1/*
2 * QCELP decoder
3 * Copyright (c) 2007 Reynaldo H. Verdejo Pinochet
4 *
5 * This file is part of Libav.
6 *
7 * Libav is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * Libav is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with Libav; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file
24 * QCELP decoder
25 * @author Reynaldo H. Verdejo Pinochet
26 * @remark Libav merging spearheaded by Kenan Gillet
27 * @remark Development mentored by Benjamin Larson
28 */
29
30#include <stddef.h>
31
32#include "avcodec.h"
33#include "internal.h"
34#include "get_bits.h"
35
36#include "qcelpdata.h"
37
38#include "celp_math.h"
39#include "celp_filters.h"
40#include "acelp_filters.h"
41#include "acelp_vectors.h"
42#include "lsp.h"
43
44#undef NDEBUG
45#include <assert.h>
46
47typedef enum {
48    I_F_Q = -1,    /**< insufficient frame quality */
49    SILENCE,
50    RATE_OCTAVE,
51    RATE_QUARTER,
52    RATE_HALF,
53    RATE_FULL
54} qcelp_packet_rate;
55
56typedef struct {
57    AVFrame           avframe;
58    GetBitContext     gb;
59    qcelp_packet_rate bitrate;
60    QCELPFrame        frame;    /**< unpacked data frame */
61
62    uint8_t  erasure_count;
63    uint8_t  octave_count;      /**< count the consecutive RATE_OCTAVE frames */
64    float    prev_lspf[10];
65    float    predictor_lspf[10];/**< LSP predictor for RATE_OCTAVE and I_F_Q */
66    float    pitch_synthesis_filter_mem[303];
67    float    pitch_pre_filter_mem[303];
68    float    rnd_fir_filter_mem[180];
69    float    formant_mem[170];
70    float    last_codebook_gain;
71    int      prev_g1[2];
72    int      prev_bitrate;
73    float    pitch_gain[4];
74    uint8_t  pitch_lag[4];
75    uint16_t first16bits;
76    uint8_t  warned_buf_mismatch_bitrate;
77
78    /* postfilter */
79    float    postfilter_synth_mem[10];
80    float    postfilter_agc_mem;
81    float    postfilter_tilt_mem;
82} QCELPContext;
83
84/**
85 * Initialize the speech codec according to the specification.
86 *
87 * TIA/EIA/IS-733 2.4.9
88 */
89static av_cold int qcelp_decode_init(AVCodecContext *avctx)
90{
91    QCELPContext *q = avctx->priv_data;
92    int i;
93
94    avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
95
96    for (i = 0; i < 10; i++)
97        q->prev_lspf[i] = (i + 1) / 11.;
98
99    avcodec_get_frame_defaults(&q->avframe);
100    avctx->coded_frame = &q->avframe;
101
102    return 0;
103}
104
105/**
106 * Decode the 10 quantized LSP frequencies from the LSPV/LSP
107 * transmission codes of any bitrate and check for badly received packets.
108 *
109 * @param q the context
110 * @param lspf line spectral pair frequencies
111 *
112 * @return 0 on success, -1 if the packet is badly received
113 *
114 * TIA/EIA/IS-733 2.4.3.2.6.2-2, 2.4.8.7.3
115 */
116static int decode_lspf(QCELPContext *q, float *lspf)
117{
118    int i;
119    float tmp_lspf, smooth, erasure_coeff;
120    const float *predictors;
121
122    if (q->bitrate == RATE_OCTAVE || q->bitrate == I_F_Q) {
123        predictors = q->prev_bitrate != RATE_OCTAVE &&
124                     q->prev_bitrate != I_F_Q ? q->prev_lspf
125                                              : q->predictor_lspf;
126
127        if (q->bitrate == RATE_OCTAVE) {
128            q->octave_count++;
129
130            for (i = 0; i < 10; i++) {
131                q->predictor_lspf[i] =
132                             lspf[i] = (q->frame.lspv[i] ?  QCELP_LSP_SPREAD_FACTOR
133                                                         : -QCELP_LSP_SPREAD_FACTOR) +
134                                        predictors[i] * QCELP_LSP_OCTAVE_PREDICTOR   +
135                                        (i + 1) * ((1 - QCELP_LSP_OCTAVE_PREDICTOR) / 11);
136            }
137            smooth = q->octave_count < 10 ? .875 : 0.1;
138        } else {
139            erasure_coeff = QCELP_LSP_OCTAVE_PREDICTOR;
140
141            assert(q->bitrate == I_F_Q);
142
143            if (q->erasure_count > 1)
144                erasure_coeff *= q->erasure_count < 4 ? 0.9 : 0.7;
145
146            for (i = 0; i < 10; i++) {
147                q->predictor_lspf[i] =
148                             lspf[i] = (i + 1) * (1 - erasure_coeff) / 11 +
149                                       erasure_coeff * predictors[i];
150            }
151            smooth = 0.125;
152        }
153
154        // Check the stability of the LSP frequencies.
