
7815	case Q_AND:
7816		b0 = gen_ahostop(eaddr, Q_SRC);
7817		b1 = gen_ahostop(eaddr, Q_DST);
7818		gen_and(b0, b1);
7819		return b1;
7820
7821	case Q_DEFAULT:
7822	case Q_OR:
7823		b0 = gen_ahostop(eaddr, Q_SRC);
7824		b1 = gen_ahostop(eaddr, Q_DST);
7825		gen_or(b0, b1);
7826		return b1;
7827
7828	case Q_ADDR1:
7829		bpf_error("'addr1' is only supported on 802.11");
7830		break;
7831
7832	case Q_ADDR2:
7833		bpf_error("'addr2' is only supported on 802.11");
7834		break;
7835
7836	case Q_ADDR3:
7837		bpf_error("'addr3' is only supported on 802.11");
7838		break;
7839
7840	case Q_ADDR4:
7841		bpf_error("'addr4' is only supported on 802.11");
7842		break;
7843
7844	case Q_RA:
7845		bpf_error("'ra' is only supported on 802.11");
7846		break;
7847
7848	case Q_TA:
7849		bpf_error("'ta' is only supported on 802.11");
7850		break;
7851	}
7852	abort();
7853	/* NOTREACHED */
7854}
7855
7856/*
7857 * support IEEE 802.1Q VLAN trunk over ethernet
7858 */
7859struct block *
7860gen_vlan(vlan_num)
7861	int vlan_num;
7862{
7863	struct	block	*b0, *b1;
7864
7865	/* can't check for VLAN-encapsulated packets inside MPLS */
7866	if (label_stack_depth > 0)
7867		bpf_error("no VLAN match after MPLS");
7868
7869	/*
7870	 * Check for a VLAN packet, and then change the offsets to point
7871	 * to the type and data fields within the VLAN packet.  Just
7872	 * increment the offsets, so that we can support a hierarchy, e.g.
7873	 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
7874	 * VLAN 100.
7875	 *
7876	 * XXX - this is a bit of a kludge.  If we were to split the
7877	 * compiler into a parser that parses an expression and
7878	 * generates an expression tree, and a code generator that
7879	 * takes an expression tree (which could come from our
7880	 * parser or from some other parser) and generates BPF code,
7881	 * we could perhaps make the offsets parameters of routines
7882	 * and, in the handler for an "AND" node, pass to subnodes
7883	 * other than the VLAN node the adjusted offsets.
7884	 *
7885	 * This would mean that "vlan" would, instead of changing the
7886	 * behavior of *all* tests after it, change only the behavior
7887	 * of tests ANDed with it.  That would change the documented
7888	 * semantics of "vlan", which might break some expressions.
7889	 * However, it would mean that "(vlan and ip) or ip" would check
7890	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
7891	 * checking only for VLAN-encapsulated IP, so that could still
7892	 * be considered worth doing; it wouldn't break expressions
7893	 * that are of the form "vlan and ..." or "vlan N and ...",
7894	 * which I suspect are the most common expressions involving
7895	 * "vlan".  "vlan or ..." doesn't necessarily do what the user
7896	 * would really want, now, as all the "or ..." tests would
7897	 * be done assuming a VLAN, even though the "or" could be viewed
7898	 * as meaning "or, if this isn't a VLAN packet...".
