1/*
2 * The simplest mpeg audio layer 2 encoder
3 * Copyright (c) 2000, 2001 Fabrice Bellard
4 *
5 * This file is part of Libav.
6 *
7 * Libav is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * Libav is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with Libav; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file
24 * The simplest mpeg audio layer 2 encoder.
25 */
26
27#include "avcodec.h"
28#include "internal.h"
29#include "put_bits.h"
30
31#define FRAC_BITS   15   /* fractional bits for sb_samples and dct */
32#define WFRAC_BITS  14   /* fractional bits for window */
33
34#include "mpegaudio.h"
35
36/* currently, cannot change these constants (need to modify
37   quantization stage) */
38#define MUL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
39
40#define SAMPLES_BUF_SIZE 4096
41
42typedef struct MpegAudioContext {
43    PutBitContext pb;
44    int nb_channels;
45    int lsf;           /* 1 if mpeg2 low bitrate selected */
46    int bitrate_index; /* bit rate */
47    int freq_index;
48    int frame_size; /* frame size, in bits, without padding */
49    /* padding computation */
50    int frame_frac, frame_frac_incr, do_padding;
51    short samples_buf[MPA_MAX_CHANNELS][SAMPLES_BUF_SIZE]; /* buffer for filter */
52    int samples_offset[MPA_MAX_CHANNELS];       /* offset in samples_buf */
53    int sb_samples[MPA_MAX_CHANNELS][3][12][SBLIMIT];
54    unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3]; /* scale factors */
55    /* code to group 3 scale factors */
56    unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
57    int sblimit; /* number of used subbands */
58    const unsigned char *alloc_table;
59} MpegAudioContext;
60
61/* define it to use floats in quantization (I don't like floats !) */
62#define USE_FLOATS
63
64#include "mpegaudiodata.h"
65#include "mpegaudiotab.h"
66
67static av_cold int MPA_encode_init(AVCodecContext *avctx)
68{
69    MpegAudioContext *s = avctx->priv_data;
70    int freq = avctx->sample_rate;
71    int bitrate = avctx->bit_rate;
72    int channels = avctx->channels;
73    int i, v, table;
74    float a;
75
76    if (channels <= 0 || channels > 2){
77        av_log(avctx, AV_LOG_ERROR, "encoding %d channel(s) is not allowed in mp2\n", channels);
78        return -1;
79    }
80    bitrate = bitrate / 1000;
81    s->nb_channels = channels;
82    avctx->frame_size = MPA_FRAME_SIZE;
83
84    /* encoding freq */
85    s->lsf = 0;
86    for(i=0;i<3;i++) {
87        if (avpriv_mpa_freq_tab[i] == freq)
88            break;
89        if ((avpriv_mpa_freq_tab[i] / 2) == freq) {
90            s->lsf = 1;
91            break;
92        }
93    }
94    if (i == 3){
95        av_log(avctx, AV_LOG_ERROR, "Sampling rate %d is not allowed in mp2\n", freq);
96        return -1;
97    }
98    s->freq_index = i;
99
100    /* encoding bitrate & frequency */
101    for(i=0;i<15;i++) {
102        if (avpriv_mpa_bitrate_tab[s->lsf][1][i] == bitrate)
103            break;
104    }
105    if (i == 15){
106        av_log(avctx, AV_LOG_ERROR, "bitrate %d is not allowed in mp2\n", bitrate);
107        return -1;
108    }
109    s->bitrate_index = i;
110
111    /* compute total header size & pad bit */
112
113    a = (float)(bitrate * 1000 * MPA_FRAME_SIZE) / (freq * 8.0);
114    s->frame_size = ((int)a) * 8;
115
116    /* frame fractional size to compute padding */
117    s->frame_frac = 0;
118    s->frame_frac_incr = (int)((a - floor(a)) * 65536.0);
119
120    /* select the right allocation table */
121    table = ff_mpa_l2_select_table(bitrate, s->nb_channels, freq, s->lsf);