155        lspf[0] = FFMAX(lspf[0], QCELP_LSP_SPREAD_FACTOR);
156        for (i = 1; i < 10; i++)
157            lspf[i] = FFMAX(lspf[i], lspf[i - 1] + QCELP_LSP_SPREAD_FACTOR);
158
159        lspf[9] = FFMIN(lspf[9], 1.0 - QCELP_LSP_SPREAD_FACTOR);
160        for (i = 9; i > 0; i--)
161            lspf[i - 1] = FFMIN(lspf[i - 1], lspf[i] - QCELP_LSP_SPREAD_FACTOR);
162
163        // Low-pass filter the LSP frequencies.
164        ff_weighted_vector_sumf(lspf, lspf, q->prev_lspf, smooth, 1.0 - smooth, 10);
165    } else {
166        q->octave_count = 0;
167
168        tmp_lspf = 0.;
169        for (i = 0; i < 5; i++) {
170            lspf[2 * i + 0] = tmp_lspf += qcelp_lspvq[i][q->frame.lspv[i]][0] * 0.0001;
171            lspf[2 * i + 1] = tmp_lspf += qcelp_lspvq[i][q->frame.lspv[i]][1] * 0.0001;
172        }
173
174        // Check for badly received packets.
175        if (q->bitrate == RATE_QUARTER) {
176            if (lspf[9] <= .70 || lspf[9] >= .97)
177                return -1;
178            for (i = 3; i < 10; i++)
179                if (fabs(lspf[i] - lspf[i - 2]) < .08)
180                    return -1;
181        } else {
182            if (lspf[9] <= .66 || lspf[9] >= .985)
183                return -1;
184            for (i = 4; i < 10; i++)
185                if (fabs(lspf[i] - lspf[i - 4]) < .0931)
186                    return -1;
187        }
188    }
189    return 0;
190}
191
192/**
193 * Convert codebook transmission codes to GAIN and INDEX.
194 *
195 * @param q the context
196 * @param gain array holding the decoded gain
197 *
198 * TIA/EIA/IS-733 2.4.6.2
199 */
200static void decode_gain_and_index(QCELPContext *q, float *gain)
201{
202    int i, subframes_count, g1[16];
203    float slope;
204
205    if (q->bitrate >= RATE_QUARTER) {
206        switch (q->bitrate) {
207        case RATE_FULL: subframes_count = 16; break;
208        case RATE_HALF: subframes_count =  4; break;
209        default:        subframes_count =  5;
210        }
211        for (i = 0; i < subframes_count; i++) {
212            g1[i] = 4 * q->frame.cbgain[i];
213            if (q->bitrate == RATE_FULL && !((i + 1) & 3)) {
214                g1[i] += av_clip((g1[i - 1] + g1[i - 2] + g1[i - 3]) / 3 - 6, 0, 32);
215            }
216
217            gain[i] = qcelp_g12ga[g1[i]];
218
219            if (q->frame.cbsign[i]) {
220                gain[i] = -gain[i];
221                q->frame.cindex[i] = (q->frame.cindex[i] - 89) & 127;
222            }
223        }
224
225        q->prev_g1[0]         = g1[i - 2];
226        q->prev_g1[1]         = g1[i - 1];
227        q->last_codebook_gain = qcelp_g12ga[g1[i - 1]];
228
229        if (q->bitrate == RATE_QUARTER) {
230            // Provide smoothing of the unvoiced excitation energy.
