1/*
2 * Copyright (C) 2003-2004 the ffmpeg project
3 *
4 * This file is part of Libav.
5 *
6 * Libav is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * Libav is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with Libav; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21/**
22 * @file
23 * On2 VP3 Video Decoder
24 *
25 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
26 * For more information about the VP3 coding process, visit:
27 *   http://wiki.multimedia.cx/index.php?title=On2_VP3
28 *
29 * Theora decoder by Alex Beregszaszi
30 */
31
32#include <stdio.h>
33#include <stdlib.h>
34#include <string.h>
35
36#include "libavutil/imgutils.h"
37#include "avcodec.h"
38#include "internal.h"
39#include "dsputil.h"
40#include "get_bits.h"
41
42#include "vp3data.h"
43#include "xiph.h"
44#include "thread.h"
45
46#define FRAGMENT_PIXELS 8
47
48//FIXME split things out into their own arrays
49typedef struct Vp3Fragment {
50    int16_t dc;
51    uint8_t coding_method;
52    uint8_t qpi;
53} Vp3Fragment;
54
55#define SB_NOT_CODED        0
56#define SB_PARTIALLY_CODED  1
57#define SB_FULLY_CODED      2
58
59// This is the maximum length of a single long bit run that can be encoded
60// for superblock coding or block qps. Theora special-cases this to read a
61// bit instead of flipping the current bit to allow for runs longer than 4129.
62#define MAXIMUM_LONG_BIT_RUN 4129
63
64#define MODE_INTER_NO_MV      0
65#define MODE_INTRA            1
66#define MODE_INTER_PLUS_MV    2
67#define MODE_INTER_LAST_MV    3
68#define MODE_INTER_PRIOR_LAST 4
69#define MODE_USING_GOLDEN     5
70#define MODE_GOLDEN_MV        6
71#define MODE_INTER_FOURMV     7
72#define CODING_MODE_COUNT     8
73
74/* special internal mode */
75#define MODE_COPY             8
76
77/* There are 6 preset schemes, plus a free-form scheme */
78static const int ModeAlphabet[6][CODING_MODE_COUNT] =
79{
80    /* scheme 1: Last motion vector dominates */
81    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
82         MODE_INTER_PLUS_MV,    MODE_INTER_NO_MV,
83         MODE_INTRA,            MODE_USING_GOLDEN,
84         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
85
86    /* scheme 2 */
87    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
88         MODE_INTER_NO_MV,      MODE_INTER_PLUS_MV,
89         MODE_INTRA,            MODE_USING_GOLDEN,
90         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
91
92    /* scheme 3 */
93    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
94         MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
95         MODE_INTRA,            MODE_USING_GOLDEN,
96         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
97
98    /* scheme 4 */
99    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
100         MODE_INTER_NO_MV,      MODE_INTER_PRIOR_LAST,
101         MODE_INTRA,            MODE_USING_GOLDEN,
102         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
103
104    /* scheme 5: No motion vector dominates */
105    {    MODE_INTER_NO_MV,      MODE_INTER_LAST_MV,
106         MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
107         MODE_INTRA,            MODE_USING_GOLDEN,
108         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
109
110    /* scheme 6 */
111    {    MODE_INTER_NO_MV,      MODE_USING_GOLDEN,
112         MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
113         MODE_INTER_PLUS_MV,    MODE_INTRA,
114         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
115
116};
117
118static const uint8_t hilbert_offset[16][2] = {
119    {0,0}, {1,0}, {1,1}, {0,1},
120    {0,2}, {0,3}, {1,3}, {1,2},
121    {2,2}, {2,3}, {3,3}, {3,2},
122    {3,1}, {2,1}, {2,0}, {3,0}
123};
124
125#define MIN_DEQUANT_VAL 2
126
127typedef struct Vp3DecodeContext {
128    AVCodecContext *avctx;
129    int theora, theora_tables;
130    int version;
131    int width, height;
132    int chroma_x_shift, chroma_y_shift;
133    AVFrame golden_frame;
134    AVFrame last_frame;
135    AVFrame current_frame;
136    int keyframe;
137    DSPContext dsp;
138    int flipped_image;
139    int last_slice_end;
140    int skip_loop_filter;
141
142    int qps[3];
143    int nqps;
144    int last_qps[3];
145
146    int superblock_count;
147    int y_superblock_width;
148    int y_superblock_height;
149    int y_superblock_count;
150    int c_superblock_width;
151    int c_superblock_height;
152    int c_superblock_count;
153    int u_superblock_start;
154    int v_superblock_start;
155    unsigned char *superblock_coding;
156
157    int macroblock_count;
158    int macroblock_width;
159    int macroblock_height;
160
161    int fragment_count;
162    int fragment_width[2];
163    int fragment_height[2];
164
165    Vp3Fragment *all_fragments;
166    int fragment_start[3];
167    int data_offset[3];
168
169    int8_t (*motion_val[2])[2];
170
171    ScanTable scantable;
172
173    /* tables */
174    uint16_t coded_dc_scale_factor[64];
175    uint32_t coded_ac_scale_factor[64];
176    uint8_t base_matrix[384][64];
177    uint8_t qr_count[2][3];
178    uint8_t qr_size [2][3][64];
179    uint16_t qr_base[2][3][64];
180
181    /**
182     * This is a list of all tokens in bitstream order. Reordering takes place
183     * by pulling from each level during IDCT. As a consequence, IDCT must be
184     * in Hilbert order, making the minimum slice height 64 for 4:2:0 and 32
185     * otherwise. The 32 different tokens with up to 12 bits of extradata are
186     * collapsed into 3 types, packed as follows:
187     *   (from the low to high bits)
188     *
189     * 2 bits: type (0,1,2)
190     *   0: EOB run, 14 bits for run length (12 needed)
191     *   1: zero run, 7 bits for run length
192     *                7 bits for the next coefficient (3 needed)
193     *   2: coefficient, 14 bits (11 needed)
194     *
195     * Coefficients are signed, so are packed in the highest bits for automatic
196     * sign extension.
197     */
198    int16_t *dct_tokens[3][64];
199    int16_t *dct_tokens_base;
200#define TOKEN_EOB(eob_run)              ((eob_run) << 2)
201#define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) << 9) + ((zero_run) << 2) + 1)
202#define TOKEN_COEFF(coeff)              (((coeff) << 2) + 2)
203
204    /**
205     * number of blocks that contain DCT coefficients at the given level or higher
206     */
207    int num_coded_frags[3][64];
208    int total_num_coded_frags;
209
210    /* this is a list of indexes into the all_fragments array indicating
211     * which of the fragments are coded */
212    int *coded_fragment_list[3];
213
214    VLC dc_vlc[16];
215    VLC ac_vlc_1[16];
216    VLC ac_vlc_2[16];
217    VLC ac_vlc_3[16];
218    VLC ac_vlc_4[16];
219
220    VLC superblock_run_length_vlc;
221    VLC fragment_run_length_vlc;
222    VLC mode_code_vlc;
223    VLC motion_vector_vlc;
224
225    /* these arrays need to be on 16-byte boundaries since SSE2 operations
226     * index into them */
227    DECLARE_ALIGNED(16, int16_t, qmat)[3][2][3][64];     ///< qmat[qpi][is_inter][plane]
228
229    /* This table contains superblock_count * 16 entries. Each set of 16
230     * numbers corresponds to the fragment indexes 0..15 of the superblock.
231     * An entry will be -1 to indicate that no entry corresponds to that
232     * index. */
233    int *superblock_fragments;
234
235    /* This is an array that indicates how a particular macroblock
236     * is coded. */
237    unsigned char *macroblock_coding;
238
239    uint8_t *edge_emu_buffer;
240
241    /* Huffman decode */
242    int hti;
243    unsigned int hbits;
244    int entries;
245    int huff_code_size;
246    uint32_t huffman_table[80][32][2];
247
248    uint8_t filter_limit_values[64];
249    DECLARE_ALIGNED(8, int, bounding_values_array)[256+2];
250} Vp3DecodeContext;
251
252/************************************************************************
253 * VP3 specific functions
254 ************************************************************************/
255
256static void vp3_decode_flush(AVCodecContext *avctx)
257{
258    Vp3DecodeContext *s = avctx->priv_data;
259
260    if (s->golden_frame.data[0]) {
261        if (s->golden_frame.data[0] == s->last_frame.data[0])
262            memset(&s->last_frame, 0, sizeof(AVFrame));
263        if (s->current_frame.data[0] == s->golden_frame.data[0])
264            memset(&s->current_frame, 0, sizeof(AVFrame));
265        ff_thread_release_buffer(avctx, &s->golden_frame);
266    }
267    if (s->last_frame.data[0]) {
268        if (s->current_frame.data[0] == s->last_frame.data[0])
269            memset(&s->current_frame, 0, sizeof(AVFrame));
270        ff_thread_release_buffer(avctx, &s->last_frame);
271    }
272    if (s->current_frame.data[0])
273        ff_thread_release_buffer(avctx, &s->current_frame);
274}
275
276static av_cold int vp3_decode_end(AVCodecContext *avctx)
277{
278    Vp3DecodeContext *s = avctx->priv_data;
279    int i;
280
281    av_free(s->superblock_coding);
282    av_free(s->all_fragments);
283    av_free(s->coded_fragment_list[0]);
284    av_free(s->dct_tokens_base);
285    av_free(s->superblock_fragments);
286    av_free(s->macroblock_coding);
287    av_free(s->motion_val[0]);
288    av_free(s->motion_val[1]);
289    av_free(s->edge_emu_buffer);
290
291    if (avctx->internal->is_copy)
292        return 0;
293
294    for (i = 0; i < 16; i++) {
295        ff_free_vlc(&s->dc_vlc[i]);
296        ff_free_vlc(&s->ac_vlc_1[i]);
297        ff_free_vlc(&s->ac_vlc_2[i]);
298        ff_free_vlc(&s->ac_vlc_3[i]);
299        ff_free_vlc(&s->ac_vlc_4[i]);
300    }
301
302    ff_free_vlc(&s->superblock_run_length_vlc);
303    ff_free_vlc(&s->fragment_run_length_vlc);
304    ff_free_vlc(&s->mode_code_vlc);
305    ff_free_vlc(&s->motion_vector_vlc);
306
307    /* release all frames */
308    vp3_decode_flush(avctx);
309
310    return 0;
311}
312
313/*
314 * This function sets up all of the various blocks mappings:
315 * superblocks <-> fragments, macroblocks <-> fragments,
316 * superblocks <-> macroblocks
317 *
318 * @return 0 is successful; returns 1 if *anything* went wrong.
