1/*
2 * Copyright (c) 2001, 2002 Fabrice Bellard
3 *
4 * This file is part of Libav.
5 *
6 * Libav is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * Libav is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with Libav; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21#include <stdint.h>
22
23#include "libavutil/mem.h"
24#include "dct32.h"
25#include "mathops.h"
26#include "mpegaudiodsp.h"
27#include "mpegaudio.h"
28#include "mpegaudiodata.h"
29
30#if CONFIG_FLOAT
31#define RENAME(n) n##_float
32
33static inline float round_sample(float *sum)
34{
35    float sum1=*sum;
36    *sum = 0;
37    return sum1;
38}
39
40#define MACS(rt, ra, rb) rt+=(ra)*(rb)
41#define MULS(ra, rb) ((ra)*(rb))
42#define MULH3(x, y, s) ((s)*(y)*(x))
43#define MLSS(rt, ra, rb) rt-=(ra)*(rb)
44#define MULLx(x, y, s) ((y)*(x))
45#define FIXHR(x)        ((float)(x))
46#define FIXR(x)        ((float)(x))
47#define SHR(a,b)       ((a)*(1.0f/(1<<(b))))
48
49#else
50
51#define RENAME(n) n##_fixed
52#define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15)
53
54static inline int round_sample(int64_t *sum)
55{
56    int sum1;
57    sum1 = (int)((*sum) >> OUT_SHIFT);
58    *sum &= (1<<OUT_SHIFT)-1;
59    return av_clip_int16(sum1);
60}
61
62#   define MULS(ra, rb) MUL64(ra, rb)
63#   define MACS(rt, ra, rb) MAC64(rt, ra, rb)
64#   define MLSS(rt, ra, rb) MLS64(rt, ra, rb)
65#   define MULH3(x, y, s) MULH((s)*(x), y)
66#   define MULLx(x, y, s) MULL(x,y,s)
67#   define SHR(a,b)       ((a)>>(b))
68#   define FIXR(a)        ((int)((a) * FRAC_ONE + 0.5))
69#   define FIXHR(a)       ((int)((a) * (1LL<<32) + 0.5))
70#endif
71
72/** Window for MDCT. Actually only the elements in [0,17] and
73    [MDCT_BUF_SIZE/2, MDCT_BUF_SIZE/2 + 17] are actually used. The rest
74    is just to preserve alignment for SIMD implementations.
75*/
76DECLARE_ALIGNED(16, INTFLOAT, RENAME(ff_mdct_win))[8][MDCT_BUF_SIZE];
77
78DECLARE_ALIGNED(16, MPA_INT, RENAME(ff_mpa_synth_window))[512+256];
79
80#define SUM8(op, sum, w, p)               \
81{                                         \
82    op(sum, (w)[0 * 64], (p)[0 * 64]);    \
83    op(sum, (w)[1 * 64], (p)[1 * 64]);    \
84    op(sum, (w)[2 * 64], (p)[2 * 64]);    \
85    op(sum, (w)[3 * 64], (p)[3 * 64]);    \
86    op(sum, (w)[4 * 64], (p)[4 * 64]);    \
87    op(sum, (w)[5 * 64], (p)[5 * 64]);    \
88    op(sum, (w)[6 * 64], (p)[6 * 64]);    \
89    op(sum, (w)[7 * 64], (p)[7 * 64]);    \
90}
91
92#define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
93{                                               \
94    INTFLOAT tmp;\
95    tmp = p[0 * 64];\
96    op1(sum1, (w1)[0 * 64], tmp);\
97    op2(sum2, (w2)[0 * 64], tmp);\
98    tmp = p[1 * 64];\
99    op1(sum1, (w1)[1 * 64], tmp);\
100    op2(sum2, (w2)[1 * 64], tmp);\
101    tmp = p[2 * 64];\
102    op1(sum1, (w1)[2 * 64], tmp);\
103    op2(sum2, (w2)[2 * 64], tmp);\
104    tmp = p[3 * 64];\
105    op1(sum1, (w1)[3 * 64], tmp);\
106    op2(sum2, (w2)[3 * 64], tmp);\
107    tmp = p[4 * 64];\
108    op1(sum1, (w1)[4 * 64], tmp);\
109    op2(sum2, (w2)[4 * 64], tmp);\
110    tmp = p[5 * 64];\
111    op1(sum1, (w1)[5 * 64], tmp);\
112    op2(sum2, (w2)[5 * 64], tmp);\
113    tmp = p[6 * 64];\