122
123    /* number of used subbands */
124    s->sblimit = ff_mpa_sblimit_table[table];
125    s->alloc_table = ff_mpa_alloc_tables[table];
126
127    av_dlog(avctx, "%d kb/s, %d Hz, frame_size=%d bits, table=%d, padincr=%x\n",
128            bitrate, freq, s->frame_size, table, s->frame_frac_incr);
129
130    for(i=0;i<s->nb_channels;i++)
131        s->samples_offset[i] = 0;
132
133    for(i=0;i<257;i++) {
134        int v;
135        v = ff_mpa_enwindow[i];
136#if WFRAC_BITS != 16
137        v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
138#endif
139        filter_bank[i] = v;
140        if ((i & 63) != 0)
141            v = -v;
142        if (i != 0)
143            filter_bank[512 - i] = v;
144    }
145
146    for(i=0;i<64;i++) {
147        v = (int)(pow(2.0, (3 - i) / 3.0) * (1 << 20));
148        if (v <= 0)
149            v = 1;
150        scale_factor_table[i] = v;
151#ifdef USE_FLOATS
152        scale_factor_inv_table[i] = pow(2.0, -(3 - i) / 3.0) / (float)(1 << 20);
153#else
154#define P 15
155        scale_factor_shift[i] = 21 - P - (i / 3);
156        scale_factor_mult[i] = (1 << P) * pow(2.0, (i % 3) / 3.0);
157#endif
158    }
159    for(i=0;i<128;i++) {
160        v = i - 64;
161        if (v <= -3)
162            v = 0;
163        else if (v < 0)
164            v = 1;
165        else if (v == 0)
166            v = 2;
167        else if (v < 3)
168            v = 3;
169        else
170            v = 4;
171        scale_diff_table[i] = v;
172    }
173
174    for(i=0;i<17;i++) {
175        v = ff_mpa_quant_bits[i];
176        if (v < 0)
177            v = -v;
178        else
179            v = v * 3;
180        total_quant_bits[i] = 12 * v;
181    }
182
183    avctx->coded_frame= avcodec_alloc_frame();
184    avctx->coded_frame->key_frame= 1;
185
186    return 0;
187}
188
189/* 32 point floating point IDCT without 1/sqrt(2) coef zero scaling */
190static void idct32(int *out, int *tab)
191{
192    int i, j;
193    int *t, *t1, xr;
194    const int *xp = costab32;
195
196    for(j=31;j>=3;j-=2) tab[j] += tab[j - 2];
197
198    t = tab + 30;
199    t1 = tab + 2;
200    do {
201        t[0] += t[-4];
202        t[1] += t[1 - 4];
203        t -= 4;
204    } while (t != t1);
205
206    t = tab + 28;
207    t1 = tab + 4;
208    do {
209        t[0] += t[-8];
210        t[1] += t[1-8];
211        t[2] += t[2-8];
212        t[3] += t[3-8];
213        t -= 8;
214    } while (t != t1);
215
216    t = tab;
217    t1 = tab + 32;
218    do {
219        t[ 3] = -t[ 3];
220        t[ 6] = -t[ 6];
221
222        t[11] = -t[11];
223        t[12] = -t[12];
224        t[13] = -t[13];
225        t[15] = -t[15];
226        t += 16;
227    } while (t != t1);
228
229
230    t = tab;
231    t1 = tab + 8;
232    do {
233        int x1, x2, x3, x4;
234
235        x3 = MUL(t[16], FIX(SQRT2*0.5));
236        x4 = t[0] - x3;
237        x3 = t[0] + x3;
238
239        x2 = MUL(-(t[24] + t[8]), FIX(SQRT2*0.5));
240        x1 = MUL((t[8] - x2), xp[0]);
241        x2 = MUL((t[8] + x2), xp[1]);
242
243        t[ 0] = x3 + x1;
244        t[ 8] = x4 - x2;
245        t[16] = x4 + x2;
246        t[24] = x3 - x1;
247        t++;
248    } while (t != t1);
249
250    xp += 2;
251    t = tab;
252    t1 = tab + 4;
253    do {
254        xr = MUL(t[28],xp[0]);
255        t[28] = (t[0] - xr);
256        t[0] = (t[0] + xr);
257
258        xr = MUL(t[4],xp[1]);
259        t[ 4] = (t[24] - xr);
260        t[24] = (t[24] + xr);
261
262        xr = MUL(t[20],xp[2]);
263        t[20] = (t[8] - xr);
264        t[ 8] = (t[8] + xr);
265
