1/* Stream-based normalization of Unicode strings.
2   Copyright (C) 2009-2010 Free Software Foundation, Inc.
3   Written by Bruno Haible <bruno@clisp.org>, 2009.
4
5   This program is free software: you can redistribute it and/or modify it
6   under the terms of the GNU Lesser General Public License as published
7   by the Free Software Foundation; either version 3 of the License, or
8   (at your option) any later version.
9
10   This program is distributed in the hope that it will be useful,
11   but WITHOUT ANY WARRANTY; without even the implied warranty of
12   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13   Lesser General Public License for more details.
14
15   You should have received a copy of the GNU Lesser General Public License
16   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
17
18#include <config.h>
19
20/* Specification.  */
21#include "uninorm.h"
22
23#include <errno.h>
24#include <stddef.h>
25#include <stdlib.h>
26#include <string.h>
27
28#include "unictype.h"
29#include "normalize-internal.h"
30#include "decompose-internal.h"
31
32
33struct uninorm_filter
34{
35  /* Characteristics of the normalization form.  */
36  int (*decomposer) (ucs4_t uc, ucs4_t *decomposition);
37  ucs4_t (*composer) (ucs4_t uc1, ucs4_t uc2);
38
39  /* The encapsulated stream.  */
40  int (*stream_func) (void *stream_data, ucs4_t uc);
41  void *stream_data;
42
43  /* The buffer for sorting.  */
44  #define SORTBUF_PREALLOCATED 64
45  struct ucs4_with_ccc sortbuf_preallocated[2 * SORTBUF_PREALLOCATED];
46  struct ucs4_with_ccc *sortbuf; /* array of size 2 * sortbuf_allocated */
47  size_t sortbuf_allocated;
48  size_t sortbuf_count;
49};
50
51struct uninorm_filter *
52uninorm_filter_create (uninorm_t nf,
53                       int (*stream_func) (void *stream_data, ucs4_t uc),
54                       void *stream_data)
55{
56  struct uninorm_filter *filter =
57    (struct uninorm_filter *) malloc (sizeof (struct uninorm_filter));
58
59  if (filter == NULL)
60    /* errno is ENOMEM. */
61    return NULL;
62
63  filter->decomposer = nf->decomposer;
64  filter->composer = nf->composer;
65  filter->stream_func = stream_func;
66  filter->stream_data = stream_data;
67  filter->sortbuf = filter->sortbuf_preallocated;
68  filter->sortbuf_allocated = SORTBUF_PREALLOCATED;
69  filter->sortbuf_count = 0;
70
71  return filter;
72}
73
74int
75uninorm_filter_write (struct uninorm_filter *filter, ucs4_t uc_arg)
76{
77  ucs4_t decomposed[UC_DECOMPOSITION_MAX_LENGTH];
78  int decomposed_count;
79
80  /* Accept the next character.  */
81  decomposed[0] = uc_arg;
82  decomposed_count = 1;
83
84  /* Decompose it, recursively.
85     It would be possible to precompute the recursive decomposition
86     and store it in a table.  But this would significantly increase
87     the size of the decomposition tables, because for example for
88     U+1FC1 the recursive canonical decomposition and the recursive
89     compatibility decomposition are different.  */
90  {
91    int curr;
92
93    for (curr = 0; curr < decomposed_count; )
94      {
95        /* Invariant: decomposed[0..curr-1] is fully decomposed, i.e.