231            gain[7] =       gain[4];
232            gain[6] = 0.4 * gain[3] + 0.6 * gain[4];
233            gain[5] =       gain[3];
234            gain[4] = 0.8 * gain[2] + 0.2 * gain[3];
235            gain[3] = 0.2 * gain[1] + 0.8 * gain[2];
236            gain[2] =       gain[1];
237            gain[1] = 0.6 * gain[0] + 0.4 * gain[1];
238        }
239    } else if (q->bitrate != SILENCE) {
240        if (q->bitrate == RATE_OCTAVE) {
241            g1[0] = 2 * q->frame.cbgain[0] +
242                    av_clip((q->prev_g1[0] + q->prev_g1[1]) / 2 - 5, 0, 54);
243            subframes_count = 8;
244        } else {
245            assert(q->bitrate == I_F_Q);
246
247            g1[0] = q->prev_g1[1];
248            switch (q->erasure_count) {
249            case 1 : break;
250            case 2 : g1[0] -= 1; break;
251            case 3 : g1[0] -= 2; break;
252            default: g1[0] -= 6;
253            }
254            if (g1[0] < 0)
255                g1[0] = 0;
256            subframes_count = 4;
257        }
258        // This interpolation is done to produce smoother background noise.
259        slope = 0.5 * (qcelp_g12ga[g1[0]] - q->last_codebook_gain) / subframes_count;
260        for (i = 1; i <= subframes_count; i++)
261                gain[i - 1] = q->last_codebook_gain + slope * i;
262
263        q->last_codebook_gain = gain[i - 2];
264        q->prev_g1[0]         = q->prev_g1[1];
265        q->prev_g1[1]         = g1[0];
266    }
267}
268
269/**
270 * If the received packet is Rate 1/4 a further sanity check is made of the
271 * codebook gain.
272 *
273 * @param cbgain the unpacked cbgain array
274 * @return -1 if the sanity check fails, 0 otherwise
275 *
276 * TIA/EIA/IS-733 2.4.8.7.3
277 */
278static int codebook_sanity_check_for_rate_quarter(const uint8_t *cbgain)
279{
280    int i, diff, prev_diff = 0;
281
282    for (i = 1; i < 5; i++) {
283        diff = cbgain[i] - cbgain[i-1];
284        if (FFABS(diff) > 10)
285            return -1;
286        else if (FFABS(diff - prev_diff) > 12)
287            return -1;
288        prev_diff = diff;
289    }
290    return 0;
291}
292
293/**
294 * Compute the scaled codebook vector Cdn From INDEX and GAIN
295 * for all rates.
296 *
297 * The specification lacks some information here.
298 *
299 * TIA/EIA/IS-733 has an omission on the codebook index determination
300 * formula for RATE_FULL and RATE_HALF frames at section 2.4.8.1.1. It says
301 * you have to subtract the decoded index parameter from the given scaled
302 * codebook vector index 'n' to get the desired circular codebook index, but
303 * it does not mention that you have to clamp 'n' to [0-9] in order to get
304 * RI-compliant results.
305 *
306 * The reason for this mistake seems to be the fact they forgot to mention you
307 * have to do these calculations per codebook subframe and adjust given
308 * equation values accordingly.
