1/*
2 * COOK compatible decoder
3 * Copyright (c) 2003 Sascha Sommer
4 * Copyright (c) 2005 Benjamin Larsson
5 *
6 * This file is part of Libav.
7 *
8 * Libav is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * Libav is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with Libav; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23/**
24 * @file
25 * Cook compatible decoder. Bastardization of the G.722.1 standard.
26 * This decoder handles RealNetworks, RealAudio G2 data.
27 * Cook is identified by the codec name cook in RM files.
28 *
29 * To use this decoder, a calling application must supply the extradata
30 * bytes provided from the RM container; 8+ bytes for mono streams and
31 * 16+ for stereo streams (maybe more).
32 *
33 * Codec technicalities (all this assume a buffer length of 1024):
34 * Cook works with several different techniques to achieve its compression.
35 * In the timedomain the buffer is divided into 8 pieces and quantized. If
36 * two neighboring pieces have different quantization index a smooth
37 * quantization curve is used to get a smooth overlap between the different
38 * pieces.
39 * To get to the transformdomain Cook uses a modulated lapped transform.
40 * The transform domain has 50 subbands with 20 elements each. This
41 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
42 * available.
43 */
44
45#include "libavutil/lfg.h"
46#include "avcodec.h"
47#include "get_bits.h"
48#include "dsputil.h"
49#include "bytestream.h"
50#include "fft.h"
51#include "libavutil/audioconvert.h"
52#include "sinewin.h"
53
54#include "cookdata.h"
55
56/* the different Cook versions */
57#define MONO            0x1000001
58#define STEREO          0x1000002
59#define JOINT_STEREO    0x1000003
60#define MC_COOK         0x2000000   // multichannel Cook, not supported
61
62#define SUBBAND_SIZE    20
63#define MAX_SUBPACKETS   5
64
65typedef struct {
66    int *now;
67    int *previous;
68} cook_gains;
69
70typedef struct {
71    int                 ch_idx;
72    int                 size;
73    int                 num_channels;
74    int                 cookversion;
75    int                 samples_per_frame;
76    int                 subbands;
77    int                 js_subband_start;
78    int                 js_vlc_bits;
79    int                 samples_per_channel;
80    int                 log2_numvector_size;
81    unsigned int        channel_mask;
82    VLC                 ccpl;                 ///< channel coupling
83    int                 joint_stereo;
84    int                 bits_per_subpacket;
85    int                 bits_per_subpdiv;
86    int                 total_subbands;
87    int                 numvector_size;       ///< 1 << log2_numvector_size;
88
89    float               mono_previous_buffer1[1024];
90    float               mono_previous_buffer2[1024];
91    /** gain buffers */
92    cook_gains          gains1;
93    cook_gains          gains2;
94    int                 gain_1[9];
95    int                 gain_2[9];
96    int                 gain_3[9];
97    int                 gain_4[9];
98} COOKSubpacket;
99
100typedef struct cook {
101    /*
102     * The following 5 functions provide the lowlevel arithmetic on
103     * the internal audio buffers.
104     */
105    void (*scalar_dequant)(struct cook *q, int index, int quant_index,
106                           int *subband_coef_index, int *subband_coef_sign,
107                           float *mlt_p);
108
109    void (*decouple)(struct cook *q,
110                     COOKSubpacket *p,
111                     int subband,
112                     float f1, float f2,
113                     float *decode_buffer,
114                     float *mlt_buffer1, float *mlt_buffer2);
115
116    void (*imlt_window)(struct cook *q, float *buffer1,
117                        cook_gains *gains_ptr, float *previous_buffer);
118
119    void (*interpolate)(struct cook *q, float *buffer,
120                        int gain_index, int gain_index_next);
121
122    void (*saturate_output)(struct cook *q, int chan, float *out);
123
124    AVCodecContext*     avctx;
125    AVFrame             frame;
126    GetBitContext       gb;
127    /* stream data */
128    int                 nb_channels;
129    int                 bit_rate;
130    int                 sample_rate;
131    int                 num_vectors;
132    int                 samples_per_channel;
133    /* states */
134    AVLFG               random_state;
135    int                 discarded_packets;
136
137    /* transform data */
138    FFTContext          mdct_ctx;
139    float*              mlt_window;
140
141    /* VLC data */
142    VLC                 envelope_quant_index[13];
143    VLC                 sqvh[7];          // scalar quantization
144
145    /* generatable tables and related variables */
146    int                 gain_size_factor;
147    float               gain_table[23];
148
149    /* data buffers */
150
151    uint8_t*            decoded_bytes_buffer;
152    DECLARE_ALIGNED(32, float, mono_mdct_output)[2048];
153    float               decode_buffer_1[1024];
154    float               decode_buffer_2[1024];
155    float               decode_buffer_0[1060]; /* static allocation for joint decode */
156
157    const float         *cplscales[5];
158    int                 num_subpackets;
159    COOKSubpacket       subpacket[MAX_SUBPACKETS];
160} COOKContext;
161
162static float     pow2tab[127];
163static float rootpow2tab[127];
164
165/*************** init functions ***************/
166
167/* table generator */
168static av_cold void init_pow2table(void)
169{
170    int i;