266        xr = MUL(t[12],xp[3]);
267        t[12] = (t[16] - xr);
268        t[16] = (t[16] + xr);
269        t++;
270    } while (t != t1);
271    xp += 4;
272
273    for (i = 0; i < 4; i++) {
274        xr = MUL(tab[30-i*4],xp[0]);
275        tab[30-i*4] = (tab[i*4] - xr);
276        tab[   i*4] = (tab[i*4] + xr);
277
278        xr = MUL(tab[ 2+i*4],xp[1]);
279        tab[ 2+i*4] = (tab[28-i*4] - xr);
280        tab[28-i*4] = (tab[28-i*4] + xr);
281
282        xr = MUL(tab[31-i*4],xp[0]);
283        tab[31-i*4] = (tab[1+i*4] - xr);
284        tab[ 1+i*4] = (tab[1+i*4] + xr);
285
286        xr = MUL(tab[ 3+i*4],xp[1]);
287        tab[ 3+i*4] = (tab[29-i*4] - xr);
288        tab[29-i*4] = (tab[29-i*4] + xr);
289
290        xp += 2;
291    }
292
293    t = tab + 30;
294    t1 = tab + 1;
295    do {
296        xr = MUL(t1[0], *xp);
297        t1[0] = (t[0] - xr);
298        t[0] = (t[0] + xr);
299        t -= 2;
300        t1 += 2;
301        xp++;
302    } while (t >= tab);
303
304    for(i=0;i<32;i++) {
305        out[i] = tab[bitinv32[i]];
306    }
307}
308
309#define WSHIFT (WFRAC_BITS + 15 - FRAC_BITS)
310
311static void filter(MpegAudioContext *s, int ch, const short *samples, int incr)
312{
313    short *p, *q;
314    int sum, offset, i, j;
315    int tmp[64];
316    int tmp1[32];
317    int *out;
318
319    offset = s->samples_offset[ch];
320    out = &s->sb_samples[ch][0][0][0];
321    for(j=0;j<36;j++) {
322        /* 32 samples at once */
323        for(i=0;i<32;i++) {
324            s->samples_buf[ch][offset + (31 - i)] = samples[0];
325            samples += incr;
326        }
327
328        /* filter */
329        p = s->samples_buf[ch] + offset;
330        q = filter_bank;
331        /* maxsum = 23169 */
332        for(i=0;i<64;i++) {
333            sum = p[0*64] * q[0*64];
334            sum += p[1*64] * q[1*64];
335            sum += p[2*64] * q[2*64];
336            sum += p[3*64] * q[3*64];
337            sum += p[4*64] * q[4*64];
338            sum += p[5*64] * q[5*64];
339            sum += p[6*64] * q[6*64];
340            sum += p[7*64] * q[7*64];
341            tmp[i] = sum;
342            p++;
343            q++;
344        }
345        tmp1[0] = tmp[16] >> WSHIFT;
346        for( i=1; i<=16; i++ ) tmp1[i] = (tmp[i+16]+tmp[16-i]) >> WSHIFT;
347        for( i=17; i<=31; i++ ) tmp1[i] = (tmp[i+16]-tmp[80-i]) >> WSHIFT;
348
349        idct32(out, tmp1);
350
351        /* advance of 32 samples */
352        offset -= 32;
353        out += 32;
354        /* handle the wrap around */
355        if (offset < 0) {
356            memmove(s->samples_buf[ch] + SAMPLES_BUF_SIZE - (512 - 32),
357                    s->samples_buf[ch], (512 - 32) * 2);
358            offset = SAMPLES_BUF_SIZE - 512;
359        }
360    }
361    s->samples_offset[ch] = offset;
362}
363
364static void compute_scale_factors(unsigned char scale_code[SBLIMIT],
365                                  unsigned char scale_factors[SBLIMIT][3],
366                                  int sb_samples[3][12][SBLIMIT],
367                                  int sblimit)
368{
369    int *p, vmax, v, n, i, j, k, code;
370    int index, d1, d2;
371    unsigned char *sf = &scale_factors[0][0];
372
373    for(j=0;j<sblimit;j++) {
374        for(i=0;i<3;i++) {
375            /* find the max absolute value */
376            p = &sb_samples[i][0][j];
377            vmax = abs(*p);
378            for(k=1;k<12;k++) {
379                p += SBLIMIT;
380                v = abs(*p);
381                if (v > vmax)
382                    vmax = v;