7899	 */
7900	orig_nl = off_nl;
7901
7902	switch (linktype) {
7903
7904	case DLT_EN10MB:
7905	case DLT_NETANALYZER:
7906	case DLT_NETANALYZER_TRANSPARENT:
7907		/* check for VLAN, including QinQ */
7908		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
7909		    (bpf_int32)ETHERTYPE_8021Q);
7910		b1 = gen_cmp(OR_LINK, off_linktype, BPF_H,
7911		    (bpf_int32)ETHERTYPE_8021QINQ);
7912		gen_or(b0,b1);
7913		b0 = b1;
7914
7915		/* If a specific VLAN is requested, check VLAN id */
7916		if (vlan_num >= 0) {
7917			b1 = gen_mcmp(OR_MACPL, 0, BPF_H,
7918			    (bpf_int32)vlan_num, 0x0fff);
7919			gen_and(b0, b1);
7920			b0 = b1;
7921		}
7922
7923		off_macpl += 4;
7924		off_linktype += 4;
7925#if 0
7926		off_nl_nosnap += 4;
7927		off_nl += 4;
7928#endif
7929		break;
7930
7931	default:
7932		bpf_error("no VLAN support for data link type %d",
7933		      linktype);
7934		/*NOTREACHED*/
7935	}
7936
7937	return (b0);
7938}
7939
7940/*
7941 * support for MPLS
7942 */
7943struct block *
7944gen_mpls(label_num)
7945	int label_num;
7946{
7947	struct	block	*b0,*b1;
7948
7949	/*
7950	 * Change the offsets to point to the type and data fields within
7951	 * the MPLS packet.  Just increment the offsets, so that we
7952	 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
7953	 * capture packets with an outer label of 100000 and an inner
7954	 * label of 1024.
7955	 *
7956	 * XXX - this is a bit of a kludge.  See comments in gen_vlan().
7957	 */
7958        orig_nl = off_nl;
7959
7960        if (label_stack_depth > 0) {
7961            /* just match the bottom-of-stack bit clear */
7962            b0 = gen_mcmp(OR_MACPL, orig_nl-2, BPF_B, 0, 0x01);
7963        } else {
7964            /*
7965             * Indicate that we're checking MPLS-encapsulated headers,
7966             * to make sure higher level code generators don't try to
7967             * match against IP-related protocols such as Q_ARP, Q_RARP
7968             * etc.
7969             */
7970            switch (linktype) {
7971
7972            case DLT_C_HDLC: /* fall through */
7973            case DLT_EN10MB:
7974            case DLT_NETANALYZER:
7975            case DLT_NETANALYZER_TRANSPARENT:
7976                    b0 = gen_linktype(ETHERTYPE_MPLS);
7977                    break;
7978
7979            case DLT_PPP:
7980                    b0 = gen_linktype(PPP_MPLS_UCAST);
7981                    break;
7982
7983                    /* FIXME add other DLT_s ...
7984                     * for Frame-Relay/and ATM this may get messy due to SNAP headers
7985                     * leave it for now */
7986
7987            default:
7988                    bpf_error("no MPLS support for data link type %d",
7989                          linktype);
7990                    b0 = NULL;
7991                    /*NOTREACHED*/
7992                    break;
7993            }
7994        }
7995
7996	/* If a specific MPLS label is requested, check it */
7997	if (label_num >= 0) {
7998		label_num = label_num << 12; /* label is shifted 12 bits on the wire */
7999		b1 = gen_mcmp(OR_MACPL, orig_nl, BPF_W, (bpf_int32)label_num,
8000		    0xfffff000); /* only compare the first 20 bits */
8001		gen_and(b0, b1);
8002		b0 = b1;
8003	}
8004
8005        off_nl_nosnap += 4;
8006        off_nl += 4;
8007        label_stack_depth++;
8008	return (b0);
8009}
8010
8011/*
8012 * Support PPPOE discovery and session.
8013 */
8014struct block *
8015gen_pppoed()
8016{
8017	/* check for PPPoE discovery */
8018	return gen_linktype((bpf_int32)ETHERTYPE_PPPOED);
8019}
8020
8021struct block *
8022gen_pppoes()
8023{
8024	struct block *b0;
8025
8026	/*
8027	 * Test against the PPPoE session link-layer type.
8028	 */
8029	b0 = gen_linktype((bpf_int32)ETHERTYPE_PPPOES);
8030
8031	/*
8032	 * Change the offsets to point to the type and data fields within
8033	 * the PPP packet, and note that this is PPPoE rather than
8034	 * raw PPP.
8035	 *
8036	 * XXX - this is a bit of a kludge.  If we were to split the
8037	 * compiler into a parser that parses an expression and
8038	 * generates an expression tree, and a code generator that
8039	 * takes an expression tree (which could come from our
8040	 * parser or from some other parser) and generates BPF code,
8041	 * we could perhaps make the offsets parameters of routines
8042	 * and, in the handler for an "AND" node, pass to subnodes
8043	 * other than the PPPoE node the adjusted offsets.