171    for (i = -63; i < 64; i++) {
172        pow2tab[63 + i] = pow(2, i);
173        rootpow2tab[63 + i] = sqrt(pow(2, i));
174    }
175}
176
177/* table generator */
178static av_cold void init_gain_table(COOKContext *q)
179{
180    int i;
181    q->gain_size_factor = q->samples_per_channel / 8;
182    for (i = 0; i < 23; i++)
183        q->gain_table[i] = pow(pow2tab[i + 52],
184                               (1.0 / (double) q->gain_size_factor));
185}
186
187
188static av_cold int init_cook_vlc_tables(COOKContext *q)
189{
190    int i, result;
191
192    result = 0;
193    for (i = 0; i < 13; i++) {
194        result |= init_vlc(&q->envelope_quant_index[i], 9, 24,
195                           envelope_quant_index_huffbits[i], 1, 1,
196                           envelope_quant_index_huffcodes[i], 2, 2, 0);
197    }
198    av_log(q->avctx, AV_LOG_DEBUG, "sqvh VLC init\n");
199    for (i = 0; i < 7; i++) {
200        result |= init_vlc(&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
201                           cvh_huffbits[i], 1, 1,
202                           cvh_huffcodes[i], 2, 2, 0);
203    }
204
205    for (i = 0; i < q->num_subpackets; i++) {
206        if (q->subpacket[i].joint_stereo == 1) {
207            result |= init_vlc(&q->subpacket[i].ccpl, 6, (1 << q->subpacket[i].js_vlc_bits) - 1,
208                               ccpl_huffbits[q->subpacket[i].js_vlc_bits - 2], 1, 1,
209                               ccpl_huffcodes[q->subpacket[i].js_vlc_bits - 2], 2, 2, 0);
210            av_log(q->avctx, AV_LOG_DEBUG, "subpacket %i Joint-stereo VLC used.\n", i);
211        }
212    }
213
214    av_log(q->avctx, AV_LOG_DEBUG, "VLC tables initialized.\n");
215    return result;
216}
217
218static av_cold int init_cook_mlt(COOKContext *q)
219{
220    int j, ret;
221    int mlt_size = q->samples_per_channel;
222
223    if ((q->mlt_window = av_malloc(mlt_size * sizeof(*q->mlt_window))) == 0)
224        return AVERROR(ENOMEM);
225
226    /* Initialize the MLT window: simple sine window. */
227    ff_sine_window_init(q->mlt_window, mlt_size);
228    for (j = 0; j < mlt_size; j++)
229        q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
230
231    /* Initialize the MDCT. */
232    if ((ret = ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size) + 1, 1, 1.0 / 32768.0))) {
233        av_free(q->mlt_window);
234        return ret;
235    }
236    av_log(q->avctx, AV_LOG_DEBUG, "MDCT initialized, order = %d.\n",
237           av_log2(mlt_size) + 1);
238
239    return 0;
240}
241
242static const float *maybe_reformat_buffer32(COOKContext *q, const float *ptr, int n)
243{
244    if (1)
245        return ptr;
246}
247
248static av_cold void init_cplscales_table(COOKContext *q)
249{
250    int i;
251    for (i = 0; i < 5; i++)
252        q->cplscales[i] = maybe_reformat_buffer32(q, cplscales[i], (1 << (i + 2)) - 1);
253}
254
255/*************** init functions end ***********/
256
257#define DECODE_BYTES_PAD1(bytes) (3 - ((bytes) + 3) % 4)
258#define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
259
260/**
261 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
262 * Why? No idea, some checksum/error detection method maybe.
263 *
264 * Out buffer size: extra bytes are needed to cope with
265 * padding/misalignment.
266 * Subpackets passed to the decoder can contain two, consecutive
267 * half-subpackets, of identical but arbitrary size.
268 *          1234 1234 1234 1234  extraA extraB
269 * Case 1:  AAAA BBBB              0      0
270 * Case 2:  AAAA ABBB BB--         3      3
271 * Case 3:  AAAA AABB BBBB         2      2
272 * Case 4:  AAAA AAAB BBBB BB--    1      5
273 *
274 * Nice way to waste CPU cycles.
275 *
276 * @param inbuffer  pointer to byte array of indata
277 * @param out       pointer to byte array of outdata
278 * @param bytes     number of bytes
279 */
280static inline int decode_bytes(const uint8_t *inbuffer, uint8_t *out, int bytes)
281{
282    static const uint32_t tab[4] = {
283        AV_BE2NE32C(0x37c511f2), AV_BE2NE32C(0xf237c511),
284        AV_BE2NE32C(0x11f237c5), AV_BE2NE32C(0xc511f237),
285    };
286    int i, off;
287    uint32_t c;
288    const uint32_t *buf;
289    uint32_t *obuf = (uint32_t *) out;
290    /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
291     * I'm too lazy though, should be something like
292     * for (i = 0; i < bitamount / 64; i++)
293     *     (int64_t) out[i] = 0x37c511f237c511f2 ^ av_be2ne64(int64_t) in[i]);
294     * Buffer alignment needs to be checked. */
295
296    off = (intptr_t) inbuffer & 3;
297    buf = (const uint32_t *) (inbuffer - off);
298    c = tab[off];
299    bytes += 3 + off;
300    for (i = 0; i < bytes / 4; i++)
301        obuf[i] = c ^ buf[i];
302
303    return off;
304}
305
306/**
307 * Cook uninit
308 */
309static av_cold int cook_decode_close(AVCodecContext *avctx)
310{
311    int i;
312    COOKContext *q = avctx->priv_data;
313    av_log(avctx, AV_LOG_DEBUG, "Deallocating memory.\n");
314
315    /* Free allocated memory buffers. */
316    av_free(q->mlt_window);
317    av_free(q->decoded_bytes_buffer);
318
319    /* Free the transform. */
320    ff_mdct_end(&q->mdct_ctx);
321
322    /* Free the VLC tables. */
323    for (i = 0; i < 13; i++)
324        ff_free_vlc(&q->envelope_quant_index[i]);
325    for (i = 0; i < 7; i++)
326        ff_free_vlc(&q->sqvh[i]);
327    for (i = 0; i < q->num_subpackets; i++)
328        ff_free_vlc(&q->subpacket[i].ccpl);
329
330    av_log(avctx, AV_LOG_DEBUG, "Memory deallocated.\n");
331
332    return 0;
333}
334
335/**
336 * Fill the gain array for the timedomain quantization.