383            }
384            /* compute the scale factor index using log 2 computations */
385            if (vmax > 1) {
386                n = av_log2(vmax);
387                /* n is the position of the MSB of vmax. now
388                   use at most 2 compares to find the index */
389                index = (21 - n) * 3 - 3;
390                if (index >= 0) {
391                    while (vmax <= scale_factor_table[index+1])
392                        index++;
393                } else {
394                    index = 0; /* very unlikely case of overflow */
395                }
396            } else {
397                index = 62; /* value 63 is not allowed */
398            }
399
400            av_dlog(NULL, "%2d:%d in=%x %x %d\n",
401                    j, i, vmax, scale_factor_table[index], index);
402            /* store the scale factor */
403            assert(index >=0 && index <= 63);
404            sf[i] = index;
405        }
406
407        /* compute the transmission factor : look if the scale factors
408           are close enough to each other */
409        d1 = scale_diff_table[sf[0] - sf[1] + 64];
410        d2 = scale_diff_table[sf[1] - sf[2] + 64];
411
412        /* handle the 25 cases */
413        switch(d1 * 5 + d2) {
414        case 0*5+0:
415        case 0*5+4:
416        case 3*5+4:
417        case 4*5+0:
418        case 4*5+4:
419            code = 0;
420            break;
421        case 0*5+1:
422        case 0*5+2:
423        case 4*5+1:
424        case 4*5+2:
425            code = 3;
426            sf[2] = sf[1];
427            break;
428        case 0*5+3:
429        case 4*5+3:
430            code = 3;
431            sf[1] = sf[2];
432            break;
433        case 1*5+0:
434        case 1*5+4:
435        case 2*5+4:
436            code = 1;
437            sf[1] = sf[0];
438            break;
439        case 1*5+1:
440        case 1*5+2:
441        case 2*5+0:
442        case 2*5+1:
443        case 2*5+2:
444            code = 2;
445            sf[1] = sf[2] = sf[0];
446            break;
447        case 2*5+3:
448        case 3*5+3:
449            code = 2;
450            sf[0] = sf[1] = sf[2];
451            break;
452        case 3*5+0:
453        case 3*5+1:
454        case 3*5+2:
455            code = 2;
456            sf[0] = sf[2] = sf[1];
457            break;
458        case 1*5+3:
459            code = 2;
460            if (sf[0] > sf[2])
461              sf[0] = sf[2];
462            sf[1] = sf[2] = sf[0];
463            break;
464        default:
465            assert(0); //cannot happen
466            code = 0;           /* kill warning */
467        }
468
469        av_dlog(NULL, "%d: %2d %2d %2d %d %d -> %d\n", j,
470                sf[0], sf[1], sf[2], d1, d2, code);
471        scale_code[j] = code;
472        sf += 3;
473    }
474}
475
476/* The most important function : psycho acoustic module. In this
477   encoder there is basically none, so this is the worst you can do,
478   but also this is the simpler. */
479static void psycho_acoustic_model(MpegAudioContext *s, short smr[SBLIMIT])
480{
481    int i;
482
483    for(i=0;i<s->sblimit;i++) {
484        smr[i] = (int)(fixed_smr[i] * 10);
485    }
486}
487
488
489#define SB_NOTALLOCATED  0
490#define SB_ALLOCATED     1
491#define SB_NOMORE        2
492
493/* Try to maximize the smr while using a number of bits inferior to
494   the frame size. I tried to make the code simpler, faster and
495   smaller than other encoders :-) */
496static void compute_bit_allocation(MpegAudioContext *s,