114    op1(sum1, (w1)[6 * 64], tmp);\
115    op2(sum2, (w2)[6 * 64], tmp);\
116    tmp = p[7 * 64];\
117    op1(sum1, (w1)[7 * 64], tmp);\
118    op2(sum2, (w2)[7 * 64], tmp);\
119}
120
121void RENAME(ff_mpadsp_apply_window)(MPA_INT *synth_buf, MPA_INT *window,
122                                  int *dither_state, OUT_INT *samples,
123                                  int incr)
124{
125    register const MPA_INT *w, *w2, *p;
126    int j;
127    OUT_INT *samples2;
128#if CONFIG_FLOAT
129    float sum, sum2;
130#else
131    int64_t sum, sum2;
132#endif
133
134    /* copy to avoid wrap */
135    memcpy(synth_buf + 512, synth_buf, 32 * sizeof(*synth_buf));
136
137    samples2 = samples + 31 * incr;
138    w = window;
139    w2 = window + 31;
140
141    sum = *dither_state;
142    p = synth_buf + 16;
143    SUM8(MACS, sum, w, p);
144    p = synth_buf + 48;
145    SUM8(MLSS, sum, w + 32, p);
146    *samples = round_sample(&sum);
147    samples += incr;
148    w++;
149
150    /* we calculate two samples at the same time to avoid one memory
151       access per two sample */
152    for(j=1;j<16;j++) {
153        sum2 = 0;
154        p = synth_buf + 16 + j;
155        SUM8P2(sum, MACS, sum2, MLSS, w, w2, p);
156        p = synth_buf + 48 - j;
157        SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p);
158
159        *samples = round_sample(&sum);
160        samples += incr;
161        sum += sum2;
162        *samples2 = round_sample(&sum);
163        samples2 -= incr;
164        w++;
165        w2--;
166    }
167
168    p = synth_buf + 32;
169    SUM8(MLSS, sum, w + 32, p);
170    *samples = round_sample(&sum);
171    *dither_state= sum;
172}
173
174/* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
175   32 samples. */
176void RENAME(ff_mpa_synth_filter)(MPADSPContext *s, MPA_INT *synth_buf_ptr,
177                                 int *synth_buf_offset,
178                                 MPA_INT *window, int *dither_state,
179                                 OUT_INT *samples, int incr,
180                                 MPA_INT *sb_samples)
181{
182    MPA_INT *synth_buf;
183    int offset;
184
185    offset = *synth_buf_offset;
186    synth_buf = synth_buf_ptr + offset;
187
188    s->RENAME(dct32)(synth_buf, sb_samples);
189    s->RENAME(apply_window)(synth_buf, window, dither_state, samples, incr);
190
191    offset = (offset - 32) & 511;
192    *synth_buf_offset = offset;
193}
194
195void av_cold RENAME(ff_mpa_synth_init)(MPA_INT *window)
196{
197    int i, j;
198
199    /* max = 18760, max sum over all 16 coefs : 44736 */
200    for(i=0;i<257;i++) {
201        INTFLOAT v;
202        v = ff_mpa_enwindow[i];
203#if CONFIG_FLOAT
204        v *= 1.0 / (1LL<<(16 + FRAC_BITS));
205#endif
206        window[i] = v;
207        if ((i & 63) != 0)
208            v = -v;
209        if (i != 0)
210            window[512 - i] = v;
211    }
212
213
214    // Needed for avoiding shuffles in ASM implementations
215    for(i=0; i < 8; i++)
216        for(j=0; j < 16; j++)
217            window[512+16*i+j] = window[64*i+32-j];
218
219    for(i=0; i < 8; i++)
220        for(j=0; j < 16; j++)
221            window[512+128+16*i+j] = window[64*i+48-j];
222}
223
224void RENAME(ff_init_mpadsp_tabs)(void)