309 *
310 * @param q the context
311 * @param gain array holding the 4 pitch subframe gain values
312 * @param cdn_vector array for the generated scaled codebook vector
313 */
314static void compute_svector(QCELPContext *q, const float *gain,
315                            float *cdn_vector)
316{
317    int i, j, k;
318    uint16_t cbseed, cindex;
319    float *rnd, tmp_gain, fir_filter_value;
320
321    switch (q->bitrate) {
322    case RATE_FULL:
323        for (i = 0; i < 16; i++) {
324            tmp_gain = gain[i] * QCELP_RATE_FULL_CODEBOOK_RATIO;
325            cindex   = -q->frame.cindex[i];
326            for (j = 0; j < 10; j++)
327                *cdn_vector++ = tmp_gain * qcelp_rate_full_codebook[cindex++ & 127];
328        }
329        break;
330    case RATE_HALF:
331        for (i = 0; i < 4; i++) {
332            tmp_gain = gain[i] * QCELP_RATE_HALF_CODEBOOK_RATIO;
333            cindex   = -q->frame.cindex[i];
334            for (j = 0; j < 40; j++)
335                *cdn_vector++ = tmp_gain * qcelp_rate_half_codebook[cindex++ & 127];
336        }
337        break;
338    case RATE_QUARTER:
339        cbseed = (0x0003 & q->frame.lspv[4]) << 14 |
340                 (0x003F & q->frame.lspv[3]) <<  8 |
341                 (0x0060 & q->frame.lspv[2]) <<  1 |
342                 (0x0007 & q->frame.lspv[1]) <<  3 |
343                 (0x0038 & q->frame.lspv[0]) >>  3;
344        rnd    = q->rnd_fir_filter_mem + 20;
345        for (i = 0; i < 8; i++) {
346            tmp_gain = gain[i] * (QCELP_SQRT1887 / 32768.0);
347            for (k = 0; k < 20; k++) {
348                cbseed = 521 * cbseed + 259;
349                *rnd   = (int16_t) cbseed;
350
351                    // FIR filter
352                fir_filter_value = 0.0;
353                for (j = 0; j < 10; j++)
354                    fir_filter_value += qcelp_rnd_fir_coefs[j] *
355                                        (rnd[-j] + rnd[-20+j]);
356
357                fir_filter_value += qcelp_rnd_fir_coefs[10] * rnd[-10];
358                *cdn_vector++     = tmp_gain * fir_filter_value;
359                rnd++;
360            }
361        }
362        memcpy(q->rnd_fir_filter_mem, q->rnd_fir_filter_mem + 160,
363               20 * sizeof(float));
364        break;
365    case RATE_OCTAVE:
366        cbseed = q->first16bits;
367        for (i = 0; i < 8; i++) {
368            tmp_gain = gain[i] * (QCELP_SQRT1887 / 32768.0);
369            for (j = 0; j < 20; j++) {
370                cbseed        = 521 * cbseed + 259;
371                *cdn_vector++ = tmp_gain * (int16_t) cbseed;
372            }
373        }
374        break;
375    case I_F_Q:
376        cbseed = -44; // random codebook index
377        for (i = 0; i < 4; i++) {
378            tmp_gain = gain[i] * QCELP_RATE_FULL_CODEBOOK_RATIO;
379            for (j = 0; j < 40; j++)
380                *cdn_vector++ = tmp_gain * qcelp_rate_full_codebook[cbseed++ & 127];
381        }
382        break;
383    case SILENCE:
384        memset(cdn_vector, 0, 160 * sizeof(float));
385        break;
386    }
387}
388
389/**
390 * Apply generic gain control.
391 *
392 * @param v_out output vector
393 * @param v_in gain-controlled vector
394 * @param v_ref vector to control gain of
395 *
396 * TIA/EIA/IS-733 2.4.8.3, 2.4.8.6
397 */
398static void apply_gain_ctrl(float *v_out, const float *v_ref, const float *v_in)
399{
400    int i;
401
402    for (i = 0; i < 160; i += 40)
403        ff_scale_vector_to_given_sum_of_squares(v_out + i, v_in + i,
404                                                ff_dot_productf(v_ref + i,
405                                                                v_ref + i, 40),
406                                                40);
407}
408
409/**
410 * Apply filter in pitch-subframe steps.