319 */
320static int init_block_mapping(Vp3DecodeContext *s)
321{
322    int sb_x, sb_y, plane;
323    int x, y, i, j = 0;
324
325    for (plane = 0; plane < 3; plane++) {
326        int sb_width    = plane ? s->c_superblock_width  : s->y_superblock_width;
327        int sb_height   = plane ? s->c_superblock_height : s->y_superblock_height;
328        int frag_width  = s->fragment_width[!!plane];
329        int frag_height = s->fragment_height[!!plane];
330
331        for (sb_y = 0; sb_y < sb_height; sb_y++)
332            for (sb_x = 0; sb_x < sb_width; sb_x++)
333                for (i = 0; i < 16; i++) {
334                    x = 4*sb_x + hilbert_offset[i][0];
335                    y = 4*sb_y + hilbert_offset[i][1];
336
337                    if (x < frag_width && y < frag_height)
338                        s->superblock_fragments[j++] = s->fragment_start[plane] + y*frag_width + x;
339                    else
340                        s->superblock_fragments[j++] = -1;
341                }
342    }
343
344    return 0;  /* successful path out */
345}
346
347/*
348 * This function sets up the dequantization tables used for a particular
349 * frame.
350 */
351static void init_dequantizer(Vp3DecodeContext *s, int qpi)
352{
353    int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
354    int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]];
355    int i, plane, inter, qri, bmi, bmj, qistart;
356
357    for(inter=0; inter<2; inter++){
358        for(plane=0; plane<3; plane++){
359            int sum=0;
360            for(qri=0; qri<s->qr_count[inter][plane]; qri++){
361                sum+= s->qr_size[inter][plane][qri];
362                if(s->qps[qpi] <= sum)
363                    break;
364            }
365            qistart= sum - s->qr_size[inter][plane][qri];
366            bmi= s->qr_base[inter][plane][qri  ];
367            bmj= s->qr_base[inter][plane][qri+1];
368            for(i=0; i<64; i++){
369                int coeff= (  2*(sum    -s->qps[qpi])*s->base_matrix[bmi][i]
370                            - 2*(qistart-s->qps[qpi])*s->base_matrix[bmj][i]
371                            + s->qr_size[inter][plane][qri])
372                           / (2*s->qr_size[inter][plane][qri]);
373
374                int qmin= 8<<(inter + !i);
375                int qscale= i ? ac_scale_factor : dc_scale_factor;
376
377                s->qmat[qpi][inter][plane][s->dsp.idct_permutation[i]]= av_clip((qscale * coeff)/100 * 4, qmin, 4096);
378            }
379            // all DC coefficients use the same quant so as not to interfere with DC prediction
380            s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
381        }
382    }
383}
384
385/*
386 * This function initializes the loop filter boundary limits if the frame's
387 * quality index is different from the previous frame's.
388 *
389 * The filter_limit_values may not be larger than 127.
390 */
391static void init_loop_filter(Vp3DecodeContext *s)
392{
393    int *bounding_values= s->bounding_values_array+127;
394    int filter_limit;
395    int x;
396    int value;
397
398    filter_limit = s->filter_limit_values[s->qps[0]];
399
400    /* set up the bounding values */
401    memset(s->bounding_values_array, 0, 256 * sizeof(int));
402    for (x = 0; x < filter_limit; x++) {
403        bounding_values[-x] = -x;
404        bounding_values[x] = x;
405    }
406    for (x = value = filter_limit; x < 128 && value; x++, value--) {
407        bounding_values[ x] =  value;
408        bounding_values[-x] = -value;
409    }
410    if (value)
411        bounding_values[128] = value;
412    bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
413}
414
415/*
416 * This function unpacks all of the superblock/macroblock/fragment coding
417 * information from the bitstream.
418 */
419static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
420{
421    int superblock_starts[3] = { 0, s->u_superblock_start, s->v_superblock_start };
422    int bit = 0;
423    int current_superblock = 0;
424    int current_run = 0;
425    int num_partial_superblocks = 0;
426
427    int i, j;
428    int current_fragment;
429    int plane;
430
431    if (s->keyframe) {
432        memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
433
434    } else {
435
436        /* unpack the list of partially-coded superblocks */
437        bit = get_bits1(gb) ^ 1;
438        current_run = 0;
439
440        while (current_superblock < s->superblock_count && get_bits_left(gb) > 0) {
441            if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
442                bit = get_bits1(gb);
443            else
444                bit ^= 1;
445
446                current_run = get_vlc2(gb,
447                    s->superblock_run_length_vlc.table, 6, 2) + 1;
448                if (current_run == 34)
449                    current_run += get_bits(gb, 12);
450
451            if (current_superblock + current_run > s->superblock_count) {
452                av_log(s->avctx, AV_LOG_ERROR, "Invalid partially coded superblock run length\n");
453                return -1;
454            }
455
456            memset(s->superblock_coding + current_superblock, bit, current_run);
457
458            current_superblock += current_run;
459            if (bit)
460                num_partial_superblocks += current_run;
461        }
462
463        /* unpack the list of fully coded superblocks if any of the blocks were
464         * not marked as partially coded in the previous step */
465        if (num_partial_superblocks < s->superblock_count) {
466            int superblocks_decoded = 0;
467
468            current_superblock = 0;
469            bit = get_bits1(gb) ^ 1;
470            current_run = 0;
471
472            while (superblocks_decoded < s->superblock_count - num_partial_superblocks
473                   && get_bits_left(gb) > 0) {
474
475                if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
476                    bit = get_bits1(gb);
477                else
478                    bit ^= 1;
479
480                        current_run = get_vlc2(gb,
481                            s->superblock_run_length_vlc.table, 6, 2) + 1;
482                        if (current_run == 34)
483                            current_run += get_bits(gb, 12);
484
485                for (j = 0; j < current_run; current_superblock++) {
486                    if (current_superblock >= s->superblock_count) {
487                        av_log(s->avctx, AV_LOG_ERROR, "Invalid fully coded superblock run length\n");
488                        return -1;
489                    }
490
491                /* skip any superblocks already marked as partially coded */
492                if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
493                    s->superblock_coding[current_superblock] = 2*bit;
494                    j++;
495                }
496                }
497                superblocks_decoded += current_run;
498            }
499        }
500
501        /* if there were partial blocks, initialize bitstream for
502         * unpacking fragment codings */
503        if (num_partial_superblocks) {
504
505            current_run = 0;
506            bit = get_bits1(gb);
507            /* toggle the bit because as soon as the first run length is
508             * fetched the bit will be toggled again */
509            bit ^= 1;
510        }
511    }
512
513    /* figure out which fragments are coded; iterate through each
514     * superblock (all planes) */
515    s->total_num_coded_frags = 0;
516    memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
517
518    for (plane = 0; plane < 3; plane++) {
519        int sb_start = superblock_starts[plane];
520        int sb_end = sb_start + (plane ? s->c_superblock_count : s->y_superblock_count);
521        int num_coded_frags = 0;
522
523    for (i = sb_start; i < sb_end && get_bits_left(gb) > 0; i++) {
524
525        /* iterate through all 16 fragments in a superblock */
526        for (j = 0; j < 16; j++) {
527
528            /* if the fragment is in bounds, check its coding status */
529            current_fragment = s->superblock_fragments[i * 16 + j];
530            if (current_fragment != -1) {
531                int coded = s->superblock_coding[i];
532
533                if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
534
535                    /* fragment may or may not be coded; this is the case
536                     * that cares about the fragment coding runs */
537                    if (current_run-- == 0) {
538                        bit ^= 1;
539                        current_run = get_vlc2(gb,
540                            s->fragment_run_length_vlc.table, 5, 2);
541                    }
542                    coded = bit;
543                }
544
545                    if (coded) {
546                        /* default mode; actual mode will be decoded in
547                         * the next phase */
548                        s->all_fragments[current_fragment].coding_method =
549                            MODE_INTER_NO_MV;
550                        s->coded_fragment_list[plane][num_coded_frags++] =
551                            current_fragment;
552                    } else {
553                        /* not coded; copy this fragment from the prior frame */
554                        s->all_fragments[current_fragment].coding_method =
555                            MODE_COPY;
556                    }
557            }
558        }
559    }
560        s->total_num_coded_frags += num_coded_frags;
561        for (i = 0; i < 64; i++)
562            s->num_coded_frags[plane][i] = num_coded_frags;
563        if (plane < 2)
564            s->coded_fragment_list[plane+1] = s->coded_fragment_list[plane] + num_coded_frags;
565    }
566    return 0;
567}
568
569/*
570 * This function unpacks all the coding mode data for individual macroblocks
571 * from the bitstream.
572 */
573static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
574{
575    int i, j, k, sb_x, sb_y;
576    int scheme;
577    int current_macroblock;
578    int current_fragment;
579    int coding_mode;
580    int custom_mode_alphabet[CODING_MODE_COUNT];
581    const int *alphabet;
582    Vp3Fragment *frag;
583
584    if (s->keyframe) {
585        for (i = 0; i < s->fragment_count; i++)
586            s->all_fragments[i].coding_method = MODE_INTRA;
587
588    } else {
589
590        /* fetch the mode coding scheme for this frame */
591        scheme = get_bits(gb, 3);
592
593        /* is it a custom coding scheme? */
594        if (scheme == 0) {
595            for (i = 0; i < 8; i++)
596                custom_mode_alphabet[i] = MODE_INTER_NO_MV;
597            for (i = 0; i < 8; i++)
598                custom_mode_alphabet[get_bits(gb, 3)] = i;
599            alphabet = custom_mode_alphabet;
600        } else
601            alphabet = ModeAlphabet[scheme-1];
602
603        /* iterate through all of the macroblocks that contain 1 or more
604         * coded fragments */
605        for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
606            for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
607                if (get_bits_left(gb) <= 0)
608                    return -1;
609
610            for (j = 0; j < 4; j++) {
611                int mb_x = 2*sb_x +   (j>>1);
612                int mb_y = 2*sb_y + (((j>>1)+j)&1);
613                current_macroblock = mb_y * s->macroblock_width + mb_x;
614
615                if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height)
616                    continue;
617
618#define BLOCK_X (2*mb_x + (k&1))
619#define BLOCK_Y (2*mb_y + (k>>1))
620                /* coding modes are only stored if the macroblock has at least one
621                 * luma block coded, otherwise it must be INTER_NO_MV */
622                for (k = 0; k < 4; k++) {
623                    current_fragment = BLOCK_Y*s->fragment_width[0] + BLOCK_X;
624                    if (s->all_fragments[current_fragment].coding_method != MODE_COPY)
625                        break;
626                }
627                if (k == 4) {
628                    s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV;
629                    continue;
630                }
631
632                /* mode 7 means get 3 bits for each coding mode */
633                if (scheme == 7)
634                    coding_mode = get_bits(gb, 3);
635                else
636                    coding_mode = alphabet
637                        [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
638
639                s->macroblock_coding[current_macroblock] = coding_mode;
640                for (k = 0; k < 4; k++) {
641                    frag = s->all_fragments + BLOCK_Y*s->fragment_width[0] + BLOCK_X;
642                    if (frag->coding_method != MODE_COPY)
643                        frag->coding_method = coding_mode;
644                }
645
646#define SET_CHROMA_MODES \
647    if (frag[s->fragment_start[1]].coding_method != MODE_COPY) \
648        frag[s->fragment_start[1]].coding_method = coding_mode;\
649    if (frag[s->fragment_start[2]].coding_method != MODE_COPY) \
650        frag[s->fragment_start[2]].coding_method = coding_mode;
651
652                if (s->chroma_y_shift) {
653                    frag = s->all_fragments + mb_y*s->fragment_width[1] + mb_x;
654                    SET_CHROMA_MODES
655                } else if (s->chroma_x_shift) {
656                    frag = s->all_fragments + 2*mb_y*s->fragment_width[1] + mb_x;
657                    for (k = 0; k < 2; k++) {
658                        SET_CHROMA_MODES
659                        frag += s->fragment_width[1];
660                    }
661                } else {
662                    for (k = 0; k < 4; k++) {
663                        frag = s->all_fragments + BLOCK_Y*s->fragment_width[1] + BLOCK_X;
664                        SET_CHROMA_MODES
665                    }
666                }
667            }
668            }
669        }
670    }
671
672    return 0;
673}
674
675/*
676 * This function unpacks all the motion vectors for the individual
677 * macroblocks from the bitstream.