497                                   short smr1[MPA_MAX_CHANNELS][SBLIMIT],
498                                   unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
499                                   int *padding)
500{
501    int i, ch, b, max_smr, max_ch, max_sb, current_frame_size, max_frame_size;
502    int incr;
503    short smr[MPA_MAX_CHANNELS][SBLIMIT];
504    unsigned char subband_status[MPA_MAX_CHANNELS][SBLIMIT];
505    const unsigned char *alloc;
506
507    memcpy(smr, smr1, s->nb_channels * sizeof(short) * SBLIMIT);
508    memset(subband_status, SB_NOTALLOCATED, s->nb_channels * SBLIMIT);
509    memset(bit_alloc, 0, s->nb_channels * SBLIMIT);
510
511    /* compute frame size and padding */
512    max_frame_size = s->frame_size;
513    s->frame_frac += s->frame_frac_incr;
514    if (s->frame_frac >= 65536) {
515        s->frame_frac -= 65536;
516        s->do_padding = 1;
517        max_frame_size += 8;
518    } else {
519        s->do_padding = 0;
520    }
521
522    /* compute the header + bit alloc size */
523    current_frame_size = 32;
524    alloc = s->alloc_table;
525    for(i=0;i<s->sblimit;i++) {
526        incr = alloc[0];
527        current_frame_size += incr * s->nb_channels;
528        alloc += 1 << incr;
529    }
530    for(;;) {
531        /* look for the subband with the largest signal to mask ratio */
532        max_sb = -1;
533        max_ch = -1;
534        max_smr = INT_MIN;
535        for(ch=0;ch<s->nb_channels;ch++) {
536            for(i=0;i<s->sblimit;i++) {
537                if (smr[ch][i] > max_smr && subband_status[ch][i] != SB_NOMORE) {
538                    max_smr = smr[ch][i];
539                    max_sb = i;
540                    max_ch = ch;
541                }
542            }
543        }
544        if (max_sb < 0)
545            break;
546        av_dlog(NULL, "current=%d max=%d max_sb=%d max_ch=%d alloc=%d\n",
547                current_frame_size, max_frame_size, max_sb, max_ch,
548                bit_alloc[max_ch][max_sb]);
549
550        /* find alloc table entry (XXX: not optimal, should use
551           pointer table) */
552        alloc = s->alloc_table;
553        for(i=0;i<max_sb;i++) {
554            alloc += 1 << alloc[0];
555        }
556
557        if (subband_status[max_ch][max_sb] == SB_NOTALLOCATED) {
558            /* nothing was coded for this band: add the necessary bits */
559            incr = 2 + nb_scale_factors[s->scale_code[max_ch][max_sb]] * 6;
560            incr += total_quant_bits[alloc[1]];
561        } else {
562            /* increments bit allocation */
563            b = bit_alloc[max_ch][max_sb];
564            incr = total_quant_bits[alloc[b + 1]] -
565                total_quant_bits[alloc[b]];
566        }
567
568        if (current_frame_size + incr <= max_frame_size) {
569            /* can increase size */
570            b = ++bit_alloc[max_ch][max_sb];
571            current_frame_size += incr;
572            /* decrease smr by the resolution we added */
573            smr[max_ch][max_sb] = smr1[max_ch][max_sb] - quant_snr[alloc[b]];
574            /* max allocation size reached ? */
575            if (b == ((1 << alloc[0]) - 1))
576                subband_status[max_ch][max_sb] = SB_NOMORE;
577            else
578                subband_status[max_ch][max_sb] = SB_ALLOCATED;
579        } else {
580            /* cannot increase the size of this subband */
581            subband_status[max_ch][max_sb] = SB_NOMORE;
582        }
583    }
584    *padding = max_frame_size - current_frame_size;
585    assert(*padding >= 0);
586}
587