337 *
338 * @param gb          pointer to the GetBitContext
339 * @param gaininfo    array[9] of gain indexes
340 */
341static void decode_gain_info(GetBitContext *gb, int *gaininfo)
342{
343    int i, n;
344
345    while (get_bits1(gb)) {
346        /* NOTHING */
347    }
348
349    n = get_bits_count(gb) - 1;     // amount of elements*2 to update
350
351    i = 0;
352    while (n--) {
353        int index = get_bits(gb, 3);
354        int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
355
356        while (i <= index)
357            gaininfo[i++] = gain;
358    }
359    while (i <= 8)
360        gaininfo[i++] = 0;
361}
362
363/**
364 * Create the quant index table needed for the envelope.
365 *
366 * @param q                 pointer to the COOKContext
367 * @param quant_index_table pointer to the array
368 */
369static int decode_envelope(COOKContext *q, COOKSubpacket *p,
370                           int *quant_index_table)
371{
372    int i, j, vlc_index;
373
374    quant_index_table[0] = get_bits(&q->gb, 6) - 6; // This is used later in categorize
375
376    for (i = 1; i < p->total_subbands; i++) {
377        vlc_index = i;
378        if (i >= p->js_subband_start * 2) {
379            vlc_index -= p->js_subband_start;
380        } else {
381            vlc_index /= 2;
382            if (vlc_index < 1)
383                vlc_index = 1;
384        }
385        if (vlc_index > 13)
386            vlc_index = 13; // the VLC tables >13 are identical to No. 13
387
388        j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index - 1].table,
389                     q->envelope_quant_index[vlc_index - 1].bits, 2);
390        quant_index_table[i] = quant_index_table[i - 1] + j - 12; // differential encoding
391        if (quant_index_table[i] > 63 || quant_index_table[i] < -63) {
392            av_log(q->avctx, AV_LOG_ERROR,
393                   "Invalid quantizer %d at position %d, outside [-63, 63] range\n",
394                   quant_index_table[i], i);
395            return AVERROR_INVALIDDATA;
396        }
397    }
398
399    return 0;
400}
401
402/**
403 * Calculate the category and category_index vector.
404 *
405 * @param q                     pointer to the COOKContext
406 * @param quant_index_table     pointer to the array
407 * @param category              pointer to the category array
408 * @param category_index        pointer to the category_index array
409 */
410static void categorize(COOKContext *q, COOKSubpacket *p, int *quant_index_table,
411                       int *category, int *category_index)
412{
413    int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
414    int exp_index2[102];
415    int exp_index1[102];
416
417    int tmp_categorize_array[128 * 2];
418    int tmp_categorize_array1_idx = p->numvector_size;
419    int tmp_categorize_array2_idx = p->numvector_size;
420
421    bits_left = p->bits_per_subpacket - get_bits_count(&q->gb);
422
423    if (bits_left > q->samples_per_channel) {
424        bits_left = q->samples_per_channel +
425                    ((bits_left - q->samples_per_channel) * 5) / 8;
426        //av_log(q->avctx, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
427    }
428
429    memset(&exp_index1,           0, sizeof(exp_index1));
430    memset(&exp_index2,           0, sizeof(exp_index2));
431    memset(&tmp_categorize_array, 0, sizeof(tmp_categorize_array));
432
433    bias = -32;
434
435    /* Estimate bias. */
436    for (i = 32; i > 0; i = i / 2) {
437        num_bits = 0;
438        index    = 0;
439        for (j = p->total_subbands; j > 0; j--) {
440            exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
441            index++;
442            num_bits += expbits_tab[exp_idx];
443        }
444        if (num_bits >= bits_left - 32)
445            bias += i;
446    }
447
448    /* Calculate total number of bits. */
449    num_bits = 0;
450    for (i = 0; i < p->total_subbands; i++) {
451        exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
452        num_bits += expbits_tab[exp_idx];
453        exp_index1[i] = exp_idx;
454        exp_index2[i] = exp_idx;
455    }
456    tmpbias1 = tmpbias2 = num_bits;
457
458    for (j = 1; j < p->numvector_size; j++) {
459        if (tmpbias1 + tmpbias2 > 2 * bits_left) {  /* ---> */
460            int max = -999999;
461            index = -1;
462            for (i = 0; i < p->total_subbands; i++) {
463                if (exp_index1[i] < 7) {
464                    v = (-2 * exp_index1[i]) - quant_index_table[i] + bias;
465                    if (v >= max) {
466                        max   = v;
467                        index = i;
468                    }
469                }
470            }
471            if (index == -1)
472                break;
473            tmp_categorize_array[tmp_categorize_array1_idx++] = index;
474            tmpbias1 -= expbits_tab[exp_index1[index]] -
475                        expbits_tab[exp_index1[index] + 1];
476            ++exp_index1[index];
477        } else {  /* <--- */
478            int min = 999999;
479            index = -1;
480            for (i = 0; i < p->total_subbands; i++) {
481                if (exp_index2[i] > 0) {
482                    v = (-2 * exp_index2[i]) - quant_index_table[i] + bias;
483                    if (v < min) {
484                        min   = v;
485                        index = i;
486                    }
487                }
488            }
489            if (index == -1)
490                break;
491            tmp_categorize_array[--tmp_categorize_array2_idx] = index;
492            tmpbias2 -= expbits_tab[exp_index2[index]] -
493                        expbits_tab[exp_index2[index] - 1];
494            --exp_index2[index];
495        }
496    }
497
498    for (i = 0; i < p->total_subbands; i++)
499        category[i] = exp_index2[i];
500
501    for (i = 0; i < p->numvector_size - 1; i++)
502        category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
503}
504
505
506/**
507 * Expand the category vector.