678 */
679static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
680{
681    int j, k, sb_x, sb_y;
682    int coding_mode;
683    int motion_x[4];
684    int motion_y[4];
685    int last_motion_x = 0;
686    int last_motion_y = 0;
687    int prior_last_motion_x = 0;
688    int prior_last_motion_y = 0;
689    int current_macroblock;
690    int current_fragment;
691    int frag;
692
693    if (s->keyframe)
694        return 0;
695
696    /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
697    coding_mode = get_bits1(gb);
698
699    /* iterate through all of the macroblocks that contain 1 or more
700     * coded fragments */
701    for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
702        for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
703            if (get_bits_left(gb) <= 0)
704                return -1;
705
706        for (j = 0; j < 4; j++) {
707            int mb_x = 2*sb_x +   (j>>1);
708            int mb_y = 2*sb_y + (((j>>1)+j)&1);
709            current_macroblock = mb_y * s->macroblock_width + mb_x;
710
711            if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height ||
712                (s->macroblock_coding[current_macroblock] == MODE_COPY))
713                continue;
714
715            switch (s->macroblock_coding[current_macroblock]) {
716
717            case MODE_INTER_PLUS_MV:
718            case MODE_GOLDEN_MV:
719                /* all 6 fragments use the same motion vector */
720                if (coding_mode == 0) {
721                    motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
722                    motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
723                } else {
724                    motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
725                    motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
726                }
727
728                /* vector maintenance, only on MODE_INTER_PLUS_MV */
729                if (s->macroblock_coding[current_macroblock] ==
730                    MODE_INTER_PLUS_MV) {
731                    prior_last_motion_x = last_motion_x;
732                    prior_last_motion_y = last_motion_y;
733                    last_motion_x = motion_x[0];
734                    last_motion_y = motion_y[0];
735                }
736                break;
737
738            case MODE_INTER_FOURMV:
739                /* vector maintenance */
740                prior_last_motion_x = last_motion_x;
741                prior_last_motion_y = last_motion_y;
742
743                /* fetch 4 vectors from the bitstream, one for each
744                 * Y fragment, then average for the C fragment vectors */
745                for (k = 0; k < 4; k++) {
746                    current_fragment = BLOCK_Y*s->fragment_width[0] + BLOCK_X;
747                    if (s->all_fragments[current_fragment].coding_method != MODE_COPY) {
748                        if (coding_mode == 0) {
749                            motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
750                            motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
751                        } else {
752                            motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
753                            motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
754                        }
755                        last_motion_x = motion_x[k];
756                        last_motion_y = motion_y[k];
757                    } else {
758                        motion_x[k] = 0;
759                        motion_y[k] = 0;
760                    }
761                }
762                break;
763
764            case MODE_INTER_LAST_MV:
765                /* all 6 fragments use the last motion vector */
766                motion_x[0] = last_motion_x;
767                motion_y[0] = last_motion_y;
768
769                /* no vector maintenance (last vector remains the
770                 * last vector) */
771                break;
772
773            case MODE_INTER_PRIOR_LAST:
774                /* all 6 fragments use the motion vector prior to the
775                 * last motion vector */
776                motion_x[0] = prior_last_motion_x;
777                motion_y[0] = prior_last_motion_y;
778
779                /* vector maintenance */
780                prior_last_motion_x = last_motion_x;
781                prior_last_motion_y = last_motion_y;
782                last_motion_x = motion_x[0];
783                last_motion_y = motion_y[0];
784                break;
785
786            default:
787                /* covers intra, inter without MV, golden without MV */
788                motion_x[0] = 0;
789                motion_y[0] = 0;
790
791                /* no vector maintenance */
792                break;
793            }
794
795            /* assign the motion vectors to the correct fragments */
796            for (k = 0; k < 4; k++) {
797                current_fragment =
798                    BLOCK_Y*s->fragment_width[0] + BLOCK_X;
799                if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
800                    s->motion_val[0][current_fragment][0] = motion_x[k];
801                    s->motion_val[0][current_fragment][1] = motion_y[k];
802                } else {
803                    s->motion_val[0][current_fragment][0] = motion_x[0];
804                    s->motion_val[0][current_fragment][1] = motion_y[0];
805                }
806            }
807
808            if (s->chroma_y_shift) {
809                if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
810                    motion_x[0] = RSHIFT(motion_x[0] + motion_x[1] + motion_x[2] + motion_x[3], 2);
811                    motion_y[0] = RSHIFT(motion_y[0] + motion_y[1] + motion_y[2] + motion_y[3], 2);
812                }
813                motion_x[0] = (motion_x[0]>>1) | (motion_x[0]&1);
814                motion_y[0] = (motion_y[0]>>1) | (motion_y[0]&1);
815                frag = mb_y*s->fragment_width[1] + mb_x;
816                s->motion_val[1][frag][0] = motion_x[0];
817                s->motion_val[1][frag][1] = motion_y[0];
818            } else if (s->chroma_x_shift) {
819                if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
820                    motion_x[0] = RSHIFT(motion_x[0] + motion_x[1], 1);
821                    motion_y[0] = RSHIFT(motion_y[0] + motion_y[1], 1);
822                    motion_x[1] = RSHIFT(motion_x[2] + motion_x[3], 1);
823                    motion_y[1] = RSHIFT(motion_y[2] + motion_y[3], 1);
824                } else {
825                    motion_x[1] = motion_x[0];
826                    motion_y[1] = motion_y[0];
827                }
828                motion_x[0] = (motion_x[0]>>1) | (motion_x[0]&1);
829                motion_x[1] = (motion_x[1]>>1) | (motion_x[1]&1);
830
831                frag = 2*mb_y*s->fragment_width[1] + mb_x;
832                for (k = 0; k < 2; k++) {
833                    s->motion_val[1][frag][0] = motion_x[k];
834                    s->motion_val[1][frag][1] = motion_y[k];
835                    frag += s->fragment_width[1];
836                }
837            } else {
838                for (k = 0; k < 4; k++) {
839                    frag = BLOCK_Y*s->fragment_width[1] + BLOCK_X;
840                    if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
841                        s->motion_val[1][frag][0] = motion_x[k];
842                        s->motion_val[1][frag][1] = motion_y[k];
843                    } else {
844                        s->motion_val[1][frag][0] = motion_x[0];
845                        s->motion_val[1][frag][1] = motion_y[0];
846                    }
847                }
848            }
849        }
850        }
851    }
852
853    return 0;
854}
855
856static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
857{
858    int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
859    int num_blocks = s->total_num_coded_frags;
860
861    for (qpi = 0; qpi < s->nqps-1 && num_blocks > 0; qpi++) {
862        i = blocks_decoded = num_blocks_at_qpi = 0;
863
864        bit = get_bits1(gb) ^ 1;
865        run_length = 0;
866
867        do {
868            if (run_length == MAXIMUM_LONG_BIT_RUN)
869                bit = get_bits1(gb);
870            else
871                bit ^= 1;
872
873            run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
874            if (run_length == 34)
875                run_length += get_bits(gb, 12);
876            blocks_decoded += run_length;
877
878            if (!bit)
879                num_blocks_at_qpi += run_length;
880
881            for (j = 0; j < run_length; i++) {
882                if (i >= s->total_num_coded_frags)
883                    return -1;
884
885                if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) {
886                    s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit;
887                    j++;
888                }
889            }
890        } while (blocks_decoded < num_blocks && get_bits_left(gb) > 0);
891
892        num_blocks -= num_blocks_at_qpi;
893    }
894
895    return 0;
896}
897
898/*
899 * This function is called by unpack_dct_coeffs() to extract the VLCs from
900 * the bitstream. The VLCs encode tokens which are used to unpack DCT
901 * data. This function unpacks all the VLCs for either the Y plane or both
902 * C planes, and is called for DC coefficients or different AC coefficient
903 * levels (since different coefficient types require different VLC tables.
904 *
905 * This function returns a residual eob run. E.g, if a particular token gave
906 * instructions to EOB the next 5 fragments and there were only 2 fragments
907 * left in the current fragment range, 3 would be returned so that it could
908 * be passed into the next call to this same function.
909 */
910static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
911                        VLC *table, int coeff_index,
912                        int plane,
913                        int eob_run)
914{
915    int i, j = 0;
916    int token;
917    int zero_run = 0;
918    DCTELEM coeff = 0;
919    int bits_to_get;
920    int blocks_ended;
921    int coeff_i = 0;
922    int num_coeffs = s->num_coded_frags[plane][coeff_index];
923    int16_t *dct_tokens = s->dct_tokens[plane][coeff_index];
924
925    /* local references to structure members to avoid repeated deferences */
926    int *coded_fragment_list = s->coded_fragment_list[plane];
927    Vp3Fragment *all_fragments = s->all_fragments;
928    VLC_TYPE (*vlc_table)[2] = table->table;
929
930    if (num_coeffs < 0)
931        av_log(s->avctx, AV_LOG_ERROR, "Invalid number of coefficents at level %d\n", coeff_index);
932
933    if (eob_run > num_coeffs) {
934        coeff_i = blocks_ended = num_coeffs;
935        eob_run -= num_coeffs;
936    } else {
937        coeff_i = blocks_ended = eob_run;
938        eob_run = 0;
939    }
940
941    // insert fake EOB token to cover the split between planes or zzi
942    if (blocks_ended)
943        dct_tokens[j++] = blocks_ended << 2;
944
945    while (coeff_i < num_coeffs && get_bits_left(gb) > 0) {
946            /* decode a VLC into a token */
947            token = get_vlc2(gb, vlc_table, 11, 3);
948            /* use the token to get a zero run, a coefficient, and an eob run */
949            if ((unsigned) token <= 6U) {
950                eob_run = eob_run_base[token];
951                if (eob_run_get_bits[token])
952                    eob_run += get_bits(gb, eob_run_get_bits[token]);
953
954                // record only the number of blocks ended in this plane,
955                // any spill will be recorded in the next plane.