411 *
412 * @param memory buffer for the previous state of the filter
413 *        - must be able to contain 303 elements
414 *        - the 143 first elements are from the previous state
415 *        - the next 160 are for output
416 * @param v_in input filter vector
417 * @param gain per-subframe gain array, each element is between 0.0 and 2.0
418 * @param lag per-subframe lag array, each element is
419 *        - between 16 and 143 if its corresponding pfrac is 0,
420 *        - between 16 and 139 otherwise
421 * @param pfrac per-subframe boolean array, 1 if the lag is fractional, 0
422 *        otherwise
423 *
424 * @return filter output vector
425 */
426static const float *do_pitchfilter(float memory[303], const float v_in[160],
427                                   const float gain[4], const uint8_t *lag,
428                                   const uint8_t pfrac[4])
429{
430    int i, j;
431    float *v_lag, *v_out;
432    const float *v_len;
433
434    v_out = memory + 143; // Output vector starts at memory[143].
435
436    for (i = 0; i < 4; i++) {
437        if (gain[i]) {
438            v_lag = memory + 143 + 40 * i - lag[i];
439            for (v_len = v_in + 40; v_in < v_len; v_in++) {
440                if (pfrac[i]) { // If it is a fractional lag...
441                    for (j = 0, *v_out = 0.; j < 4; j++)
442                        *v_out += qcelp_hammsinc_table[j] * (v_lag[j - 4] + v_lag[3 - j]);
443                } else
444                    *v_out = *v_lag;
445
446                *v_out = *v_in + gain[i] * *v_out;
447
448                v_lag++;
449                v_out++;
450            }
451        } else {
452            memcpy(v_out, v_in, 40 * sizeof(float));
453            v_in  += 40;
454            v_out += 40;
455        }
456    }
457
458    memmove(memory, memory + 160, 143 * sizeof(float));
459    return memory + 143;
460}
461
462/**
463 * Apply pitch synthesis filter and pitch prefilter to the scaled codebook vector.
464 * TIA/EIA/IS-733 2.4.5.2, 2.4.8.7.2
465 *
466 * @param q the context
467 * @param cdn_vector the scaled codebook vector
468 */
469static void apply_pitch_filters(QCELPContext *q, float *cdn_vector)
470{
471    int i;
472    const float *v_synthesis_filtered, *v_pre_filtered;
473
474    if (q->bitrate >= RATE_HALF || q->bitrate == SILENCE ||
475        (q->bitrate == I_F_Q && (q->prev_bitrate >= RATE_HALF))) {
476
477        if (q->bitrate >= RATE_HALF) {
478            // Compute gain & lag for the whole frame.
479            for (i = 0; i < 4; i++) {
480                q->pitch_gain[i] = q->frame.plag[i] ? (q->frame.pgain[i] + 1) * 0.25 : 0.0;
481
482                q->pitch_lag[i] = q->frame.plag[i] + 16;
483            }
484        } else {
485            float max_pitch_gain;
486
487            if (q->bitrate == I_F_Q) {
488                  if (q->erasure_count < 3)
489                      max_pitch_gain = 0.9 - 0.3 * (q->erasure_count - 1);
490                  else
491                      max_pitch_gain = 0.0;
492            } else {
493                assert(q->bitrate == SILENCE);
494                max_pitch_gain = 1.0;
495            }
496            for (i = 0; i < 4; i++)
497                q->pitch_gain[i] = FFMIN(q->pitch_gain[i], max_pitch_gain);
498
499            memset(q->frame.pfrac, 0, sizeof(q->frame.pfrac));
500        }
501
502        // pitch synthesis filter
503        v_synthesis_filtered = do_pitchfilter(q->pitch_synthesis_filter_mem,
504                                              cdn_vector, q->pitch_gain,
505                                              q->pitch_lag, q->frame.pfrac);
506
507        // pitch prefilter update
508        for (i = 0; i < 4; i++)
509            q->pitch_gain[i] = 0.5 * FFMIN(q->pitch_gain[i], 1.0);
510
511        v_pre_filtered       = do_pitchfilter(q->pitch_pre_filter_mem,
512                                              v_synthesis_filtered,
513                                              q->pitch_gain, q->pitch_lag,
514                                              q->frame.pfrac);
515
516        apply_gain_ctrl(cdn_vector, v_synthesis_filtered, v_pre_filtered);
517    } else {
518        memcpy(q->pitch_synthesis_filter_mem, cdn_vector + 17, 143 * sizeof(float));
519        memcpy(q->pitch_pre_filter_mem, cdn_vector + 17, 143 * sizeof(float));
520        memset(q->pitch_gain, 0, sizeof(q->pitch_gain));
521        memset(q->pitch_lag,  0, sizeof(q->pitch_lag));
522    }
523}
524
525/**
526 * Reconstruct LPC coefficients from the line spectral pair frequencies
527 * and perform bandwidth expansion.