225{
226    int i, j;
227    /* compute mdct windows */
228    for (i = 0; i < 36; i++) {
229        for (j = 0; j < 4; j++) {
230            double d;
231
232            if (j == 2 && i % 3 != 1)
233                continue;
234
235            d = sin(M_PI * (i + 0.5) / 36.0);
236            if (j == 1) {
237                if      (i >= 30) d = 0;
238                else if (i >= 24) d = sin(M_PI * (i - 18 + 0.5) / 12.0);
239                else if (i >= 18) d = 1;
240            } else if (j == 3) {
241                if      (i <   6) d = 0;
242                else if (i <  12) d = sin(M_PI * (i -  6 + 0.5) / 12.0);
243                else if (i <  18) d = 1;
244            }
245            //merge last stage of imdct into the window coefficients
246            d *= 0.5 / cos(M_PI * (2 * i + 19) / 72);
247
248            if (j == 2)
249                RENAME(ff_mdct_win)[j][i/3] = FIXHR((d / (1<<5)));
250            else {
251                int idx = i < 18 ? i : i + (MDCT_BUF_SIZE/2 - 18);
252                RENAME(ff_mdct_win)[j][idx] = FIXHR((d / (1<<5)));
253            }
254        }
255    }
256
257    /* NOTE: we do frequency inversion adter the MDCT by changing
258        the sign of the right window coefs */
259    for (j = 0; j < 4; j++) {
260        for (i = 0; i < MDCT_BUF_SIZE; i += 2) {
261            RENAME(ff_mdct_win)[j + 4][i    ] =  RENAME(ff_mdct_win)[j][i    ];
262            RENAME(ff_mdct_win)[j + 4][i + 1] = -RENAME(ff_mdct_win)[j][i + 1];
263        }
264    }
265}
266/* cos(pi*i/18) */
267#define C1 FIXHR(0.98480775301220805936/2)
268#define C2 FIXHR(0.93969262078590838405/2)
269#define C3 FIXHR(0.86602540378443864676/2)
270#define C4 FIXHR(0.76604444311897803520/2)
271#define C5 FIXHR(0.64278760968653932632/2)
272#define C6 FIXHR(0.5/2)
273#define C7 FIXHR(0.34202014332566873304/2)
274#define C8 FIXHR(0.17364817766693034885/2)
275
276/* 0.5 / cos(pi*(2*i+1)/36) */
277static const INTFLOAT icos36[9] = {
278    FIXR(0.50190991877167369479),
279    FIXR(0.51763809020504152469), //0
280    FIXR(0.55168895948124587824),
281    FIXR(0.61038729438072803416),
282    FIXR(0.70710678118654752439), //1
283    FIXR(0.87172339781054900991),
284    FIXR(1.18310079157624925896),
285    FIXR(1.93185165257813657349), //2
286    FIXR(5.73685662283492756461),
287};
288
289/* 0.5 / cos(pi*(2*i+1)/36) */
290static const INTFLOAT icos36h[9] = {
291    FIXHR(0.50190991877167369479/2),
292    FIXHR(0.51763809020504152469/2), //0
293    FIXHR(0.55168895948124587824/2),
294    FIXHR(0.61038729438072803416/2),
295    FIXHR(0.70710678118654752439/2), //1
296    FIXHR(0.87172339781054900991/2),
297    FIXHR(1.18310079157624925896/4),
298    FIXHR(1.93185165257813657349/4), //2
299//    FIXHR(5.73685662283492756461),
300};
301
302/* using Lee like decomposition followed by hand coded 9 points DCT */
303static void imdct36(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in, INTFLOAT *win)
304{
305    int i, j;
306    INTFLOAT t0, t1, t2, t3, s0, s1, s2, s3;
307    INTFLOAT tmp[18], *tmp1, *in1;
308
309    for (i = 17; i >= 1; i--)
310        in[i] += in[i-1];
311    for (i = 17; i >= 3; i -= 2)
312        in[i] += in[i-2];
313
314    for (j = 0; j < 2; j++) {