8044	 *
8045	 * This would mean that "pppoes" would, instead of changing the
8046	 * behavior of *all* tests after it, change only the behavior
8047	 * of tests ANDed with it.  That would change the documented
8048	 * semantics of "pppoes", which might break some expressions.
8049	 * However, it would mean that "(pppoes and ip) or ip" would check
8050	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8051	 * checking only for VLAN-encapsulated IP, so that could still
8052	 * be considered worth doing; it wouldn't break expressions
8053	 * that are of the form "pppoes and ..." which I suspect are the
8054	 * most common expressions involving "pppoes".  "pppoes or ..."
8055	 * doesn't necessarily do what the user would really want, now,
8056	 * as all the "or ..." tests would be done assuming PPPoE, even
8057	 * though the "or" could be viewed as meaning "or, if this isn't
8058	 * a PPPoE packet...".
8059	 */
8060	orig_linktype = off_linktype;	/* save original values */
8061	orig_nl = off_nl;
8062	is_pppoes = 1;
8063
8064	/*
8065	 * The "network-layer" protocol is PPPoE, which has a 6-byte
8066	 * PPPoE header, followed by a PPP packet.
8067	 *
8068	 * There is no HDLC encapsulation for the PPP packet (it's
8069	 * encapsulated in PPPoES instead), so the link-layer type
8070	 * starts at the first byte of the PPP packet.  For PPPoE,
8071	 * that offset is relative to the beginning of the total
8072	 * link-layer payload, including any 802.2 LLC header, so
8073	 * it's 6 bytes past off_nl.
8074	 */
8075	off_linktype = off_nl + 6;
8076
8077	/*
8078	 * The network-layer offsets are relative to the beginning
8079	 * of the MAC-layer payload; that's past the 6-byte
8080	 * PPPoE header and the 2-byte PPP header.
8081	 */
8082	off_nl = 6+2;
8083	off_nl_nosnap = 6+2;
8084
8085	return b0;
8086}
8087
8088struct block *
8089gen_atmfield_code(atmfield, jvalue, jtype, reverse)
8090	int atmfield;
8091	bpf_int32 jvalue;
8092	bpf_u_int32 jtype;
8093	int reverse;
8094{
8095	struct block *b0;
8096
8097	switch (atmfield) {
8098
8099	case A_VPI:
8100		if (!is_atm)
8101			bpf_error("'vpi' supported only on raw ATM");
8102		if (off_vpi == (u_int)-1)
8103			abort();
8104		b0 = gen_ncmp(OR_LINK, off_vpi, BPF_B, 0xffffffff, jtype,
8105		    reverse, jvalue);
8106		break;
8107
8108	case A_VCI:
8109		if (!is_atm)
8110			bpf_error("'vci' supported only on raw ATM");
8111		if (off_vci == (u_int)-1)
8112			abort();
8113		b0 = gen_ncmp(OR_LINK, off_vci, BPF_H, 0xffffffff, jtype,
8114		    reverse, jvalue);
8115		break;
8116
8117	case A_PROTOTYPE:
8118		if (off_proto == (u_int)-1)
8119			abort();	/* XXX - this isn't on FreeBSD */
8120		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0x0f, jtype,
8121		    reverse, jvalue);
8122		break;
8123
8124	case A_MSGTYPE:
8125		if (off_payload == (u_int)-1)
8126			abort();
8127		b0 = gen_ncmp(OR_LINK, off_payload + MSG_TYPE_POS, BPF_B,
8128		    0xffffffff, jtype, reverse, jvalue);