528 *
529 * @param lspf line spectral pair frequencies
530 * @param lpc linear predictive coding coefficients
531 *
532 * @note: bandwidth_expansion_coeff could be precalculated into a table
533 *        but it seems to be slower on x86
534 *
535 * TIA/EIA/IS-733 2.4.3.3.5
536 */
537static void lspf2lpc(const float *lspf, float *lpc)
538{
539    double lsp[10];
540    double bandwidth_expansion_coeff = QCELP_BANDWIDTH_EXPANSION_COEFF;
541    int i;
542
543    for (i = 0; i < 10; i++)
544        lsp[i] = cos(M_PI * lspf[i]);
545
546    ff_acelp_lspd2lpc(lsp, lpc, 5);
547
548    for (i = 0; i < 10; i++) {
549        lpc[i]                    *= bandwidth_expansion_coeff;
550        bandwidth_expansion_coeff *= QCELP_BANDWIDTH_EXPANSION_COEFF;
551    }
552}
553
554/**
555 * Interpolate LSP frequencies and compute LPC coefficients
556 * for a given bitrate & pitch subframe.
557 *
558 * TIA/EIA/IS-733 2.4.3.3.4, 2.4.8.7.2
559 *
560 * @param q the context
561 * @param curr_lspf LSP frequencies vector of the current frame
562 * @param lpc float vector for the resulting LPC
563 * @param subframe_num frame number in decoded stream
564 */
565static void interpolate_lpc(QCELPContext *q, const float *curr_lspf,
566                            float *lpc, const int subframe_num)
567{
568    float interpolated_lspf[10];
569    float weight;
570
571    if (q->bitrate >= RATE_QUARTER)
572        weight = 0.25 * (subframe_num + 1);
573    else if (q->bitrate == RATE_OCTAVE && !subframe_num)
574        weight = 0.625;
575    else
576        weight = 1.0;
577
578    if (weight != 1.0) {
579        ff_weighted_vector_sumf(interpolated_lspf, curr_lspf, q->prev_lspf,
580                                weight, 1.0 - weight, 10);
581        lspf2lpc(interpolated_lspf, lpc);
582    } else if (q->bitrate >= RATE_QUARTER ||
583               (q->bitrate == I_F_Q && !subframe_num))
584        lspf2lpc(curr_lspf, lpc);
585    else if (q->bitrate == SILENCE && !subframe_num)
586        lspf2lpc(q->prev_lspf, lpc);
587}
588
589static qcelp_packet_rate buf_size2bitrate(const int buf_size)
590{
591    switch (buf_size) {
592    case 35: return RATE_FULL;
593    case 17: return RATE_HALF;
594    case  8: return RATE_QUARTER;
595    case  4: return RATE_OCTAVE;
596    case  1: return SILENCE;
597    }
598
599    return I_F_Q;
600}
601
602/**
603 * Determine the bitrate from the frame size and/or the first byte of the frame.