956                if (eob_run > num_coeffs - coeff_i) {
957                    dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i);
958                    blocks_ended   += num_coeffs - coeff_i;
959                    eob_run        -= num_coeffs - coeff_i;
960                    coeff_i         = num_coeffs;
961                } else {
962                    dct_tokens[j++] = TOKEN_EOB(eob_run);
963                    blocks_ended   += eob_run;
964                    coeff_i        += eob_run;
965                    eob_run = 0;
966                }
967            } else if (token >= 0) {
968                bits_to_get = coeff_get_bits[token];
969                if (bits_to_get)
970                    bits_to_get = get_bits(gb, bits_to_get);
971                coeff = coeff_tables[token][bits_to_get];
972
973                zero_run = zero_run_base[token];
974                if (zero_run_get_bits[token])
975                    zero_run += get_bits(gb, zero_run_get_bits[token]);
976
977                if (zero_run) {
978                    dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run);
979                } else {
980                    // Save DC into the fragment structure. DC prediction is
981                    // done in raster order, so the actual DC can't be in with
982                    // other tokens. We still need the token in dct_tokens[]
983                    // however, or else the structure collapses on itself.
984                    if (!coeff_index)
985                        all_fragments[coded_fragment_list[coeff_i]].dc = coeff;
986
987                    dct_tokens[j++] = TOKEN_COEFF(coeff);
988                }
989
990                if (coeff_index + zero_run > 64) {
991                    av_log(s->avctx, AV_LOG_DEBUG, "Invalid zero run of %d with"
992                           " %d coeffs left\n", zero_run, 64-coeff_index);
993                    zero_run = 64 - coeff_index;
994                }
995
996                // zero runs code multiple coefficients,
997                // so don't try to decode coeffs for those higher levels
998                for (i = coeff_index+1; i <= coeff_index+zero_run; i++)
999                    s->num_coded_frags[plane][i]--;
1000                coeff_i++;
1001            } else {
1002                av_log(s->avctx, AV_LOG_ERROR,
1003                       "Invalid token %d\n", token);
1004                return -1;
1005            }
1006    }
1007
1008    if (blocks_ended > s->num_coded_frags[plane][coeff_index])
1009        av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n");
1010
1011    // decrement the number of blocks that have higher coeffecients for each
1012    // EOB run at this level
1013    if (blocks_ended)
1014        for (i = coeff_index+1; i < 64; i++)
1015            s->num_coded_frags[plane][i] -= blocks_ended;
1016
1017    // setup the next buffer
1018    if (plane < 2)
1019        s->dct_tokens[plane+1][coeff_index] = dct_tokens + j;
1020    else if (coeff_index < 63)
1021        s->dct_tokens[0][coeff_index+1] = dct_tokens + j;
1022
1023    return eob_run;
1024}
1025
1026static void reverse_dc_prediction(Vp3DecodeContext *s,
1027                                  int first_fragment,
1028                                  int fragment_width,
1029                                  int fragment_height);
1030/*
1031 * This function unpacks all of the DCT coefficient data from the
1032 * bitstream.
1033 */
1034static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1035{
1036    int i;
1037    int dc_y_table;
1038    int dc_c_table;
1039    int ac_y_table;
1040    int ac_c_table;
1041    int residual_eob_run = 0;
1042    VLC *y_tables[64];
1043    VLC *c_tables[64];
1044
1045    s->dct_tokens[0][0] = s->dct_tokens_base;
1046
1047    /* fetch the DC table indexes */
1048    dc_y_table = get_bits(gb, 4);
1049    dc_c_table = get_bits(gb, 4);
1050
1051    /* unpack the Y plane DC coefficients */
1052    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
1053        0, residual_eob_run);
1054    if (residual_eob_run < 0)
1055        return residual_eob_run;
1056
1057    /* reverse prediction of the Y-plane DC coefficients */
1058    reverse_dc_prediction(s, 0, s->fragment_width[0], s->fragment_height[0]);
1059
1060    /* unpack the C plane DC coefficients */
1061    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1062        1, residual_eob_run);
1063    if (residual_eob_run < 0)
1064        return residual_eob_run;
1065    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1066        2, residual_eob_run);
1067    if (residual_eob_run < 0)
1068        return residual_eob_run;
1069
1070    /* reverse prediction of the C-plane DC coefficients */
1071    if (!(s->avctx->flags & CODEC_FLAG_GRAY))
1072    {
1073        reverse_dc_prediction(s, s->fragment_start[1],
1074            s->fragment_width[1], s->fragment_height[1]);
1075        reverse_dc_prediction(s, s->fragment_start[2],
1076            s->fragment_width[1], s->fragment_height[1]);
1077    }
1078
1079    /* fetch the AC table indexes */
1080    ac_y_table = get_bits(gb, 4);
1081    ac_c_table = get_bits(gb, 4);
1082
1083    /* build tables of AC VLC tables */
1084    for (i = 1; i <= 5; i++) {
1085        y_tables[i] = &s->ac_vlc_1[ac_y_table];
1086        c_tables[i] = &s->ac_vlc_1[ac_c_table];
1087    }
1088    for (i = 6; i <= 14; i++) {
1089        y_tables[i] = &s->ac_vlc_2[ac_y_table];
1090        c_tables[i] = &s->ac_vlc_2[ac_c_table];
1091    }
1092    for (i = 15; i <= 27; i++) {
1093        y_tables[i] = &s->ac_vlc_3[ac_y_table];
1094        c_tables[i] = &s->ac_vlc_3[ac_c_table];
1095    }
1096    for (i = 28; i <= 63; i++) {
1097        y_tables[i] = &s->ac_vlc_4[ac_y_table];
1098        c_tables[i] = &s->ac_vlc_4[ac_c_table];
1099    }
1100
1101    /* decode all AC coefficents */
1102    for (i = 1; i <= 63; i++) {
1103            residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i,
1104                0, residual_eob_run);
1105            if (residual_eob_run < 0)
1106                return residual_eob_run;
1107
1108            residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1109                1, residual_eob_run);
1110            if (residual_eob_run < 0)
1111                return residual_eob_run;
1112            residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1113                2, residual_eob_run);
1114            if (residual_eob_run < 0)
1115                return residual_eob_run;
1116    }
1117
1118    return 0;
1119}
1120
1121/*
1122 * This function reverses the DC prediction for each coded fragment in
1123 * the frame. Much of this function is adapted directly from the original
1124 * VP3 source code.
1125 */
1126#define COMPATIBLE_FRAME(x) \
1127  (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1128#define DC_COEFF(u) s->all_fragments[u].dc
1129
1130static void reverse_dc_prediction(Vp3DecodeContext *s,
1131                                  int first_fragment,
1132                                  int fragment_width,
1133                                  int fragment_height)
1134{
1135
1136#define PUL 8
1137#define PU 4
1138#define PUR 2
1139#define PL 1
1140
1141    int x, y;
1142    int i = first_fragment;
1143
1144    int predicted_dc;
1145
1146    /* DC values for the left, up-left, up, and up-right fragments */
1147    int vl, vul, vu, vur;
1148
1149    /* indexes for the left, up-left, up, and up-right fragments */
1150    int l, ul, u, ur;
1151
1152    /*
1153     * The 6 fields mean:
1154     *   0: up-left multiplier
1155     *   1: up multiplier
1156     *   2: up-right multiplier
1157     *   3: left multiplier
1158     */
1159    static const int predictor_transform[16][4] = {
1160        {  0,  0,  0,  0},
1161        {  0,  0,  0,128},        // PL
1162        {  0,  0,128,  0},        // PUR
1163        {  0,  0, 53, 75},        // PUR|PL
1164        {  0,128,  0,  0},        // PU
1165        {  0, 64,  0, 64},        // PU|PL
1166        {  0,128,  0,  0},        // PU|PUR
1167        {  0,  0, 53, 75},        // PU|PUR|PL
1168        {128,  0,  0,  0},        // PUL
1169        {  0,  0,  0,128},        // PUL|PL
1170        { 64,  0, 64,  0},        // PUL|PUR
1171        {  0,  0, 53, 75},        // PUL|PUR|PL
1172        {  0,128,  0,  0},        // PUL|PU
1173       {-104,116,  0,116},        // PUL|PU|PL
1174        { 24, 80, 24,  0},        // PUL|PU|PUR
1175       {-104,116,  0,116}         // PUL|PU|PUR|PL
1176    };
1177
1178    /* This table shows which types of blocks can use other blocks for
1179     * prediction. For example, INTRA is the only mode in this table to
1180     * have a frame number of 0. That means INTRA blocks can only predict
1181     * from other INTRA blocks. There are 2 golden frame coding types;
1182     * blocks encoding in these modes can only predict from other blocks
1183     * that were encoded with these 1 of these 2 modes. */
1184    static const unsigned char compatible_frame[9] = {
1185        1,    /* MODE_INTER_NO_MV */
1186        0,    /* MODE_INTRA */
1187        1,    /* MODE_INTER_PLUS_MV */
1188        1,    /* MODE_INTER_LAST_MV */
1189        1,    /* MODE_INTER_PRIOR_MV */
1190        2,    /* MODE_USING_GOLDEN */
1191        2,    /* MODE_GOLDEN_MV */
1192        1,    /* MODE_INTER_FOUR_MV */
1193        3     /* MODE_COPY */
1194    };
1195    int current_frame_type;
1196
1197    /* there is a last DC predictor for each of the 3 frame types */
1198    short last_dc[3];
1199
1200    int transform = 0;
1201
1202    vul = vu = vur = vl = 0;
1203    last_dc[0] = last_dc[1] = last_dc[2] = 0;
1204
1205    /* for each fragment row... */
1206    for (y = 0; y < fragment_height; y++) {
1207
1208        /* for each fragment in a row... */
1209        for (x = 0; x < fragment_width; x++, i++) {
1210
1211            /* reverse prediction if this block was coded */
1212            if (s->all_fragments[i].coding_method != MODE_COPY) {
1213
1214                current_frame_type =
1215                    compatible_frame[s->all_fragments[i].coding_method];
1216
1217                transform= 0;
1218                if(x){
1219                    l= i-1;
1220                    vl = DC_COEFF(l);
1221                    if(COMPATIBLE_FRAME(l))
1222                        transform |= PL;
1223                }
1224                if(y){
1225                    u= i-fragment_width;
1226                    vu = DC_COEFF(u);
1227                    if(COMPATIBLE_FRAME(u))
1228                        transform |= PU;
1229                    if(x){
1230                        ul= i-fragment_width-1;
1231                        vul = DC_COEFF(ul);
1232                        if(COMPATIBLE_FRAME(ul))
1233                            transform |= PUL;
1234                    }
1235                    if(x + 1 < fragment_width){
1236                        ur= i-fragment_width+1;
1237                        vur = DC_COEFF(ur);
1238                        if(COMPATIBLE_FRAME(ur))
1239                            transform |= PUR;
1240                    }
1241                }
1242
1243                if (transform == 0) {
1244
1245                    /* if there were no fragments to predict from, use last
1246                     * DC saved */
1247                    predicted_dc = last_dc[current_frame_type];
1248                } else {
1249
1250                    /* apply the appropriate predictor transform */
1251                    predicted_dc =
1252                        (predictor_transform[transform][0] * vul) +
1253                        (predictor_transform[transform][1] * vu) +
1254                        (predictor_transform[transform][2] * vur) +
1255                        (predictor_transform[transform][3] * vl);
1256
1257                    predicted_dc /= 128;
1258
1259                    /* check for outranging on the [ul u l] and
1260                     * [ul u ur l] predictors */
1261                    if ((transform == 15) || (transform == 13)) {
1262                        if (FFABS(predicted_dc - vu) > 128)
1263                            predicted_dc = vu;
1264                        else if (FFABS(predicted_dc - vl) > 128)
1265                            predicted_dc = vl;
1266                        else if (FFABS(predicted_dc - vul) > 128)
1267                            predicted_dc = vul;
1268                    }
1269                }
1270
1271                /* at long last, apply the predictor */
1272                DC_COEFF(i) += predicted_dc;
1273                /* save the DC */
1274                last_dc[current_frame_type] = DC_COEFF(i);
1275            }
1276        }
1277    }
1278}
1279
1280static void apply_loop_filter(Vp3DecodeContext *s, int plane, int ystart, int yend)
1281{
1282    int x, y;
1283    int *bounding_values= s->bounding_values_array+127;
1284
1285    int width           = s->fragment_width[!!plane];
1286    int height          = s->fragment_height[!!plane];
1287    int fragment        = s->fragment_start        [plane] + ystart * width;
1288    int stride          = s->current_frame.linesize[plane];
1289    uint8_t *plane_data = s->current_frame.data    [plane];
1290    if (!s->flipped_image) stride = -stride;
1291    plane_data += s->data_offset[plane] + 8*ystart*stride;
1292
1293    for (y = ystart; y < yend; y++) {
1294
1295        for (x = 0; x < width; x++) {
1296            /* This code basically just deblocks on the edges of coded blocks.