8129		break;
8130
8131	case A_CALLREFTYPE:
8132		if (!is_atm)
8133			bpf_error("'callref' supported only on raw ATM");
8134		if (off_proto == (u_int)-1)
8135			abort();
8136		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0xffffffff,
8137		    jtype, reverse, jvalue);
8138		break;
8139
8140	default:
8141		abort();
8142	}
8143	return b0;
8144}
8145
8146struct block *
8147gen_atmtype_abbrev(type)
8148	int type;
8149{
8150	struct block *b0, *b1;
8151
8152	switch (type) {
8153
8154	case A_METAC:
8155		/* Get all packets in Meta signalling Circuit */
8156		if (!is_atm)
8157			bpf_error("'metac' supported only on raw ATM");
8158		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8159		b1 = gen_atmfield_code(A_VCI, 1, BPF_JEQ, 0);
8160		gen_and(b0, b1);
8161		break;
8162
8163	case A_BCC:
8164		/* Get all packets in Broadcast Circuit*/
8165		if (!is_atm)
8166			bpf_error("'bcc' supported only on raw ATM");
8167		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8168		b1 = gen_atmfield_code(A_VCI, 2, BPF_JEQ, 0);
8169		gen_and(b0, b1);
8170		break;
8171
8172	case A_OAMF4SC:
8173		/* Get all cells in Segment OAM F4 circuit*/
8174		if (!is_atm)
8175			bpf_error("'oam4sc' supported only on raw ATM");
8176		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8177		b1 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
8178		gen_and(b0, b1);
8179		break;
8180
8181	case A_OAMF4EC:
8182		/* Get all cells in End-to-End OAM F4 Circuit*/
8183		if (!is_atm)
8184			bpf_error("'oam4ec' supported only on raw ATM");
8185		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8186		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
8187		gen_and(b0, b1);
8188		break;
8189
8190	case A_SC:
8191		/*  Get all packets in connection Signalling Circuit */
8192		if (!is_atm)
8193			bpf_error("'sc' supported only on raw ATM");
8194		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8195		b1 = gen_atmfield_code(A_VCI, 5, BPF_JEQ, 0);
8196		gen_and(b0, b1);
8197		break;
8198
8199	case A_ILMIC:
8200		/* Get all packets in ILMI Circuit */
8201		if (!is_atm)
8202			bpf_error("'ilmic' supported only on raw ATM");
8203		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8204		b1 = gen_atmfield_code(A_VCI, 16, BPF_JEQ, 0);
8205		gen_and(b0, b1);
8206		break;
8207
8208	case A_LANE:
8209		/* Get all LANE packets */
8210		if (!is_atm)
8211			bpf_error("'lane' supported only on raw ATM");
8212		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
8213
8214		/*
8215		 * Arrange that all subsequent tests assume LANE
8216		 * rather than LLC-encapsulated packets, and set
8217		 * the offsets appropriately for LANE-encapsulated
8218		 * Ethernet.
8219		 *
8220		 * "off_mac" is the offset of the Ethernet header,
8221		 * which is 2 bytes past the ATM pseudo-header
8222		 * (skipping the pseudo-header and 2-byte LE Client
8223		 * field).  The other offsets are Ethernet offsets
8224		 * relative to "off_mac".