508 *
509 * @param q                     pointer to the COOKContext
510 * @param category              pointer to the category array
511 * @param category_index        pointer to the category_index array
512 */
513static inline void expand_category(COOKContext *q, int *category,
514                                   int *category_index)
515{
516    int i;
517    for (i = 0; i < q->num_vectors; i++)
518    {
519        int idx = category_index[i];
520        if (++category[idx] >= FF_ARRAY_ELEMS(dither_tab))
521            --category[idx];
522    }
523}
524
525/**
526 * The real requantization of the mltcoefs
527 *
528 * @param q                     pointer to the COOKContext
529 * @param index                 index
530 * @param quant_index           quantisation index
531 * @param subband_coef_index    array of indexes to quant_centroid_tab
532 * @param subband_coef_sign     signs of coefficients
533 * @param mlt_p                 pointer into the mlt buffer
534 */
535static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
536                                 int *subband_coef_index, int *subband_coef_sign,
537                                 float *mlt_p)
538{
539    int i;
540    float f1;
541
542    for (i = 0; i < SUBBAND_SIZE; i++) {
543        if (subband_coef_index[i]) {
544            f1 = quant_centroid_tab[index][subband_coef_index[i]];
545            if (subband_coef_sign[i])
546                f1 = -f1;
547        } else {
548            /* noise coding if subband_coef_index[i] == 0 */
549            f1 = dither_tab[index];
550            if (av_lfg_get(&q->random_state) < 0x80000000)
551                f1 = -f1;
552        }
553        mlt_p[i] = f1 * rootpow2tab[quant_index + 63];
554    }
555}
556/**
557 * Unpack the subband_coef_index and subband_coef_sign vectors.
558 *
559 * @param q                     pointer to the COOKContext
560 * @param category              pointer to the category array
561 * @param subband_coef_index    array of indexes to quant_centroid_tab
562 * @param subband_coef_sign     signs of coefficients
563 */
564static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category,
565                       int *subband_coef_index, int *subband_coef_sign)
566{
567    int i, j;
568    int vlc, vd, tmp, result;
569
570    vd = vd_tab[category];
571    result = 0;
572    for (i = 0; i < vpr_tab[category]; i++) {
573        vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
574        if (p->bits_per_subpacket < get_bits_count(&q->gb)) {
575            vlc = 0;
576            result = 1;
577        }
578        for (j = vd - 1; j >= 0; j--) {
579            tmp = (vlc * invradix_tab[category]) / 0x100000;
580            subband_coef_index[vd * i + j] = vlc - tmp * (kmax_tab[category] + 1);
581            vlc = tmp;
582        }
583        for (j = 0; j < vd; j++) {
584            if (subband_coef_index[i * vd + j]) {
585                if (get_bits_count(&q->gb) < p->bits_per_subpacket) {
586                    subband_coef_sign[i * vd + j] = get_bits1(&q->gb);
587                } else {
588                    result = 1;
589                    subband_coef_sign[i * vd + j] = 0;
590                }
591            } else {
592                subband_coef_sign[i * vd + j] = 0;
593            }
594        }
595    }
596    return result;
597}
598
599
600/**
601 * Fill the mlt_buffer with mlt coefficients.