1297             * However, it has to be much more complicated because of the
1298             * braindamaged deblock ordering used in VP3/Theora. Order matters
1299             * because some pixels get filtered twice. */
1300            if( s->all_fragments[fragment].coding_method != MODE_COPY )
1301            {
1302                /* do not perform left edge filter for left columns frags */
1303                if (x > 0) {
1304                    s->dsp.vp3_h_loop_filter(
1305                        plane_data + 8*x,
1306                        stride, bounding_values);
1307                }
1308
1309                /* do not perform top edge filter for top row fragments */
1310                if (y > 0) {
1311                    s->dsp.vp3_v_loop_filter(
1312                        plane_data + 8*x,
1313                        stride, bounding_values);
1314                }
1315
1316                /* do not perform right edge filter for right column
1317                 * fragments or if right fragment neighbor is also coded
1318                 * in this frame (it will be filtered in next iteration) */
1319                if ((x < width - 1) &&
1320                    (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1321                    s->dsp.vp3_h_loop_filter(
1322                        plane_data + 8*x + 8,
1323                        stride, bounding_values);
1324                }
1325
1326                /* do not perform bottom edge filter for bottom row
1327                 * fragments or if bottom fragment neighbor is also coded
1328                 * in this frame (it will be filtered in the next row) */
1329                if ((y < height - 1) &&
1330                    (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1331                    s->dsp.vp3_v_loop_filter(
1332                        plane_data + 8*x + 8*stride,
1333                        stride, bounding_values);
1334                }
1335            }
1336
1337            fragment++;
1338        }
1339        plane_data += 8*stride;
1340    }
1341}
1342
1343/**
1344 * Pull DCT tokens from the 64 levels to decode and dequant the coefficients
1345 * for the next block in coding order
1346 */
1347static inline int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag,
1348                              int plane, int inter, DCTELEM block[64])
1349{
1350    int16_t *dequantizer = s->qmat[frag->qpi][inter][plane];
1351    uint8_t *perm = s->scantable.permutated;
1352    int i = 0;
1353
1354    do {
1355        int token = *s->dct_tokens[plane][i];
1356        switch (token & 3) {
1357        case 0: // EOB
1358            if (--token < 4) // 0-3 are token types, so the EOB run must now be 0
1359                s->dct_tokens[plane][i]++;
1360            else
1361                *s->dct_tokens[plane][i] = token & ~3;
1362            goto end;
1363        case 1: // zero run
1364            s->dct_tokens[plane][i]++;
1365            i += (token >> 2) & 0x7f;
1366            if (i > 63) {
1367                av_log(s->avctx, AV_LOG_ERROR, "Coefficient index overflow\n");
1368                return i;
1369            }
1370            block[perm[i]] = (token >> 9) * dequantizer[perm[i]];
1371            i++;
1372            break;
1373        case 2: // coeff
1374            block[perm[i]] = (token >> 2) * dequantizer[perm[i]];
1375            s->dct_tokens[plane][i++]++;
1376            break;
1377        default: // shouldn't happen
1378            return i;
1379        }
1380    } while (i < 64);
1381    // return value is expected to be a valid level
1382    i--;
1383end:
1384    // the actual DC+prediction is in the fragment structure
1385    block[0] = frag->dc * s->qmat[0][inter][plane][0];
1386    return i;
1387}
1388
1389/**
1390 * called when all pixels up to row y are complete
1391 */
1392static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y)
1393{
1394    int h, cy, i;
1395    int offset[AV_NUM_DATA_POINTERS];
1396
1397    if (HAVE_THREADS && s->avctx->active_thread_type&FF_THREAD_FRAME) {
1398        int y_flipped = s->flipped_image ? s->avctx->height-y : y;
1399
1400        // At the end of the frame, report INT_MAX instead of the height of the frame.
1401        // This makes the other threads' ff_thread_await_progress() calls cheaper, because
1402        // they don't have to clip their values.
1403        ff_thread_report_progress(&s->current_frame, y_flipped==s->avctx->height ? INT_MAX : y_flipped-1, 0);
1404    }
1405
1406    if(s->avctx->draw_horiz_band==NULL)
1407        return;
1408
1409    h= y - s->last_slice_end;
1410    s->last_slice_end= y;
1411    y -= h;
1412
1413    if (!s->flipped_image) {
1414        y = s->avctx->height - y - h;
1415    }
1416
1417    cy = y >> s->chroma_y_shift;
1418    offset[0] = s->current_frame.linesize[0]*y;
1419    offset[1] = s->current_frame.linesize[1]*cy;
1420    offset[2] = s->current_frame.linesize[2]*cy;
1421    for (i = 3; i < AV_NUM_DATA_POINTERS; i++)
1422        offset[i] = 0;
1423
1424    emms_c();
1425    s->avctx->draw_horiz_band(s->avctx, &s->current_frame, offset, y, 3, h);
1426}
1427
1428/**
1429 * Wait for the reference frame of the current fragment.
1430 * The progress value is in luma pixel rows.
1431 */
1432static void await_reference_row(Vp3DecodeContext *s, Vp3Fragment *fragment, int motion_y, int y)
1433{
1434    AVFrame *ref_frame;
1435    int ref_row;
1436    int border = motion_y&1;
1437
1438    if (fragment->coding_method == MODE_USING_GOLDEN ||
1439        fragment->coding_method == MODE_GOLDEN_MV)
1440        ref_frame = &s->golden_frame;
1441    else
1442        ref_frame = &s->last_frame;
1443
1444    ref_row = y + (motion_y>>1);
1445    ref_row = FFMAX(FFABS(ref_row), ref_row + 8 + border);
1446
1447    ff_thread_await_progress(ref_frame, ref_row, 0);
1448}
1449
1450/*
1451 * Perform the final rendering for a particular slice of data.
1452 * The slice number ranges from 0..(c_superblock_height - 1).