8225		 */
8226		is_lane = 1;
8227		off_mac = off_payload + 2;	/* MAC header */
8228		off_linktype = off_mac + 12;
8229		off_macpl = off_mac + 14;	/* Ethernet */
8230		off_nl = 0;			/* Ethernet II */
8231		off_nl_nosnap = 3;		/* 802.3+802.2 */
8232		break;
8233
8234	case A_LLC:
8235		/* Get all LLC-encapsulated packets */
8236		if (!is_atm)
8237			bpf_error("'llc' supported only on raw ATM");
8238		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
8239		is_lane = 0;
8240		break;
8241
8242	default:
8243		abort();
8244	}
8245	return b1;
8246}
8247
8248/*
8249 * Filtering for MTP2 messages based on li value
8250 * FISU, length is null
8251 * LSSU, length is 1 or 2
8252 * MSU, length is 3 or more
8253 */
8254struct block *
8255gen_mtp2type_abbrev(type)
8256	int type;
8257{
8258	struct block *b0, *b1;
8259
8260	switch (type) {
8261
8262	case M_FISU:
8263		if ( (linktype != DLT_MTP2) &&
8264		     (linktype != DLT_ERF) &&
8265		     (linktype != DLT_MTP2_WITH_PHDR) )
8266			bpf_error("'fisu' supported only on MTP2");
8267		/* gen_ncmp(offrel, offset, size, mask, jtype, reverse, value) */
8268		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JEQ, 0, 0);
8269		break;
8270
8271	case M_LSSU:
8272		if ( (linktype != DLT_MTP2) &&
8273		     (linktype != DLT_ERF) &&
8274		     (linktype != DLT_MTP2_WITH_PHDR) )
8275			bpf_error("'lssu' supported only on MTP2");
8276		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 1, 2);
8277		b1 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 0);
8278		gen_and(b1, b0);
8279		break;
8280
8281	case M_MSU:
8282		if ( (linktype != DLT_MTP2) &&
8283		     (linktype != DLT_ERF) &&
8284		     (linktype != DLT_MTP2_WITH_PHDR) )
8285			bpf_error("'msu' supported only on MTP2");
8286		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 2);
8287		break;
8288
8289	default:
8290		abort();
8291	}
8292	return b0;
8293}
8294
8295struct block *
8296gen_mtp3field_code(mtp3field, jvalue, jtype, reverse)
8297	int mtp3field;
8298	bpf_u_int32 jvalue;
8299	bpf_u_int32 jtype;
8300	int reverse;
8301{
8302	struct block *b0;
8303	bpf_u_int32 val1 , val2 , val3;
8304
8305	switch (mtp3field) {
8306
8307	case M_SIO:
8308		if (off_sio == (u_int)-1)
8309			bpf_error("'sio' supported only on SS7");
8310		/* sio coded on 1 byte so max value 255 */
8311		if(jvalue > 255)
8312		        bpf_error("sio value %u too big; max value = 255",
8313		            jvalue);
8314		b0 = gen_ncmp(OR_PACKET, off_sio, BPF_B, 0xffffffff,
8315		    (u_int)jtype, reverse, (u_int)jvalue);
8316		break;
8317
8318        case M_OPC:
8319	        if (off_opc == (u_int)-1)
8320			bpf_error("'opc' supported only on SS7");
8321		/* opc coded on 14 bits so max value 16383 */
8322		if (jvalue > 16383)
8323		        bpf_error("opc value %u too big; max value = 16383",
8324		            jvalue);
8325		/* the following instructions are made to convert jvalue
8326		 * to the form used to write opc in an ss7 message*/
8327		val1 = jvalue & 0x00003c00;
8328		val1 = val1 >>10;
8329		val2 = jvalue & 0x000003fc;
8330		val2 = val2 <<6;
8331		val3 = jvalue & 0x00000003;
8332		val3 = val3 <<22;
8333		jvalue = val1 + val2 + val3;
8334		b0 = gen_ncmp(OR_PACKET, off_opc, BPF_W, 0x00c0ff0f,
8335		    (u_int)jtype, reverse, (u_int)jvalue);
8336		break;
8337
8338	case M_DPC:
8339	        if (off_dpc == (u_int)-1)
8340			bpf_error("'dpc' supported only on SS7");
8341		/* dpc coded on 14 bits so max value 16383 */
8342		if (jvalue > 16383)
8343		        bpf_error("dpc value %u too big; max value = 16383",
8344		            jvalue);
8345		/* the following instructions are made to convert jvalue
8346		 * to the forme used to write dpc in an ss7 message*/