588/*
589 * Output the mpeg audio layer 2 frame. Note how the code is small
590 * compared to other encoders :-)
591 */
592static void encode_frame(MpegAudioContext *s,
593                         unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
594                         int padding)
595{
596    int i, j, k, l, bit_alloc_bits, b, ch;
597    unsigned char *sf;
598    int q[3];
599    PutBitContext *p = &s->pb;
600
601    /* header */
602
603    put_bits(p, 12, 0xfff);
604    put_bits(p, 1, 1 - s->lsf); /* 1 = mpeg1 ID, 0 = mpeg2 lsf ID */
605    put_bits(p, 2, 4-2);  /* layer 2 */
606    put_bits(p, 1, 1); /* no error protection */
607    put_bits(p, 4, s->bitrate_index);
608    put_bits(p, 2, s->freq_index);
609    put_bits(p, 1, s->do_padding); /* use padding */
610    put_bits(p, 1, 0);             /* private_bit */
611    put_bits(p, 2, s->nb_channels == 2 ? MPA_STEREO : MPA_MONO);
612    put_bits(p, 2, 0); /* mode_ext */
613    put_bits(p, 1, 0); /* no copyright */
614    put_bits(p, 1, 1); /* original */
615    put_bits(p, 2, 0); /* no emphasis */
616
617    /* bit allocation */
618    j = 0;
619    for(i=0;i<s->sblimit;i++) {
620        bit_alloc_bits = s->alloc_table[j];
621        for(ch=0;ch<s->nb_channels;ch++) {
622            put_bits(p, bit_alloc_bits, bit_alloc[ch][i]);
623        }
624        j += 1 << bit_alloc_bits;
625    }
626
627    /* scale codes */
628    for(i=0;i<s->sblimit;i++) {
629        for(ch=0;ch<s->nb_channels;ch++) {
630            if (bit_alloc[ch][i])
631                put_bits(p, 2, s->scale_code[ch][i]);
632        }
633    }
634
635    /* scale factors */
636    for(i=0;i<s->sblimit;i++) {
637        for(ch=0;ch<s->nb_channels;ch++) {
638            if (bit_alloc[ch][i]) {
639                sf = &s->scale_factors[ch][i][0];
640                switch(s->scale_code[ch][i]) {
641                case 0:
642                    put_bits(p, 6, sf[0]);
643                    put_bits(p, 6, sf[1]);
644                    put_bits(p, 6, sf[2]);
645                    break;
646                case 3:
647                case 1:
648                    put_bits(p, 6, sf[0]);
649                    put_bits(p, 6, sf[2]);
650                    break;
651                case 2:
652                    put_bits(p, 6, sf[0]);
653                    break;
654                }
655            }
656        }
657    }
658
659    /* quantization & write sub band samples */
660
661    for(k=0;k<3;k++) {
662        for(l=0;l<12;l+=3) {
663            j = 0;
664            for(i=0;i<s->sblimit;i++) {
665                bit_alloc_bits = s->alloc_table[j];
666                for(ch=0;ch<s->nb_channels;ch++) {
667                    b = bit_alloc[ch][i];
668                    if (b) {
669                        int qindex, steps, m, sample, bits;
670                        /* we encode 3 sub band samples of the same sub band at a time */
671                        qindex = s->alloc_table[j+b];
672                        steps = ff_mpa_quant_steps[qindex];
673                        for(m=0;m<3;m++) {
674                            sample = s->sb_samples[ch][k][l + m][i];
675                            /* divide by scale factor */
676#ifdef USE_FLOATS
677                            {
678                                float a;
679                                a = (float)sample * scale_factor_inv_table[s->scale_factors[ch][i][k]];
680                                q[m] = (int)((a + 1.0) * steps * 0.5);
681                            }
682#else
683                            {