96           all elements are atomic.  */
97        ucs4_t curr_decomposed[UC_DECOMPOSITION_MAX_LENGTH];
98        int curr_decomposed_count;
99
100        curr_decomposed_count =
101          filter->decomposer (decomposed[curr], curr_decomposed);
102        if (curr_decomposed_count >= 0)
103          {
104            /* Move curr_decomposed[0..curr_decomposed_count-1] over
105               decomposed[curr], making room.  It's not worth using
106               memcpy() here, since the counts are so small.  */
107            int shift = curr_decomposed_count - 1;
108
109            if (shift < 0)
110              abort ();
111            if (shift > 0)
112              {
113                int j;
114
115                decomposed_count += shift;
116                if (decomposed_count > UC_DECOMPOSITION_MAX_LENGTH)
117                  abort ();
118                for (j = decomposed_count - 1 - shift; j > curr; j--)
119                  decomposed[j + shift] = decomposed[j];
120              }
121            for (; shift >= 0; shift--)
122              decomposed[curr + shift] = curr_decomposed[shift];
123          }
124        else
125          {
126            /* decomposed[curr] is atomic.  */
127            curr++;
128          }
129      }
130  }
131
132  {
133    /* Cache sortbuf and sortbuf_count in local register variables.  */
134    struct ucs4_with_ccc * const sortbuf = filter->sortbuf;
135    size_t sortbuf_count = filter->sortbuf_count;
136    int i;
137
138    for (i = 0; i < decomposed_count; i++)
139      {
140        /* Fetch the next character from the decomposition.  */
141        ucs4_t uc = decomposed[i];
142        int ccc = uc_combining_class (uc);
143
144        if (ccc == 0)
145          {
146            size_t j;
147
148            /* Apply the canonical ordering algorithm to the accumulated
149               sequence of characters.  */
150            if (sortbuf_count > 1)
151              gl_uninorm_decompose_merge_sort_inplace (sortbuf, sortbuf_count,
152                                                       sortbuf + sortbuf_count);
153
154            if (filter->composer != NULL)
155              {
156                /* Attempt to combine decomposed characters, as specified
157                   in the Unicode Standard Annex #15 "Unicode Normalization
158                   Forms".  We need to check
159                     1. whether the first accumulated character is a
160                        "starter" (i.e. has ccc = 0).  This is usually the
161                        case.  But when the string starts with a
162                        non-starter, the sortbuf also starts with a
163                        non-starter.  Btw, this check could also be
164                        omitted, because the composition table has only
165                        entries (code1, code2) for which code1 is a
166                        starter; if the first accumulated character is not
167                        a starter, no lookup will succeed.
168                     2. If the sortbuf has more than one character, check
169                        for each of these characters that are not "blocked"
170                        from the starter (i.e. have a ccc that is higher
171                        than the ccc of the previous character) whether it
172                        can be combined with the first character.
173                     3. If only one character is left in sortbuf, check
174                        whether it can be combined with the next character
175                        (also a starter).  */
176                if (sortbuf_count > 0 && sortbuf[0].ccc == 0)
177                  {
178                    for (j = 1; j < sortbuf_count; )
179                      {
180                        if (sortbuf[j].ccc > sortbuf[j - 1].ccc)
181                          {
182                            ucs4_t combined =
183                              filter->composer (sortbuf[0].code, sortbuf[j].code);
184                            if (combined)
185                              {
186                                size_t k;
187
188                                sortbuf[0].code = combined;
189                                /* sortbuf[0].ccc = 0, still valid.  */
190                                for (k = j + 1; k < sortbuf_count; k++)
191                                  sortbuf[k - 1] = sortbuf[k];
192                                sortbuf_count--;
193                                continue;
194                              }
195                          }
196                        j++;
197                      }
198                    if (sortbuf_count == 1)
199                      {
200                        ucs4_t combined =
201                          filter->composer (sortbuf[0].code, uc);
202                        if (combined)
203                          {
204                            uc = combined;
205                            ccc = 0;
206                            /* uc could be further combined with subsequent
207                               characters.  So don't put it into sortbuf[0] in
208                               this round, only in the next round.  */
209                            sortbuf_count = 0;
210                          }
211                      }
212                  }
213              }
214
215            for (j = 0; j < sortbuf_count; j++)
216              {
217                ucs4_t muc = sortbuf[j].code;
218
219                /* Output muc to the encapsulated stream.  */
220                int ret = filter->stream_func (filter->stream_data, muc);
221                if (ret < 0)
222                  {
223                    /* errno is set here.  */
224                    filter->sortbuf_count = 0;
225                    return -1;
226                  }
227              }
228
229            /* sortbuf is now empty.  */
230            sortbuf_count = 0;
231          }
232
233        /* Append (uc, ccc) to sortbuf.  */
234        if (sortbuf_count == filter->sortbuf_allocated)
235          {
236            struct ucs4_with_ccc *new_sortbuf;
237
238            filter->sortbuf_allocated = 2 * filter->sortbuf_allocated;
239            if (filter->sortbuf_allocated < sortbuf_count) /* integer overflow? */
240              abort ();
241            new_sortbuf =
242              (struct ucs4_with_ccc *)
243              malloc (2 * filter->sortbuf_allocated * sizeof (struct ucs4_with_ccc));
244            memcpy (new_sortbuf, filter->sortbuf,
245                    sortbuf_count * sizeof (struct ucs4_with_ccc));
246            if (filter->sortbuf != filter->sortbuf_preallocated)
247              free (filter->sortbuf);
248            filter->sortbuf = new_sortbuf;
249          }
250        filter->sortbuf[sortbuf_count].code = uc;
251        filter->sortbuf[sortbuf_count].ccc = ccc;
252        sortbuf_count++;
253      }
254
255    filter->sortbuf_count = sortbuf_count;
256  }
257
258  return 0;
259}
260
261/* Bring data buffered in the filter to its destination, the encapsulated
262   stream.