602 *
603 * @param q                 pointer to the COOKContext
604 * @param category          pointer to the category array
605 * @param quant_index_table pointer to the array
606 * @param mlt_buffer        pointer to mlt coefficients
607 */
608static void decode_vectors(COOKContext *q, COOKSubpacket *p, int *category,
609                           int *quant_index_table, float *mlt_buffer)
610{
611    /* A zero in this table means that the subband coefficient is
612       random noise coded. */
613    int subband_coef_index[SUBBAND_SIZE];
614    /* A zero in this table means that the subband coefficient is a
615       positive multiplicator. */
616    int subband_coef_sign[SUBBAND_SIZE];
617    int band, j;
618    int index = 0;
619
620    for (band = 0; band < p->total_subbands; band++) {
621        index = category[band];
622        if (category[band] < 7) {
623            if (unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)) {
624                index = 7;
625                for (j = 0; j < p->total_subbands; j++)
626                    category[band + j] = 7;
627            }
628        }
629        if (index >= 7) {
630            memset(subband_coef_index, 0, sizeof(subband_coef_index));
631            memset(subband_coef_sign,  0, sizeof(subband_coef_sign));
632        }
633        q->scalar_dequant(q, index, quant_index_table[band],
634                          subband_coef_index, subband_coef_sign,
635                          &mlt_buffer[band * SUBBAND_SIZE]);
636    }
637
638    /* FIXME: should this be removed, or moved into loop above? */
639    if (p->total_subbands * SUBBAND_SIZE >= q->samples_per_channel)
640        return;
641}
642
643
644/**
645 * function for decoding mono data
646 *
647 * @param q                 pointer to the COOKContext
648 * @param mlt_buffer        pointer to mlt coefficients
649 */
650static int mono_decode(COOKContext *q, COOKSubpacket *p, float *mlt_buffer)
651{
652    int category_index[128];
653    int quant_index_table[102];
654    int category[128];
655    int res;
656
657    memset(&category,       0, sizeof(category));
658    memset(&category_index, 0, sizeof(category_index));
659
660    if ((res = decode_envelope(q, p, quant_index_table)) < 0)
661        return res;
662    q->num_vectors = get_bits(&q->gb, p->log2_numvector_size);
663    categorize(q, p, quant_index_table, category, category_index);
664    expand_category(q, category, category_index);
665    decode_vectors(q, p, category, quant_index_table, mlt_buffer);
666
667    return 0;
668}
669
670
671/**
672 * the actual requantization of the timedomain samples
673 *
674 * @param q                 pointer to the COOKContext
675 * @param buffer            pointer to the timedomain buffer
676 * @param gain_index        index for the block multiplier
677 * @param gain_index_next   index for the next block multiplier
678 */
679static void interpolate_float(COOKContext *q, float *buffer,
680                              int gain_index, int gain_index_next)
681{
682    int i;
683    float fc1, fc2;
684    fc1 = pow2tab[gain_index + 63];
685
686    if (gain_index == gain_index_next) {             // static gain
687        for (i = 0; i < q->gain_size_factor; i++)
688            buffer[i] *= fc1;
689    } else {                                        // smooth gain
690        fc2 = q->gain_table[11 + (gain_index_next - gain_index)];
691        for (i = 0; i < q->gain_size_factor; i++) {
692            buffer[i] *= fc1;
693            fc1       *= fc2;
694        }
695    }
696}
697
698/**
699 * Apply transform window, overlap buffers.
700 *
701 * @param q                 pointer to the COOKContext
702 * @param inbuffer          pointer to the mltcoefficients
703 * @param gains_ptr         current and previous gains
704 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
705 */
706static void imlt_window_float(COOKContext *q, float *inbuffer,
707                              cook_gains *gains_ptr, float *previous_buffer)
708{
709    const float fc = pow2tab[gains_ptr->previous[0] + 63];
710    int i;
711    /* The weird thing here, is that the two halves of the time domain
712     * buffer are swapped. Also, the newest data, that we save away for
713     * next frame, has the wrong sign. Hence the subtraction below.
714     * Almost sounds like a complex conjugate/reverse data/FFT effect.
715     */
716
717    /* Apply window and overlap */
718    for (i = 0; i < q->samples_per_channel; i++)
719        inbuffer[i] = inbuffer[i] * fc * q->mlt_window[i] -
720                      previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
721}
722
723/**
724 * The modulated lapped transform, this takes transform coefficients
725 * and transforms them into timedomain samples.
726 * Apply transform window, overlap buffers, apply gain profile
727 * and buffer management.
728 *
729 * @param q                 pointer to the COOKContext
730 * @param inbuffer          pointer to the mltcoefficients
731 * @param gains_ptr         current and previous gains
732 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
733 */
734static void imlt_gain(COOKContext *q, float *inbuffer,
735                      cook_gains *gains_ptr, float *previous_buffer)
736{
737    float *buffer0 = q->mono_mdct_output;
738    float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
739    int i;
740
741    /* Inverse modified discrete cosine transform */
742    q->mdct_ctx.imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
743
744    q->imlt_window(q, buffer1, gains_ptr, previous_buffer);
745
746    /* Apply gain profile */
747    for (i = 0; i < 8; i++)
748        if (gains_ptr->now[i] || gains_ptr->now[i + 1])
749            q->interpolate(q, &buffer1[q->gain_size_factor * i],
750                           gains_ptr->now[i], gains_ptr->now[i + 1]);
751
752    /* Save away the current to be previous block. */
753    memcpy(previous_buffer, buffer0,
754           q->samples_per_channel * sizeof(*previous_buffer));
755}
756
757
758/**
759 * function for getting the jointstereo coupling information
760 *
761 * @param q                 pointer to the COOKContext
762 * @param decouple_tab      decoupling array
763 *
764 */
765static void decouple_info(COOKContext *q, COOKSubpacket *p, int *decouple_tab)
766{
767    int i;
768    int vlc    = get_bits1(&q->gb);
769    int start  = cplband[p->js_subband_start];
770    int end    = cplband[p->subbands - 1];
771    int length = end - start + 1;
772
773    if (start > end)
774        return;
775
776    if (vlc)
777        for (i = 0; i < length; i++)
778            decouple_tab[start + i] = get_vlc2(&q->gb, p->ccpl.table, p->ccpl.bits, 2);
779    else
780        for (i = 0; i < length; i++)
781            decouple_tab[start + i] = get_bits(&q->gb, p->js_vlc_bits);
782}
783
784/*
785 * function decouples a pair of signals from a single signal via multiplication.