1453 */
1454static void render_slice(Vp3DecodeContext *s, int slice)
1455{
1456    int x, y, i, j, fragment;
1457    LOCAL_ALIGNED_16(DCTELEM, block, [64]);
1458    int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
1459    int motion_halfpel_index;
1460    uint8_t *motion_source;
1461    int plane, first_pixel;
1462
1463    if (slice >= s->c_superblock_height)
1464        return;
1465
1466    for (plane = 0; plane < 3; plane++) {
1467        uint8_t *output_plane = s->current_frame.data    [plane] + s->data_offset[plane];
1468        uint8_t *  last_plane = s->   last_frame.data    [plane] + s->data_offset[plane];
1469        uint8_t *golden_plane = s-> golden_frame.data    [plane] + s->data_offset[plane];
1470        int stride            = s->current_frame.linesize[plane];
1471        int plane_width       = s->width  >> (plane && s->chroma_x_shift);
1472        int plane_height      = s->height >> (plane && s->chroma_y_shift);
1473        int8_t (*motion_val)[2] = s->motion_val[!!plane];
1474
1475        int sb_x, sb_y        = slice << (!plane && s->chroma_y_shift);
1476        int slice_height      = sb_y + 1 + (!plane && s->chroma_y_shift);
1477        int slice_width       = plane ? s->c_superblock_width : s->y_superblock_width;
1478
1479        int fragment_width    = s->fragment_width[!!plane];
1480        int fragment_height   = s->fragment_height[!!plane];
1481        int fragment_start    = s->fragment_start[plane];
1482        int do_await          = !plane && HAVE_THREADS && (s->avctx->active_thread_type&FF_THREAD_FRAME);
1483
1484        if (!s->flipped_image) stride = -stride;
1485        if (CONFIG_GRAY && plane && (s->avctx->flags & CODEC_FLAG_GRAY))
1486            continue;
1487
1488        /* for each superblock row in the slice (both of them)... */
1489        for (; sb_y < slice_height; sb_y++) {
1490
1491            /* for each superblock in a row... */
1492            for (sb_x = 0; sb_x < slice_width; sb_x++) {
1493
1494                /* for each block in a superblock... */
1495                for (j = 0; j < 16; j++) {
1496                    x = 4*sb_x + hilbert_offset[j][0];
1497                    y = 4*sb_y + hilbert_offset[j][1];
1498                    fragment = y*fragment_width + x;
1499
1500                    i = fragment_start + fragment;
1501
1502                    // bounds check
1503                    if (x >= fragment_width || y >= fragment_height)
1504                        continue;
1505
1506                first_pixel = 8*y*stride + 8*x;
1507
1508                if (do_await && s->all_fragments[i].coding_method != MODE_INTRA)
1509                    await_reference_row(s, &s->all_fragments[i], motion_val[fragment][1], (16*y) >> s->chroma_y_shift);
1510
1511                /* transform if this block was coded */
1512                if (s->all_fragments[i].coding_method != MODE_COPY) {
1513                    if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
1514                        (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
1515                        motion_source= golden_plane;
1516                    else
1517                        motion_source= last_plane;
1518
1519                    motion_source += first_pixel;
1520                    motion_halfpel_index = 0;
1521
1522                    /* sort out the motion vector if this fragment is coded
1523                     * using a motion vector method */
1524                    if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
1525                        (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
1526                        int src_x, src_y;
1527                        motion_x = motion_val[fragment][0];
1528                        motion_y = motion_val[fragment][1];
1529
1530                        src_x= (motion_x>>1) + 8*x;
1531                        src_y= (motion_y>>1) + 8*y;
1532
1533                        motion_halfpel_index = motion_x & 0x01;
1534                        motion_source += (motion_x >> 1);
1535
1536                        motion_halfpel_index |= (motion_y & 0x01) << 1;
1537                        motion_source += ((motion_y >> 1) * stride);
1538
1539                        if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
1540                            uint8_t *temp= s->edge_emu_buffer;
1541                            if(stride<0) temp -= 8*stride;
1542
1543                            s->dsp.emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
1544                            motion_source= temp;
1545                        }
1546                    }
1547
1548
1549                    /* first, take care of copying a block from either the
1550                     * previous or the golden frame */
1551                    if (s->all_fragments[i].coding_method != MODE_INTRA) {
1552                        /* Note, it is possible to implement all MC cases with
1553                           put_no_rnd_pixels_l2 which would look more like the
1554                           VP3 source but this would be slower as
1555                           put_no_rnd_pixels_tab is better optimzed */
1556                        if(motion_halfpel_index != 3){
1557                            s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
1558                                output_plane + first_pixel,
1559                                motion_source, stride, 8);
1560                        }else{
1561                            int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
1562                            s->dsp.put_no_rnd_pixels_l2[1](
1563                                output_plane + first_pixel,
1564                                motion_source - d,
1565                                motion_source + stride + 1 + d,
1566                                stride, 8);
1567                        }
1568                    }
1569
1570                        s->dsp.clear_block(block);
1571
1572                    /* invert DCT and place (or add) in final output */
1573
1574                    if (s->all_fragments[i].coding_method == MODE_INTRA) {
1575                        int index;
1576                        index = vp3_dequant(s, s->all_fragments + i, plane, 0, block);
1577                        if (index > 63)
1578                            continue;
1579                        if(s->avctx->idct_algo!=FF_IDCT_VP3)
1580                            block[0] += 128<<3;
1581                        s->dsp.idct_put(
1582                            output_plane + first_pixel,
1583                            stride,
1584                            block);
1585                    } else {
1586                        int index = vp3_dequant(s, s->all_fragments + i, plane, 1, block);
1587                        if (index > 63)
1588                            continue;
1589                        if (index > 0) {
1590                        s->dsp.idct_add(
1591                            output_plane + first_pixel,
1592                            stride,
1593                            block);
1594                        } else {
1595                            s->dsp.vp3_idct_dc_add(output_plane + first_pixel, stride, block);
1596                        }
1597                    }
1598                } else {
1599
1600                    /* copy directly from the previous frame */
1601                    s->dsp.put_pixels_tab[1][0](
1602                        output_plane + first_pixel,
1603                        last_plane + first_pixel,
1604                        stride, 8);
1605
1606                }
1607                }
1608            }
1609
1610            // Filter up to the last row in the superblock row
1611            if (!s->skip_loop_filter)
1612                apply_loop_filter(s, plane, 4*sb_y - !!sb_y, FFMIN(4*sb_y+3, fragment_height-1));
1613        }
1614    }
1615
1616     /* this looks like a good place for slice dispatch... */
1617     /* algorithm:
1618      *   if (slice == s->macroblock_height - 1)
1619      *     dispatch (both last slice & 2nd-to-last slice);
1620      *   else if (slice > 0)
1621      *     dispatch (slice - 1);
1622      */
1623
1624    vp3_draw_horiz_band(s, FFMIN((32 << s->chroma_y_shift) * (slice + 1) -16, s->height-16));
1625}
1626
1627/// Allocate tables for per-frame data in Vp3DecodeContext
1628static av_cold int allocate_tables(AVCodecContext *avctx)
1629{
1630    Vp3DecodeContext *s = avctx->priv_data;
1631    int y_fragment_count, c_fragment_count;
1632
1633    y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
1634    c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
1635
1636    s->superblock_coding = av_malloc(s->superblock_count);
1637    s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
1638    s->coded_fragment_list[0] = av_malloc(s->fragment_count * sizeof(int));
1639    s->dct_tokens_base = av_malloc(64*s->fragment_count * sizeof(*s->dct_tokens_base));
1640    s->motion_val[0] = av_malloc(y_fragment_count * sizeof(*s->motion_val[0]));
1641    s->motion_val[1] = av_malloc(c_fragment_count * sizeof(*s->motion_val[1]));
1642
1643    /* work out the block mapping tables */
1644    s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
1645    s->macroblock_coding = av_malloc(s->macroblock_count + 1);
1646
1647    if (!s->superblock_coding || !s->all_fragments || !s->dct_tokens_base ||
1648        !s->coded_fragment_list[0] || !s->superblock_fragments || !s->macroblock_coding ||
1649        !s->motion_val[0] || !s->motion_val[1]) {
1650        vp3_decode_end(avctx);
1651        return -1;
1652    }
1653
1654    init_block_mapping(s);
1655
1656    return 0;
1657}
1658
1659static av_cold int vp3_decode_init(AVCodecContext *avctx)
1660{
1661    Vp3DecodeContext *s = avctx->priv_data;
1662    int i, inter, plane;
1663    int c_width;
1664    int c_height;
1665    int y_fragment_count, c_fragment_count;
1666
1667    if (avctx->codec_tag == MKTAG('V','P','3','0'))
1668        s->version = 0;
1669    else
1670        s->version = 1;
1671
1672    s->avctx = avctx;
1673    s->width = FFALIGN(avctx->width, 16);
1674    s->height = FFALIGN(avctx->height, 16);
1675    if (avctx->pix_fmt == PIX_FMT_NONE)
1676        avctx->pix_fmt = PIX_FMT_YUV420P;
1677    avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
1678    if(avctx->idct_algo==FF_IDCT_AUTO)
1679        avctx->idct_algo=FF_IDCT_VP3;
1680    dsputil_init(&s->dsp, avctx);
1681
1682    ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
1683
1684    /* initialize to an impossible value which will force a recalculation
1685     * in the first frame decode */
1686    for (i = 0; i < 3; i++)
1687        s->qps[i] = -1;
1688
1689    avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
1690
1691    s->y_superblock_width = (s->width + 31) / 32;
1692    s->y_superblock_height = (s->height + 31) / 32;
1693    s->y_superblock_count = s->y_superblock_width * s->y_superblock_height;
1694
1695    /* work out the dimensions for the C planes */
1696    c_width = s->width >> s->chroma_x_shift;
1697    c_height = s->height >> s->chroma_y_shift;
1698    s->c_superblock_width = (c_width + 31) / 32;
1699    s->c_superblock_height = (c_height + 31) / 32;
1700    s->c_superblock_count = s->c_superblock_width * s->c_superblock_height;
1701
1702    s->superblock_count = s->y_superblock_count + (s->c_superblock_count * 2);
1703    s->u_superblock_start = s->y_superblock_count;
1704    s->v_superblock_start = s->u_superblock_start + s->c_superblock_count;
1705
1706    s->macroblock_width = (s->width + 15) / 16;
1707    s->macroblock_height = (s->height + 15) / 16;
1708    s->macroblock_count = s->macroblock_width * s->macroblock_height;
1709
1710    s->fragment_width[0] = s->width / FRAGMENT_PIXELS;
1711    s->fragment_height[0] = s->height / FRAGMENT_PIXELS;
1712    s->fragment_width[1]  = s->fragment_width[0]  >> s->chroma_x_shift;
1713    s->fragment_height[1] = s->fragment_height[0] >> s->chroma_y_shift;
1714
1715    /* fragment count covers all 8x8 blocks for all 3 planes */
1716    y_fragment_count     = s->fragment_width[0] * s->fragment_height[0];
1717    c_fragment_count     = s->fragment_width[1] * s->fragment_height[1];