684                                int q1, e, shift, mult;
685                                e = s->scale_factors[ch][i][k];
686                                shift = scale_factor_shift[e];
687                                mult = scale_factor_mult[e];
688
689                                /* normalize to P bits */
690                                if (shift < 0)
691                                    q1 = sample << (-shift);
692                                else
693                                    q1 = sample >> shift;
694                                q1 = (q1 * mult) >> P;
695                                q[m] = ((q1 + (1 << P)) * steps) >> (P + 1);
696                            }
697#endif
698                            if (q[m] >= steps)
699                                q[m] = steps - 1;
700                            assert(q[m] >= 0 && q[m] < steps);
701                        }
702                        bits = ff_mpa_quant_bits[qindex];
703                        if (bits < 0) {
704                            /* group the 3 values to save bits */
705                            put_bits(p, -bits,
706                                     q[0] + steps * (q[1] + steps * q[2]));
707                        } else {
708                            put_bits(p, bits, q[0]);
709                            put_bits(p, bits, q[1]);
710                            put_bits(p, bits, q[2]);
711                        }
712                    }
713                }
714                /* next subband in alloc table */
715                j += 1 << bit_alloc_bits;
716            }
717        }
718    }
719
720    /* padding */
721    for(i=0;i<padding;i++)
722        put_bits(p, 1, 0);
723
724    /* flush */
725    flush_put_bits(p);
726}
727
728static int MPA_encode_frame(AVCodecContext *avctx,
729                            unsigned char *frame, int buf_size, void *data)
730{
731    MpegAudioContext *s = avctx->priv_data;
732    const short *samples = data;
733    short smr[MPA_MAX_CHANNELS][SBLIMIT];
734    unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
735    int padding, i;
736
737    for(i=0;i<s->nb_channels;i++) {
738        filter(s, i, samples + i, s->nb_channels);
739    }
740
741    for(i=0;i<s->nb_channels;i++) {
742        compute_scale_factors(s->scale_code[i], s->scale_factors[i],
743                              s->sb_samples[i], s->sblimit);
744    }
745    for(i=0;i<s->nb_channels;i++) {
746        psycho_acoustic_model(s, smr[i]);
747    }
748    compute_bit_allocation(s, smr, bit_alloc, &padding);
749
750    init_put_bits(&s->pb, frame, MPA_MAX_CODED_FRAME_SIZE);
751
752    encode_frame(s, bit_alloc, padding);
753
754    return put_bits_ptr(&s->pb) - s->pb.buf;
755}
756
757static av_cold int MPA_encode_close(AVCodecContext *avctx)
758{
759    av_freep(&avctx->coded_frame);
760    return 0;
761}
762
763static const AVCodecDefault mp2_defaults[] = {
764    { "b",    "128k" },
765    { NULL },
766};
767
768AVCodec ff_mp2_encoder = {
769    .name           = "mp2",
770    .type           = AVMEDIA_TYPE_AUDIO,
771    .id             = CODEC_ID_MP2,
772    .priv_data_size = sizeof(MpegAudioContext),
773    .init           = MPA_encode_init,
774    .encode         = MPA_encode_frame,
775    .close          = MPA_encode_close,
776    .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE},
777    .supported_samplerates= (const int[]){44100, 48000,  32000, 22050, 24000, 16000, 0},
778    .long_name = NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
779    .defaults       = mp2_defaults,
780};
781