786 *
787 * @param q                 pointer to the COOKContext
788 * @param subband           index of the current subband
789 * @param f1                multiplier for channel 1 extraction
790 * @param f2                multiplier for channel 2 extraction
791 * @param decode_buffer     input buffer
792 * @param mlt_buffer1       pointer to left channel mlt coefficients
793 * @param mlt_buffer2       pointer to right channel mlt coefficients
794 */
795static void decouple_float(COOKContext *q,
796                           COOKSubpacket *p,
797                           int subband,
798                           float f1, float f2,
799                           float *decode_buffer,
800                           float *mlt_buffer1, float *mlt_buffer2)
801{
802    int j, tmp_idx;
803    for (j = 0; j < SUBBAND_SIZE; j++) {
804        tmp_idx = ((p->js_subband_start + subband) * SUBBAND_SIZE) + j;
805        mlt_buffer1[SUBBAND_SIZE * subband + j] = f1 * decode_buffer[tmp_idx];
806        mlt_buffer2[SUBBAND_SIZE * subband + j] = f2 * decode_buffer[tmp_idx];
807    }
808}
809
810/**
811 * function for decoding joint stereo data
812 *
813 * @param q                 pointer to the COOKContext
814 * @param mlt_buffer1       pointer to left channel mlt coefficients
815 * @param mlt_buffer2       pointer to right channel mlt coefficients
816 */
817static int joint_decode(COOKContext *q, COOKSubpacket *p, float *mlt_buffer1,
818                        float *mlt_buffer2)
819{
820    int i, j, res;
821    int decouple_tab[SUBBAND_SIZE];
822    float *decode_buffer = q->decode_buffer_0;
823    int idx, cpl_tmp;
824    float f1, f2;
825    const float *cplscale;
826
827    memset(decouple_tab, 0, sizeof(decouple_tab));
828    memset(decode_buffer, 0, sizeof(q->decode_buffer_0));
829
830    /* Make sure the buffers are zeroed out. */
831    memset(mlt_buffer1, 0, 1024 * sizeof(*mlt_buffer1));
832    memset(mlt_buffer2, 0, 1024 * sizeof(*mlt_buffer2));
833    decouple_info(q, p, decouple_tab);
834    if ((res = mono_decode(q, p, decode_buffer)) < 0)
835        return res;
836
837    /* The two channels are stored interleaved in decode_buffer. */
838    for (i = 0; i < p->js_subband_start; i++) {
839        for (j = 0; j < SUBBAND_SIZE; j++) {
840            mlt_buffer1[i * 20 + j] = decode_buffer[i * 40 + j];
841            mlt_buffer2[i * 20 + j] = decode_buffer[i * 40 + 20 + j];
842        }
843    }
844
845    /* When we reach js_subband_start (the higher frequencies)
846       the coefficients are stored in a coupling scheme. */
847    idx = (1 << p->js_vlc_bits) - 1;
848    for (i = p->js_subband_start; i < p->subbands; i++) {
849        cpl_tmp = cplband[i];
850        idx -= decouple_tab[cpl_tmp];
851        cplscale = q->cplscales[p->js_vlc_bits - 2];  // choose decoupler table
852        f1 = cplscale[decouple_tab[cpl_tmp] + 1];
853        f2 = cplscale[idx];
854        q->decouple(q, p, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2);
855        idx = (1 << p->js_vlc_bits) - 1;
856    }
857
858    return 0;
859}
860
861/**
862 * First part of subpacket decoding:
863 *  decode raw stream bytes and read gain info.
864 *
865 * @param q                 pointer to the COOKContext
866 * @param inbuffer          pointer to raw stream data
867 * @param gains_ptr         array of current/prev gain pointers
868 */
869static inline void decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p,
870                                         const uint8_t *inbuffer,
871                                         cook_gains *gains_ptr)
872{
873    int offset;
874
875    offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
876                          p->bits_per_subpacket / 8);
877    init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
878                  p->bits_per_subpacket);
879    decode_gain_info(&q->gb, gains_ptr->now);
880
881    /* Swap current and previous gains */
882    FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
883}
884
885/**
886 * Saturate the output signal and interleave.
887 *
888 * @param q                 pointer to the COOKContext
889 * @param chan              channel to saturate
890 * @param out               pointer to the output vector
891 */
892static void saturate_output_float(COOKContext *q, int chan, float *out)
893{
894    int j;
895    float *output = q->mono_mdct_output + q->samples_per_channel;
896    for (j = 0; j < q->samples_per_channel; j++) {
897        out[chan + q->nb_channels * j] = av_clipf(output[j], -1.0, 1.0);
898    }
899}
900
901/**
902 * Final part of subpacket decoding:
903 *  Apply modulated lapped transform, gain compensation,
904 *  clip and convert to integer.