604 *
605 * @param avctx the AV codec context
606 * @param buf_size length of the buffer
607 * @param buf the bufffer
608 *
609 * @return the bitrate on success,
610 *         I_F_Q  if the bitrate cannot be satisfactorily determined
611 *
612 * TIA/EIA/IS-733 2.4.8.7.1
613 */
614static qcelp_packet_rate determine_bitrate(AVCodecContext *avctx,
615                                           const int buf_size,
616                                           const uint8_t **buf)
617{
618    qcelp_packet_rate bitrate;
619
620    if ((bitrate = buf_size2bitrate(buf_size)) >= 0) {
621        if (bitrate > **buf) {
622            QCELPContext *q = avctx->priv_data;
623            if (!q->warned_buf_mismatch_bitrate) {
624            av_log(avctx, AV_LOG_WARNING,
625                   "Claimed bitrate and buffer size mismatch.\n");
626                q->warned_buf_mismatch_bitrate = 1;
627            }
628            bitrate = **buf;
629        } else if (bitrate < **buf) {
630            av_log(avctx, AV_LOG_ERROR,
631                   "Buffer is too small for the claimed bitrate.\n");
632            return I_F_Q;
633        }
634        (*buf)++;
635    } else if ((bitrate = buf_size2bitrate(buf_size + 1)) >= 0) {
636        av_log(avctx, AV_LOG_WARNING,
637               "Bitrate byte is missing, guessing the bitrate from packet size.\n");
638    } else
639        return I_F_Q;
640
641    if (bitrate == SILENCE) {
642        //FIXME: Remove experimental warning when tested with samples.
643        av_log_ask_for_sample(avctx, "'Blank frame handling is experimental.");
644    }
645    return bitrate;
646}
647
648static void warn_insufficient_frame_quality(AVCodecContext *avctx,
649                                            const char *message)
650{
651    av_log(avctx, AV_LOG_WARNING, "Frame #%d, IFQ: %s\n",
652           avctx->frame_number, message);
653}
654
655static void postfilter(QCELPContext *q, float *samples, float *lpc)
656{
657    static const float pow_0_775[10] = {
658        0.775000, 0.600625, 0.465484, 0.360750, 0.279582,
659        0.216676, 0.167924, 0.130141, 0.100859, 0.078166
660    }, pow_0_625[10] = {
661        0.625000, 0.390625, 0.244141, 0.152588, 0.095367,
662        0.059605, 0.037253, 0.023283, 0.014552, 0.009095
663    };
664    float lpc_s[10], lpc_p[10], pole_out[170], zero_out[160];
665    int n;
666
667    for (n = 0; n < 10; n++) {
668        lpc_s[n] = lpc[n] * pow_0_625[n];
669        lpc_p[n] = lpc[n] * pow_0_775[n];
670    }
671
672    ff_celp_lp_zero_synthesis_filterf(zero_out, lpc_s,
673                                      q->formant_mem + 10, 160, 10);
674    memcpy(pole_out, q->postfilter_synth_mem, sizeof(float) * 10);
675    ff_celp_lp_synthesis_filterf(pole_out + 10, lpc_p, zero_out, 160, 10);
676    memcpy(q->postfilter_synth_mem, pole_out + 160, sizeof(float) * 10);
677
678    ff_tilt_compensation(&q->postfilter_tilt_mem, 0.3, pole_out + 10, 160);
679
680    ff_adaptive_gain_control(samples, pole_out + 10,
681                             ff_dot_productf(q->formant_mem + 10,
682                                             q->formant_mem + 10, 160),
683                             160, 0.9375, &q->postfilter_agc_mem);
684}
685
686static int qcelp_decode_frame(AVCodecContext *avctx, void *data,
687                              int *got_frame_ptr, AVPacket *avpkt)
688{
689    const uint8_t *buf = avpkt->data;
690    int buf_size       = avpkt->size;
691    QCELPContext *q    = avctx->priv_data;
692    float *outbuffer;
693    int   i, ret;
694    float quantized_lspf[10], lpc[10];
695    float gain[16];
696    float *formant_mem;
697
698    /* get output buffer */
699    q->avframe.nb_samples = 160;
700    if ((ret = avctx->get_buffer(avctx, &q->avframe)) < 0) {
701        av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
702        return ret;
703    }
704    outbuffer = (float *)q->avframe.data[0];
705
706    if ((q->bitrate = determine_bitrate(avctx, buf_size, &buf)) == I_F_Q) {
707        warn_insufficient_frame_quality(avctx, "bitrate cannot be determined.");
708        goto erasure;
709    }
710
711    if (q->bitrate == RATE_OCTAVE &&
712        (q->first16bits = AV_RB16(buf)) == 0xFFFF) {
713        warn_insufficient_frame_quality(avctx, "Bitrate is 1/8 and first 16 bits are on.");
714        goto erasure;
715    }
716
717    if (q->bitrate > SILENCE) {
718        const QCELPBitmap *bitmaps     = qcelp_unpacking_bitmaps_per_rate[q->bitrate];
719        const QCELPBitmap *bitmaps_end = qcelp_unpacking_bitmaps_per_rate[q->bitrate] +
720                                         qcelp_unpacking_bitmaps_lengths[q->bitrate];
721        uint8_t *unpacked_data         = (uint8_t *)&q->frame;
722
723        init_get_bits(&q->gb, buf, 8 * buf_size);
724
725        memset(&q->frame, 0, sizeof(QCELPFrame));
726
727        for (; bitmaps < bitmaps_end; bitmaps++)
728            unpacked_data[bitmaps->index] |= get_bits(&q->gb, bitmaps->bitlen) << bitmaps->bitpos;
729
730        // Check for erasures/blanks on rates 1, 1/4 and 1/8.