263   Return 0 if successful, or -1 with errno set upon failure.
264   Note! If after calling this function, additional characters are written
265   into the filter, the resulting character sequence in the encapsulated stream
266   will not necessarily be normalized.  */
267int
268uninorm_filter_flush (struct uninorm_filter *filter)
269{
270  /* Cache sortbuf and sortbuf_count in local register variables.  */
271  struct ucs4_with_ccc * const sortbuf = filter->sortbuf;
272  size_t sortbuf_count = filter->sortbuf_count;
273  size_t j;
274
275  /* Apply the canonical ordering algorithm to the accumulated
276     sequence of characters.  */
277  if (sortbuf_count > 1)
278    gl_uninorm_decompose_merge_sort_inplace (sortbuf, sortbuf_count,
279                                             sortbuf + sortbuf_count);
280
281  if (filter->composer != NULL)
282    {
283      /* Attempt to combine decomposed characters, as specified
284         in the Unicode Standard Annex #15 "Unicode Normalization
285         Forms".  We need to check
286           1. whether the first accumulated character is a
287              "starter" (i.e. has ccc = 0).  This is usually the
288              case.  But when the string starts with a
289              non-starter, the sortbuf also starts with a
290              non-starter.  Btw, this check could also be
291              omitted, because the composition table has only
292              entries (code1, code2) for which code1 is a
293              starter; if the first accumulated character is not
294              a starter, no lookup will succeed.
295           2. If the sortbuf has more than one character, check
296              for each of these characters that are not "blocked"
297              from the starter (i.e. have a ccc that is higher
298              than the ccc of the previous character) whether it
299              can be combined with the first character.
300           3. If only one character is left in sortbuf, check
301              whether it can be combined with the next character
302              (also a starter).  */
303      if (sortbuf_count > 0 && sortbuf[0].ccc == 0)
304        {
305          for (j = 1; j < sortbuf_count; )
306            {
307              if (sortbuf[j].ccc > sortbuf[j - 1].ccc)
308                {
309                  ucs4_t combined =
310                    filter->composer (sortbuf[0].code, sortbuf[j].code);
311                  if (combined)
312                    {
313                      size_t k;
314
315                      sortbuf[0].code = combined;
316                      /* sortbuf[0].ccc = 0, still valid.  */
317                      for (k = j + 1; k < sortbuf_count; k++)
318                        sortbuf[k - 1] = sortbuf[k];
319                      sortbuf_count--;
320                      continue;
321                    }
322                }
323              j++;
324            }
325        }
326    }
327
328  for (j = 0; j < sortbuf_count; j++)
329    {
330      ucs4_t muc = sortbuf[j].code;
331
332      /* Output muc to the encapsulated stream.  */
333      int ret = filter->stream_func (filter->stream_data, muc);
334      if (ret < 0)
335        {
336          /* errno is set here.  */
337          filter->sortbuf_count = 0;
338          return -1;
339        }
340    }
341
342  /* sortbuf is now empty.  */
343  filter->sortbuf_count = 0;
344
345  return 0;
346}
347
348/* Bring data buffered in the filter to its destination, the encapsulated
349   stream, then close and free the filter.
350   Return 0 if successful, or -1 with errno set upon failure.  */
351int
352uninorm_filter_free (struct uninorm_filter *filter)
353{
354  int ret = uninorm_filter_flush (filter);
355
356  if (ret < 0)
357    /* errno is set here.  */
358    return -1;
359
360  if (filter->sortbuf_count > 0)
361    abort ();
362  if (filter->sortbuf != filter->sortbuf_preallocated)
363    free (filter->sortbuf);
364  free (filter);
365
366  return 0;
367}
368