905 *
906 * @param q                 pointer to the COOKContext
907 * @param decode_buffer     pointer to the mlt coefficients
908 * @param gains_ptr         array of current/prev gain pointers
909 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
910 * @param out               pointer to the output buffer
911 * @param chan              0: left or single channel, 1: right channel
912 */
913static inline void mlt_compensate_output(COOKContext *q, float *decode_buffer,
914                                         cook_gains *gains_ptr, float *previous_buffer,
915                                         float *out, int chan)
916{
917    imlt_gain(q, decode_buffer, gains_ptr, previous_buffer);
918    if (out)
919        q->saturate_output(q, chan, out);
920}
921
922
923/**
924 * Cook subpacket decoding. This function returns one decoded subpacket,
925 * usually 1024 samples per channel.
926 *
927 * @param q                 pointer to the COOKContext
928 * @param inbuffer          pointer to the inbuffer
929 * @param outbuffer         pointer to the outbuffer
930 */
931static int decode_subpacket(COOKContext *q, COOKSubpacket *p,
932                            const uint8_t *inbuffer, float *outbuffer)
933{
934    int sub_packet_size = p->size;
935    int res;
936    /* packet dump */
937    // for (i = 0; i < sub_packet_size ; i++)
938    //     av_log(q->avctx, AV_LOG_ERROR, "%02x", inbuffer[i]);
939    // av_log(q->avctx, AV_LOG_ERROR, "\n");
940    memset(q->decode_buffer_1, 0, sizeof(q->decode_buffer_1));
941    decode_bytes_and_gain(q, p, inbuffer, &p->gains1);
942
943    if (p->joint_stereo) {
944        if ((res = joint_decode(q, p, q->decode_buffer_1, q->decode_buffer_2)) < 0)
945            return res;
946    } else {
947        if ((res = mono_decode(q, p, q->decode_buffer_1)) < 0)
948            return res;
949
950        if (p->num_channels == 2) {
951            decode_bytes_and_gain(q, p, inbuffer + sub_packet_size / 2, &p->gains2);
952            if ((res = mono_decode(q, p, q->decode_buffer_2)) < 0)
953                return res;
954        }
955    }
956
957    mlt_compensate_output(q, q->decode_buffer_1, &p->gains1,
958                          p->mono_previous_buffer1, outbuffer, p->ch_idx);
959
960    if (p->num_channels == 2)
961        if (p->joint_stereo)
962            mlt_compensate_output(q, q->decode_buffer_2, &p->gains1,
963                                  p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
964        else
965            mlt_compensate_output(q, q->decode_buffer_2, &p->gains2,
966                                  p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
967
968    return 0;
969}
970
971
972/**
973 * Cook frame decoding
974 *
975 * @param avctx     pointer to the AVCodecContext
976 */
977static int cook_decode_frame(AVCodecContext *avctx, void *data,
978                             int *got_frame_ptr, AVPacket *avpkt)
979{
980    const uint8_t *buf = avpkt->data;
981    int buf_size = avpkt->size;
982    COOKContext *q = avctx->priv_data;
983    float *samples = NULL;
984    int i, ret;
985    int offset = 0;
986    int chidx = 0;
987
988    if (buf_size < avctx->block_align)
989        return buf_size;
990
991    /* get output buffer */
992    if (q->discarded_packets >= 2) {
993        q->frame.nb_samples = q->samples_per_channel;
994        if ((ret = avctx->get_buffer(avctx, &q->frame)) < 0) {
995            av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
996            return ret;
997        }
998        samples = (float *) q->frame.data[0];
999    }
1000
1001    /* estimate subpacket sizes */
1002    q->subpacket[0].size = avctx->block_align;
1003
1004    for (i = 1; i < q->num_subpackets; i++) {
1005        q->subpacket[i].size = 2 * buf[avctx->block_align - q->num_subpackets + i];
1006        q->subpacket[0].size -= q->subpacket[i].size + 1;
1007        if (q->subpacket[0].size < 0) {
1008            av_log(avctx, AV_LOG_DEBUG,
1009                   "frame subpacket size total > avctx->block_align!\n");
1010            return AVERROR_INVALIDDATA;
1011        }
1012    }
1013
1014    /* decode supbackets */
1015    for (i = 0; i < q->num_subpackets; i++) {
1016        q->subpacket[i].bits_per_subpacket = (q->subpacket[i].size * 8) >>
1017                                              q->subpacket[i].bits_per_subpdiv;
1018        q->subpacket[i].ch_idx = chidx;
1019        av_log(avctx, AV_LOG_DEBUG,
1020               "subpacket[%i] size %i js %i %i block_align %i\n",
1021               i, q->subpacket[i].size, q->subpacket[i].joint_stereo, offset,
1022               avctx->block_align);
1023
1024        if ((ret = decode_subpacket(q, &q->subpacket[i], buf + offset, samples)) < 0)
1025            return ret;
1026        offset += q->subpacket[i].size;
1027        chidx += q->subpacket[i].num_channels;
1028        av_log(avctx, AV_LOG_DEBUG, "subpacket[%i] %i %i\n",