731        if (q->frame.reserved) {
732            warn_insufficient_frame_quality(avctx, "Wrong data in reserved frame area.");
733            goto erasure;
734        }
735        if (q->bitrate == RATE_QUARTER &&
736            codebook_sanity_check_for_rate_quarter(q->frame.cbgain)) {
737            warn_insufficient_frame_quality(avctx, "Codebook gain sanity check failed.");
738            goto erasure;
739        }
740
741        if (q->bitrate >= RATE_HALF) {
742            for (i = 0; i < 4; i++) {
743                if (q->frame.pfrac[i] && q->frame.plag[i] >= 124) {
744                    warn_insufficient_frame_quality(avctx, "Cannot initialize pitch filter.");
745                    goto erasure;
746                }
747            }
748        }
749    }
750
751    decode_gain_and_index(q, gain);
752    compute_svector(q, gain, outbuffer);
753
754    if (decode_lspf(q, quantized_lspf) < 0) {
755        warn_insufficient_frame_quality(avctx, "Badly received packets in frame.");
756        goto erasure;
757    }
758
759    apply_pitch_filters(q, outbuffer);
760
761    if (q->bitrate == I_F_Q) {
762erasure:
763        q->bitrate = I_F_Q;
764        q->erasure_count++;
765        decode_gain_and_index(q, gain);
766        compute_svector(q, gain, outbuffer);
767        decode_lspf(q, quantized_lspf);
768        apply_pitch_filters(q, outbuffer);
769    } else
770        q->erasure_count = 0;
771
772    formant_mem = q->formant_mem + 10;
773    for (i = 0; i < 4; i++) {
774        interpolate_lpc(q, quantized_lspf, lpc, i);
775        ff_celp_lp_synthesis_filterf(formant_mem, lpc, outbuffer + i * 40, 40, 10);
776        formant_mem += 40;
777    }
778
779    // postfilter, as per TIA/EIA/IS-733 2.4.8.6
780    postfilter(q, outbuffer, lpc);
781
782    memcpy(q->formant_mem, q->formant_mem + 160, 10 * sizeof(float));
783
784    memcpy(q->prev_lspf, quantized_lspf, sizeof(q->prev_lspf));
785    q->prev_bitrate  = q->bitrate;
786
787    *got_frame_ptr   = 1;
788    *(AVFrame *)data = q->avframe;
789
790    return buf_size;
791}
792
793AVCodec ff_qcelp_decoder = {
794    .name           = "qcelp",
795    .type           = AVMEDIA_TYPE_AUDIO,
796    .id             = CODEC_ID_QCELP,
797    .init           = qcelp_decode_init,
798    .decode         = qcelp_decode_frame,
799    .capabilities   = CODEC_CAP_DR1,
800    .priv_data_size = sizeof(QCELPContext),
801    .long_name      = NULL_IF_CONFIG_SMALL("QCELP / PureVoice"),
802};
803