1718    s->fragment_count    = y_fragment_count + 2*c_fragment_count;
1719    s->fragment_start[1] = y_fragment_count;
1720    s->fragment_start[2] = y_fragment_count + c_fragment_count;
1721
1722    if (!s->theora_tables)
1723    {
1724        for (i = 0; i < 64; i++) {
1725            s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
1726            s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
1727            s->base_matrix[0][i] = vp31_intra_y_dequant[i];
1728            s->base_matrix[1][i] = vp31_intra_c_dequant[i];
1729            s->base_matrix[2][i] = vp31_inter_dequant[i];
1730            s->filter_limit_values[i] = vp31_filter_limit_values[i];
1731        }
1732
1733        for(inter=0; inter<2; inter++){
1734            for(plane=0; plane<3; plane++){
1735                s->qr_count[inter][plane]= 1;
1736                s->qr_size [inter][plane][0]= 63;
1737                s->qr_base [inter][plane][0]=
1738                s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter;
1739            }
1740        }
1741
1742        /* init VLC tables */
1743        for (i = 0; i < 16; i++) {
1744
1745            /* DC histograms */
1746            init_vlc(&s->dc_vlc[i], 11, 32,
1747                &dc_bias[i][0][1], 4, 2,
1748                &dc_bias[i][0][0], 4, 2, 0);
1749
1750            /* group 1 AC histograms */
1751            init_vlc(&s->ac_vlc_1[i], 11, 32,
1752                &ac_bias_0[i][0][1], 4, 2,
1753                &ac_bias_0[i][0][0], 4, 2, 0);
1754
1755            /* group 2 AC histograms */
1756            init_vlc(&s->ac_vlc_2[i], 11, 32,
1757                &ac_bias_1[i][0][1], 4, 2,
1758                &ac_bias_1[i][0][0], 4, 2, 0);
1759
1760            /* group 3 AC histograms */
1761            init_vlc(&s->ac_vlc_3[i], 11, 32,
1762                &ac_bias_2[i][0][1], 4, 2,
1763                &ac_bias_2[i][0][0], 4, 2, 0);
1764
1765            /* group 4 AC histograms */
1766            init_vlc(&s->ac_vlc_4[i], 11, 32,
1767                &ac_bias_3[i][0][1], 4, 2,
1768                &ac_bias_3[i][0][0], 4, 2, 0);
1769        }
1770    } else {
1771
1772        for (i = 0; i < 16; i++) {
1773            /* DC histograms */
1774            if (init_vlc(&s->dc_vlc[i], 11, 32,
1775                &s->huffman_table[i][0][1], 8, 4,
1776                &s->huffman_table[i][0][0], 8, 4, 0) < 0)
1777                goto vlc_fail;
1778
1779            /* group 1 AC histograms */
1780            if (init_vlc(&s->ac_vlc_1[i], 11, 32,
1781                &s->huffman_table[i+16][0][1], 8, 4,
1782                &s->huffman_table[i+16][0][0], 8, 4, 0) < 0)
1783                goto vlc_fail;
1784
1785            /* group 2 AC histograms */
1786            if (init_vlc(&s->ac_vlc_2[i], 11, 32,
1787                &s->huffman_table[i+16*2][0][1], 8, 4,
1788                &s->huffman_table[i+16*2][0][0], 8, 4, 0) < 0)
1789                goto vlc_fail;
1790
1791            /* group 3 AC histograms */
1792            if (init_vlc(&s->ac_vlc_3[i], 11, 32,
1793                &s->huffman_table[i+16*3][0][1], 8, 4,
1794                &s->huffman_table[i+16*3][0][0], 8, 4, 0) < 0)
1795                goto vlc_fail;
1796
1797            /* group 4 AC histograms */
1798            if (init_vlc(&s->ac_vlc_4[i], 11, 32,
1799                &s->huffman_table[i+16*4][0][1], 8, 4,
1800                &s->huffman_table[i+16*4][0][0], 8, 4, 0) < 0)
1801                goto vlc_fail;
1802        }
1803    }
1804
1805    init_vlc(&s->superblock_run_length_vlc, 6, 34,
1806        &superblock_run_length_vlc_table[0][1], 4, 2,
1807        &superblock_run_length_vlc_table[0][0], 4, 2, 0);
1808
1809    init_vlc(&s->fragment_run_length_vlc, 5, 30,
1810        &fragment_run_length_vlc_table[0][1], 4, 2,
1811        &fragment_run_length_vlc_table[0][0], 4, 2, 0);
1812
1813    init_vlc(&s->mode_code_vlc, 3, 8,
1814        &mode_code_vlc_table[0][1], 2, 1,
1815        &mode_code_vlc_table[0][0], 2, 1, 0);
1816
1817    init_vlc(&s->motion_vector_vlc, 6, 63,
1818        &motion_vector_vlc_table[0][1], 2, 1,
1819        &motion_vector_vlc_table[0][0], 2, 1, 0);
1820
1821    for (i = 0; i < 3; i++) {
1822        s->current_frame.data[i] = NULL;
1823        s->last_frame.data[i] = NULL;
1824        s->golden_frame.data[i] = NULL;
1825    }
1826
1827    return allocate_tables(avctx);
1828
1829vlc_fail:
1830    av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
1831    return -1;
1832}
1833
1834/// Release and shuffle frames after decode finishes
1835static void update_frames(AVCodecContext *avctx)
1836{
1837    Vp3DecodeContext *s = avctx->priv_data;
1838
1839    /* release the last frame, if it is allocated and if it is not the
1840     * golden frame */
1841    if (s->last_frame.data[0] && s->last_frame.type != FF_BUFFER_TYPE_COPY)
1842        ff_thread_release_buffer(avctx, &s->last_frame);
1843
1844    /* shuffle frames (last = current) */
1845    s->last_frame= s->current_frame;
1846
1847    if (s->keyframe) {
1848        if (s->golden_frame.data[0])
1849            ff_thread_release_buffer(avctx, &s->golden_frame);
1850        s->golden_frame = s->current_frame;
1851        s->last_frame.type = FF_BUFFER_TYPE_COPY;
1852    }
1853
1854    s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
1855}
1856
1857static int vp3_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
1858{
1859    Vp3DecodeContext *s = dst->priv_data, *s1 = src->priv_data;
1860    int qps_changed = 0, i, err;
1861
1862#define copy_fields(to, from, start_field, end_field) memcpy(&to->start_field, &from->start_field, (char*)&to->end_field - (char*)&to->start_field)
1863
1864    if (!s1->current_frame.data[0]
1865        ||s->width != s1->width
1866        ||s->height!= s1->height) {
1867        if (s != s1)
1868            copy_fields(s, s1, golden_frame, current_frame);
1869        return -1;
1870    }
1871
1872    if (s != s1) {
1873        // init tables if the first frame hasn't been decoded
1874        if (!s->current_frame.data[0]) {
1875            int y_fragment_count, c_fragment_count;
1876            s->avctx = dst;
1877            err = allocate_tables(dst);
1878            if (err)
1879                return err;
1880            y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
1881            c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
1882            memcpy(s->motion_val[0], s1->motion_val[0], y_fragment_count * sizeof(*s->motion_val[0]));
1883            memcpy(s->motion_val[1], s1->motion_val[1], c_fragment_count * sizeof(*s->motion_val[1]));
1884        }
1885
1886        // copy previous frame data
1887        copy_fields(s, s1, golden_frame, dsp);
1888
1889        // copy qscale data if necessary
1890        for (i = 0; i < 3; i++) {
1891            if (s->qps[i] != s1->qps[1]) {
1892                qps_changed = 1;
1893                memcpy(&s->qmat[i], &s1->qmat[i], sizeof(s->qmat[i]));
1894            }
1895        }
1896
1897        if (s->qps[0] != s1->qps[0])
1898            memcpy(&s->bounding_values_array, &s1->bounding_values_array, sizeof(s->bounding_values_array));
1899
1900        if (qps_changed)
1901            copy_fields(s, s1, qps, superblock_count);
1902#undef copy_fields
1903    }
1904
1905    update_frames(dst);
1906
1907    return 0;
1908}
1909
1910static int vp3_decode_frame(AVCodecContext *avctx,
1911                            void *data, int *data_size,
1912                            AVPacket *avpkt)
1913{
1914    const uint8_t *buf = avpkt->data;
1915    int buf_size = avpkt->size;
1916    Vp3DecodeContext *s = avctx->priv_data;
1917    GetBitContext gb;
1918    int i;
1919
1920    init_get_bits(&gb, buf, buf_size * 8);
1921
1922    if (s->theora && get_bits1(&gb))
1923    {
1924        av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
1925        return -1;
1926    }
1927
1928    s->keyframe = !get_bits1(&gb);
1929    if (!s->theora)
1930        skip_bits(&gb, 1);
1931    for (i = 0; i < 3; i++)
1932        s->last_qps[i] = s->qps[i];
1933
1934    s->nqps=0;
1935    do{
1936        s->qps[s->nqps++]= get_bits(&gb, 6);
1937    } while(s->theora >= 0x030200 && s->nqps<3 && get_bits1(&gb));
1938    for (i = s->nqps; i < 3; i++)
1939        s->qps[i] = -1;
1940
1941    if (s->avctx->debug & FF_DEBUG_PICT_INFO)
1942        av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
1943            s->keyframe?"key":"", avctx->frame_number+1, s->qps[0]);
1944
1945    s->skip_loop_filter = !s->filter_limit_values[s->qps[0]] ||
1946        avctx->skip_loop_filter >= (s->keyframe ? AVDISCARD_ALL : AVDISCARD_NONKEY);
1947
1948    if (s->qps[0] != s->last_qps[0])
1949        init_loop_filter(s);
1950
1951    for (i = 0; i < s->nqps; i++)
1952        // reinit all dequantizers if the first one changed, because
1953        // the DC of the first quantizer must be used for all matrices
1954        if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
1955            init_dequantizer(s, i);
1956
1957    if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
1958        return buf_size;
1959
1960    s->current_frame.reference = 3;
1961    s->current_frame.pict_type = s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
1962    if (ff_thread_get_buffer(avctx, &s->current_frame) < 0) {
1963        av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
1964        goto error;
1965    }
1966
1967    if (!s->edge_emu_buffer)
1968        s->edge_emu_buffer = av_malloc(9*FFABS(s->current_frame.linesize[0]));
1969
1970    if (s->keyframe) {
1971        if (!s->theora)
1972        {
1973            skip_bits(&gb, 4); /* width code */
1974            skip_bits(&gb, 4); /* height code */
1975            if (s->version)
1976            {
1977                s->version = get_bits(&gb, 5);
1978                if (avctx->frame_number == 0)
1979                    av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
1980            }
1981        }
1982        if (s->version || s->theora)
1983        {
1984                if (get_bits1(&gb))
1985                    av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
1986            skip_bits(&gb, 2); /* reserved? */
1987        }
1988    } else {
1989        if (!s->golden_frame.data[0]) {
1990            av_log(s->avctx, AV_LOG_WARNING, "vp3: first frame not a keyframe\n");
1991
1992            s->golden_frame.reference = 3;
1993            s->golden_frame.pict_type = AV_PICTURE_TYPE_I;
1994            if (ff_thread_get_buffer(avctx, &s->golden_frame) < 0) {
1995                av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
1996                goto error;
1997            }
1998            s->last_frame = s->golden_frame;
1999            s->last_frame.type = FF_BUFFER_TYPE_COPY;
2000            ff_thread_report_progress(&s->last_frame, INT_MAX, 0);
2001        }
2002    }
2003
2004    memset(s->all_fragments, 0, s->fragment_count * sizeof(Vp3Fragment));
2005    ff_thread_finish_setup(avctx);
2006
2007    if (unpack_superblocks(s, &gb)){
2008        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
2009        goto error;
2010    }
2011    if (unpack_modes(s, &gb)){
2012        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
2013        goto error;
2014    }
2015    if (unpack_vectors(s, &gb)){
2016        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
2017        goto error;
2018    }
2019    if (unpack_block_qpis(s, &gb)){
2020        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
2021        goto error;
2022    }
2023    if (unpack_dct_coeffs(s, &gb)){
2024        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
2025        goto error;
2026    }
2027
2028    for (i = 0; i < 3; i++) {
2029        int height = s->height >> (i && s->chroma_y_shift);
2030        if (s->flipped_image)
2031            s->data_offset[i] = 0;
2032        else
2033            s->data_offset[i] = (height-1) * s->current_frame.linesize[i];
2034    }
2035
2036    s->last_slice_end = 0;
2037    for (i = 0; i < s->c_superblock_height; i++)
2038        render_slice(s, i);
2039
2040    // filter the last row
2041    for (i = 0; i < 3; i++) {
2042        int row = (s->height >> (3+(i && s->chroma_y_shift))) - 1;
2043        apply_loop_filter(s, i, row, row+1);
2044    }