8347		val1 = jvalue & 0x000000ff;
8348		val1 = val1 << 24;
8349		val2 = jvalue & 0x00003f00;
8350		val2 = val2 << 8;
8351		jvalue = val1 + val2;
8352		b0 = gen_ncmp(OR_PACKET, off_dpc, BPF_W, 0xff3f0000,
8353		    (u_int)jtype, reverse, (u_int)jvalue);
8354		break;
8355
8356	case M_SLS:
8357	        if (off_sls == (u_int)-1)
8358			bpf_error("'sls' supported only on SS7");
8359		/* sls coded on 4 bits so max value 15 */
8360		if (jvalue > 15)
8361		         bpf_error("sls value %u too big; max value = 15",
8362		             jvalue);
8363		/* the following instruction is made to convert jvalue
8364		 * to the forme used to write sls in an ss7 message*/
8365		jvalue = jvalue << 4;
8366		b0 = gen_ncmp(OR_PACKET, off_sls, BPF_B, 0xf0,
8367		    (u_int)jtype,reverse, (u_int)jvalue);
8368		break;
8369
8370	default:
8371		abort();
8372	}
8373	return b0;
8374}
8375
8376static struct block *
8377gen_msg_abbrev(type)
8378	int type;
8379{
8380	struct block *b1;
8381
8382	/*
8383	 * Q.2931 signalling protocol messages for handling virtual circuits
8384	 * establishment and teardown
8385	 */
8386	switch (type) {
8387
8388	case A_SETUP:
8389		b1 = gen_atmfield_code(A_MSGTYPE, SETUP, BPF_JEQ, 0);
8390		break;
8391
8392	case A_CALLPROCEED:
8393		b1 = gen_atmfield_code(A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
8394		break;
8395
8396	case A_CONNECT:
8397		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT, BPF_JEQ, 0);
8398		break;
8399
8400	case A_CONNECTACK:
8401		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
8402		break;
8403
8404	case A_RELEASE:
8405		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE, BPF_JEQ, 0);
8406		break;
8407
8408	case A_RELEASE_DONE:
8409		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
8410		break;
8411
8412	default:
8413		abort();
8414	}
8415	return b1;
8416}
8417
8418struct block *
8419gen_atmmulti_abbrev(type)
8420	int type;
8421{
8422	struct block *b0, *b1;
8423
8424	switch (type) {
8425
8426	case A_OAM:
8427		if (!is_atm)
8428			bpf_error("'oam' supported only on raw ATM");
8429		b1 = gen_atmmulti_abbrev(A_OAMF4);
8430		break;
8431
8432	case A_OAMF4:
8433		if (!is_atm)
8434			bpf_error("'oamf4' supported only on raw ATM");
8435		/* OAM F4 type */
8436		b0 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
8437		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
8438		gen_or(b0, b1);
8439		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8440		gen_and(b0, b1);
8441		break;
8442
8443	case A_CONNECTMSG:
8444		/*
8445		 * Get Q.2931 signalling messages for switched
8446		 * virtual connection
8447		 */
8448		if (!is_atm)
8449			bpf_error("'connectmsg' supported only on raw ATM");
8450		b0 = gen_msg_abbrev(A_SETUP);
8451		b1 = gen_msg_abbrev(A_CALLPROCEED);
8452		gen_or(b0, b1);
8453		b0 = gen_msg_abbrev(A_CONNECT);
8454		gen_or(b0, b1);
8455		b0 = gen_msg_abbrev(A_CONNECTACK);
8456		gen_or(b0, b1);
8457		b0 = gen_msg_abbrev(A_RELEASE);
8458		gen_or(b0, b1);
8459		b0 = gen_msg_abbrev(A_RELEASE_DONE);
8460		gen_or(b0, b1);
8461		b0 = gen_atmtype_abbrev(A_SC);
8462		gen_and(b0, b1);
8463		break;
8464
8465	case A_METACONNECT:
8466		if (!is_atm)
8467			bpf_error("'metaconnect' supported only on raw ATM");
8468		b0 = gen_msg_abbrev(A_SETUP);
8469		b1 = gen_msg_abbrev(A_CALLPROCEED);
8470		gen_or(b0, b1);
8471		b0 = gen_msg_abbrev(A_CONNECT);
8472		gen_or(b0, b1);
8473		b0 = gen_msg_abbrev(A_RELEASE);
8474		gen_or(b0, b1);
8475		b0 = gen_msg_abbrev(A_RELEASE_DONE);
8476		gen_or(b0, b1);
8477		b0 = gen_atmtype_abbrev(A_METAC);
8478		gen_and(b0, b1);
8479		break;
8480
8481	default:
8482		abort();
8483	}
8484	return b1;
8485}
8486