315        tmp1 = tmp + j;
316        in1 = in + j;
317
318        t2 = in1[2*4] + in1[2*8] - in1[2*2];
319
320        t3 = in1[2*0] + SHR(in1[2*6],1);
321        t1 = in1[2*0] - in1[2*6];
322        tmp1[ 6] = t1 - SHR(t2,1);
323        tmp1[16] = t1 + t2;
324
325        t0 = MULH3(in1[2*2] + in1[2*4] ,    C2, 2);
326        t1 = MULH3(in1[2*4] - in1[2*8] , -2*C8, 1);
327        t2 = MULH3(in1[2*2] + in1[2*8] ,   -C4, 2);
328
329        tmp1[10] = t3 - t0 - t2;
330        tmp1[ 2] = t3 + t0 + t1;
331        tmp1[14] = t3 + t2 - t1;
332
333        tmp1[ 4] = MULH3(in1[2*5] + in1[2*7] - in1[2*1], -C3, 2);
334        t2 = MULH3(in1[2*1] + in1[2*5],    C1, 2);
335        t3 = MULH3(in1[2*5] - in1[2*7], -2*C7, 1);
336        t0 = MULH3(in1[2*3], C3, 2);
337
338        t1 = MULH3(in1[2*1] + in1[2*7],   -C5, 2);
339
340        tmp1[ 0] = t2 + t3 + t0;
341        tmp1[12] = t2 + t1 - t0;
342        tmp1[ 8] = t3 - t1 - t0;
343    }
344
345    i = 0;
346    for (j = 0; j < 4; j++) {
347        t0 = tmp[i];
348        t1 = tmp[i + 2];
349        s0 = t1 + t0;
350        s2 = t1 - t0;
351
352        t2 = tmp[i + 1];
353        t3 = tmp[i + 3];
354        s1 = MULH3(t3 + t2, icos36h[    j], 2);
355        s3 = MULLx(t3 - t2, icos36 [8 - j], FRAC_BITS);
356
357        t0 = s0 + s1;
358        t1 = s0 - s1;
359        out[(9 + j) * SBLIMIT] = MULH3(t1, win[     9 + j], 1) + buf[4*(9 + j)];
360        out[(8 - j) * SBLIMIT] = MULH3(t1, win[     8 - j], 1) + buf[4*(8 - j)];
361        buf[4 * ( 9 + j     )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + j], 1);
362        buf[4 * ( 8 - j     )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 8 - j], 1);
363
364        t0 = s2 + s3;
365        t1 = s2 - s3;
366        out[(9 + 8 - j) * SBLIMIT] = MULH3(t1, win[     9 + 8 - j], 1) + buf[4*(9 + 8 - j)];
367        out[         j  * SBLIMIT] = MULH3(t1, win[             j], 1) + buf[4*(        j)];
368        buf[4 * ( 9 + 8 - j     )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + 8 - j], 1);
369        buf[4 * (         j     )] = MULH3(t0, win[MDCT_BUF_SIZE/2         + j], 1);
370        i += 4;
371    }
372
373    s0 = tmp[16];
374    s1 = MULH3(tmp[17], icos36h[4], 2);
375    t0 = s0 + s1;
376    t1 = s0 - s1;
377    out[(9 + 4) * SBLIMIT] = MULH3(t1, win[     9 + 4], 1) + buf[4*(9 + 4)];
378    out[(8 - 4) * SBLIMIT] = MULH3(t1, win[     8 - 4], 1) + buf[4*(8 - 4)];
379    buf[4 * ( 9 + 4     )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + 4], 1);
380    buf[4 * ( 8 - 4     )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 8 - 4], 1);
381}
382
383void RENAME(ff_imdct36_blocks)(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in,
384                               int count, int switch_point, int block_type)
385{
386    int j;
387    for (j=0 ; j < count; j++) {
388        /* apply window & overlap with previous buffer */
389
390        /* select window */
391        int win_idx = (switch_point && j < 2) ? 0 : block_type;
392        INTFLOAT *win = RENAME(ff_mdct_win)[win_idx + (4 & -(j & 1))];
393
394        imdct36(out, buf, in, win);
395
396        in  += 18;
397        buf += ((j&3) != 3 ? 1 : (72-3));
398        out++;
399    }
400}
401