2045    vp3_draw_horiz_band(s, s->avctx->height);
2046
2047    *data_size=sizeof(AVFrame);
2048    *(AVFrame*)data= s->current_frame;
2049
2050    if (!HAVE_THREADS || !(s->avctx->active_thread_type&FF_THREAD_FRAME))
2051        update_frames(avctx);
2052
2053    return buf_size;
2054
2055error:
2056    ff_thread_report_progress(&s->current_frame, INT_MAX, 0);
2057
2058    if (!HAVE_THREADS || !(s->avctx->active_thread_type&FF_THREAD_FRAME))
2059        avctx->release_buffer(avctx, &s->current_frame);
2060
2061    return -1;
2062}
2063
2064static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
2065{
2066    Vp3DecodeContext *s = avctx->priv_data;
2067
2068    if (get_bits1(gb)) {
2069        int token;
2070        if (s->entries >= 32) { /* overflow */
2071            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2072            return -1;
2073        }
2074        token = get_bits(gb, 5);
2075        //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
2076        s->huffman_table[s->hti][token][0] = s->hbits;
2077        s->huffman_table[s->hti][token][1] = s->huff_code_size;
2078        s->entries++;
2079    }
2080    else {
2081        if (s->huff_code_size >= 32) {/* overflow */
2082            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2083            return -1;
2084        }
2085        s->huff_code_size++;
2086        s->hbits <<= 1;
2087        if (read_huffman_tree(avctx, gb))
2088            return -1;
2089        s->hbits |= 1;
2090        if (read_huffman_tree(avctx, gb))
2091            return -1;
2092        s->hbits >>= 1;
2093        s->huff_code_size--;
2094    }
2095    return 0;
2096}
2097
2098static int vp3_init_thread_copy(AVCodecContext *avctx)
2099{
2100    Vp3DecodeContext *s = avctx->priv_data;
2101
2102    s->superblock_coding      = NULL;
2103    s->all_fragments          = NULL;
2104    s->coded_fragment_list[0] = NULL;
2105    s->dct_tokens_base        = NULL;
2106    s->superblock_fragments   = NULL;
2107    s->macroblock_coding      = NULL;
2108    s->motion_val[0]          = NULL;
2109    s->motion_val[1]          = NULL;
2110    s->edge_emu_buffer        = NULL;
2111
2112    return 0;
2113}
2114
2115#if CONFIG_THEORA_DECODER
2116static const enum PixelFormat theora_pix_fmts[4] = {
2117    PIX_FMT_YUV420P, PIX_FMT_NONE, PIX_FMT_YUV422P, PIX_FMT_YUV444P
2118};
2119
2120static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
2121{
2122    Vp3DecodeContext *s = avctx->priv_data;
2123    int visible_width, visible_height, colorspace;
2124    int offset_x = 0, offset_y = 0;
2125    AVRational fps, aspect;
2126
2127    s->theora = get_bits_long(gb, 24);
2128    av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
2129
2130    /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
2131    /* but previous versions have the image flipped relative to vp3 */
2132    if (s->theora < 0x030200)
2133    {
2134        s->flipped_image = 1;
2135        av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
2136    }
2137
2138    visible_width  = s->width  = get_bits(gb, 16) << 4;
2139    visible_height = s->height = get_bits(gb, 16) << 4;
2140
2141    if(av_image_check_size(s->width, s->height, 0, avctx)){
2142        av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
2143        s->width= s->height= 0;
2144        return -1;
2145    }
2146
2147    if (s->theora >= 0x030200) {
2148        visible_width  = get_bits_long(gb, 24);
2149        visible_height = get_bits_long(gb, 24);
2150
2151        offset_x = get_bits(gb, 8); /* offset x */
2152        offset_y = get_bits(gb, 8); /* offset y, from bottom */
2153    }
2154
2155    fps.num = get_bits_long(gb, 32);
2156    fps.den = get_bits_long(gb, 32);
2157    if (fps.num && fps.den) {
2158        av_reduce(&avctx->time_base.num, &avctx->time_base.den,
2159                  fps.den, fps.num, 1<<30);
2160    }
2161
2162    aspect.num = get_bits_long(gb, 24);
2163    aspect.den = get_bits_long(gb, 24);
2164    if (aspect.num && aspect.den) {
2165        av_reduce(&avctx->sample_aspect_ratio.num,
2166                  &avctx->sample_aspect_ratio.den,
2167                  aspect.num, aspect.den, 1<<30);
2168    }
2169
2170    if (s->theora < 0x030200)
2171        skip_bits(gb, 5); /* keyframe frequency force */
2172    colorspace = get_bits(gb, 8);
2173    skip_bits(gb, 24); /* bitrate */
2174
2175    skip_bits(gb, 6); /* quality hint */
2176
2177    if (s->theora >= 0x030200)
2178    {
2179        skip_bits(gb, 5); /* keyframe frequency force */
2180        avctx->pix_fmt = theora_pix_fmts[get_bits(gb, 2)];
2181        skip_bits(gb, 3); /* reserved */
2182    }
2183
2184//    align_get_bits(gb);
2185
2186    if (   visible_width  <= s->width  && visible_width  > s->width-16
2187        && visible_height <= s->height && visible_height > s->height-16
2188        && !offset_x && (offset_y == s->height - visible_height))
2189        avcodec_set_dimensions(avctx, visible_width, visible_height);
2190    else
2191        avcodec_set_dimensions(avctx, s->width, s->height);
2192
2193    if (colorspace == 1) {
2194        avctx->color_primaries = AVCOL_PRI_BT470M;
2195    } else if (colorspace == 2) {
2196        avctx->color_primaries = AVCOL_PRI_BT470BG;
2197    }
2198    if (colorspace == 1 || colorspace == 2) {
2199        avctx->colorspace = AVCOL_SPC_BT470BG;
2200        avctx->color_trc  = AVCOL_TRC_BT709;
2201    }
2202
2203    return 0;
2204}
2205
2206static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
2207{
2208    Vp3DecodeContext *s = avctx->priv_data;
2209    int i, n, matrices, inter, plane;
2210
2211    if (s->theora >= 0x030200) {
2212        n = get_bits(gb, 3);
2213        /* loop filter limit values table */
2214        if (n)
2215            for (i = 0; i < 64; i++)
2216                s->filter_limit_values[i] = get_bits(gb, n);
2217    }
2218
2219    if (s->theora >= 0x030200)
2220        n = get_bits(gb, 4) + 1;
2221    else
2222        n = 16;
2223    /* quality threshold table */
2224    for (i = 0; i < 64; i++)
2225        s->coded_ac_scale_factor[i] = get_bits(gb, n);
2226
2227    if (s->theora >= 0x030200)
2228        n = get_bits(gb, 4) + 1;
2229    else
2230        n = 16;
2231    /* dc scale factor table */
2232    for (i = 0; i < 64; i++)
2233        s->coded_dc_scale_factor[i] = get_bits(gb, n);
2234
2235    if (s->theora >= 0x030200)
2236        matrices = get_bits(gb, 9) + 1;
2237    else
2238        matrices = 3;
2239
2240    if(matrices > 384){
2241        av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
2242        return -1;
2243    }
2244
2245    for(n=0; n<matrices; n++){
2246        for (i = 0; i < 64; i++)
2247            s->base_matrix[n][i]= get_bits(gb, 8);
2248    }
2249
2250    for (inter = 0; inter <= 1; inter++) {
2251        for (plane = 0; plane <= 2; plane++) {
2252            int newqr= 1;
2253            if (inter || plane > 0)
2254                newqr = get_bits1(gb);
2255            if (!newqr) {
2256                int qtj, plj;
2257                if(inter && get_bits1(gb)){
2258                    qtj = 0;
2259                    plj = plane;
2260                }else{
2261                    qtj= (3*inter + plane - 1) / 3;
2262                    plj= (plane + 2) % 3;
2263                }
2264                s->qr_count[inter][plane]= s->qr_count[qtj][plj];
2265                memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0]));
2266                memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0]));
2267            } else {
2268                int qri= 0;
2269                int qi = 0;
2270
2271                for(;;){
2272                    i= get_bits(gb, av_log2(matrices-1)+1);
2273                    if(i>= matrices){
2274                        av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n");
2275                        return -1;
2276                    }
2277                    s->qr_base[inter][plane][qri]= i;
2278                    if(qi >= 63)
2279                        break;
2280                    i = get_bits(gb, av_log2(63-qi)+1) + 1;
2281                    s->qr_size[inter][plane][qri++]= i;
2282                    qi += i;
2283                }
2284
2285                if (qi > 63) {
2286                    av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2287                    return -1;
2288                }
2289                s->qr_count[inter][plane]= qri;
2290            }
2291        }
2292    }
2293
2294    /* Huffman tables */
2295    for (s->hti = 0; s->hti < 80; s->hti++) {
2296        s->entries = 0;
2297        s->huff_code_size = 1;
2298        if (!get_bits1(gb)) {
2299            s->hbits = 0;
2300            if(read_huffman_tree(avctx, gb))
2301                return -1;
2302            s->hbits = 1;
2303            if(read_huffman_tree(avctx, gb))
2304                return -1;
2305        }
2306    }
2307
2308    s->theora_tables = 1;
2309
2310    return 0;
2311}
2312
2313static av_cold int theora_decode_init(AVCodecContext *avctx)
2314{
2315    Vp3DecodeContext *s = avctx->priv_data;
2316    GetBitContext gb;
2317    int ptype;
2318    uint8_t *header_start[3];
2319    int header_len[3];
2320    int i;
2321
2322    s->theora = 1;
2323
2324    if (!avctx->extradata_size)
2325    {
2326        av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2327        return -1;
2328    }
2329
2330    if (avpriv_split_xiph_headers(avctx->extradata, avctx->extradata_size,
2331                              42, header_start, header_len) < 0) {
2332        av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
2333        return -1;
2334    }
2335
2336  for(i=0;i<3;i++) {
2337    init_get_bits(&gb, header_start[i], header_len[i] * 8);
2338
2339    ptype = get_bits(&gb, 8);
2340
2341     if (!(ptype & 0x80))
2342     {
2343        av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2344//        return -1;
2345     }
2346
2347    // FIXME: Check for this as well.
2348    skip_bits_long(&gb, 6*8); /* "theora" */
2349
2350    switch(ptype)
2351    {
2352        case 0x80:
2353            theora_decode_header(avctx, &gb);
2354                break;
2355        case 0x81:
2356// FIXME: is this needed? it breaks sometimes
2357//            theora_decode_comments(avctx, gb);
2358            break;
2359        case 0x82:
2360            if (theora_decode_tables(avctx, &gb))
2361                return -1;
2362            break;
2363        default:
2364            av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
2365            break;
2366    }
2367    if(ptype != 0x81 && 8*header_len[i] != get_bits_count(&gb))
2368        av_log(avctx, AV_LOG_WARNING, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype);
2369    if (s->theora < 0x030200)
2370        break;
2371  }
2372
2373    return vp3_decode_init(avctx);
2374}
2375
2376AVCodec ff_theora_decoder = {
2377    .name           = "theora",
2378    .type           = AVMEDIA_TYPE_VIDEO,
2379    .id             = CODEC_ID_THEORA,
2380    .priv_data_size = sizeof(Vp3DecodeContext),
2381    .init           = theora_decode_init,
2382    .close          = vp3_decode_end,
2383    .decode         = vp3_decode_frame,
2384    .capabilities   = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_FRAME_THREADS,
2385    .flush = vp3_decode_flush,
2386    .long_name = NULL_IF_CONFIG_SMALL("Theora"),
2387    .init_thread_copy      = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy),
2388    .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context)
2389};
2390#endif
2391
2392AVCodec ff_vp3_decoder = {
2393    .name           = "vp3",
2394    .type           = AVMEDIA_TYPE_VIDEO,
2395    .id             = CODEC_ID_VP3,
2396    .priv_data_size = sizeof(Vp3DecodeContext),
2397    .init           = vp3_decode_init,
2398    .close          = vp3_decode_end,
2399    .decode         = vp3_decode_frame,
2400    .capabilities   = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_FRAME_THREADS,
2401    .flush = vp3_decode_flush,
2402    .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),
2403    .init_thread_copy      = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy),
2404    .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context)
2405};
2406