1029               i, q->subpacket[i].size * 8, get_bits_count(&q->gb));
1030    }
1031
1032    /* Discard the first two frames: no valid audio. */
1033    if (q->discarded_packets < 2) {
1034        q->discarded_packets++;
1035        *got_frame_ptr = 0;
1036        return avctx->block_align;
1037    }
1038
1039    *got_frame_ptr    = 1;
1040    *(AVFrame *) data = q->frame;
1041
1042    return avctx->block_align;
1043}
1044
1045#ifdef DEBUG
1046static void dump_cook_context(COOKContext *q)
1047{
1048    //int i=0;
1049#define PRINT(a, b) av_log(q->avctx, AV_LOG_ERROR, " %s = %d\n", a, b);
1050    av_log(q->avctx, AV_LOG_ERROR, "COOKextradata\n");
1051    av_log(q->avctx, AV_LOG_ERROR, "cookversion=%x\n", q->subpacket[0].cookversion);
1052    if (q->subpacket[0].cookversion > STEREO) {
1053        PRINT("js_subband_start", q->subpacket[0].js_subband_start);
1054        PRINT("js_vlc_bits", q->subpacket[0].js_vlc_bits);
1055    }
1056    av_log(q->avctx, AV_LOG_ERROR, "COOKContext\n");
1057    PRINT("nb_channels", q->nb_channels);
1058    PRINT("bit_rate", q->bit_rate);
1059    PRINT("sample_rate", q->sample_rate);
1060    PRINT("samples_per_channel", q->subpacket[0].samples_per_channel);
1061    PRINT("samples_per_frame", q->subpacket[0].samples_per_frame);
1062    PRINT("subbands", q->subpacket[0].subbands);
1063    PRINT("js_subband_start", q->subpacket[0].js_subband_start);
1064    PRINT("log2_numvector_size", q->subpacket[0].log2_numvector_size);
1065    PRINT("numvector_size", q->subpacket[0].numvector_size);
1066    PRINT("total_subbands", q->subpacket[0].total_subbands);
1067}
1068#endif
1069
1070static av_cold int cook_count_channels(unsigned int mask)
1071{
1072    int i;
1073    int channels = 0;
1074    for (i = 0; i < 32; i++)
1075        if (mask & (1 << i))
1076            ++channels;
1077    return channels;
1078}
1079
1080/**
1081 * Cook initialization
1082 *
1083 * @param avctx     pointer to the AVCodecContext
1084 */
1085static av_cold int cook_decode_init(AVCodecContext *avctx)
1086{
1087    COOKContext *q = avctx->priv_data;
1088    const uint8_t *edata_ptr = avctx->extradata;
1089    const uint8_t *edata_ptr_end = edata_ptr + avctx->extradata_size;
1090    int extradata_size = avctx->extradata_size;
1091    int s = 0;
1092    unsigned int channel_mask = 0;
1093    int ret;
1094    q->avctx = avctx;
1095
1096    /* Take care of the codec specific extradata. */
1097    if (extradata_size <= 0) {
1098        av_log(avctx, AV_LOG_ERROR, "Necessary extradata missing!\n");
1099        return AVERROR_INVALIDDATA;
1100    }
1101    av_log(avctx, AV_LOG_DEBUG, "codecdata_length=%d\n", avctx->extradata_size);
1102
1103    /* Take data from the AVCodecContext (RM container). */
1104    q->sample_rate = avctx->sample_rate;
1105    q->nb_channels = avctx->channels;
1106    q->bit_rate = avctx->bit_rate;
1107    if (!q->nb_channels) {
1108        av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
1109        return AVERROR_INVALIDDATA;
1110    }
1111
1112    /* Initialize RNG. */
1113    av_lfg_init(&q->random_state, 0);
1114
1115    while (edata_ptr < edata_ptr_end) {
1116        /* 8 for mono, 16 for stereo, ? for multichannel
1117           Swap to right endianness so we don't need to care later on. */
1118        if (extradata_size >= 8) {
1119            q->subpacket[s].cookversion = bytestream_get_be32(&edata_ptr);
1120            q->subpacket[s].samples_per_frame = bytestream_get_be16(&edata_ptr);
1121            q->subpacket[s].subbands = bytestream_get_be16(&edata_ptr);
1122            extradata_size -= 8;
1123        }
1124        if (extradata_size >= 8) {
1125            bytestream_get_be32(&edata_ptr);    // Unknown unused
1126            q->subpacket[s].js_subband_start = bytestream_get_be16(&edata_ptr);
1127            q->subpacket[s].js_vlc_bits = bytestream_get_be16(&edata_ptr);
1128            extradata_size -= 8;
1129        }
1130
1131        /* Initialize extradata related variables. */
1132        q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame / q->nb_channels;
1133        q->subpacket[s].bits_per_subpacket = avctx->block_align * 8;
1134
1135        /* Initialize default data states. */
1136        q->subpacket[s].log2_numvector_size = 5;
1137        q->subpacket[s].total_subbands = q->subpacket[s].subbands;
1138        q->subpacket[s].num_channels = 1;
1139
1140        /* Initialize version-dependent variables */
1141
1142        av_log(avctx, AV_LOG_DEBUG, "subpacket[%i].cookversion=%x\n", s,
1143               q->subpacket[s].cookversion);
1144        q->subpacket[s].joint_stereo = 0;
1145        switch (q->subpacket[s].cookversion) {
1146        case MONO:
1147            if (q->nb_channels != 1) {
1148                av_log_ask_for_sample(avctx, "Container channels != 1.\n");
1149                return AVERROR_PATCHWELCOME;
1150            }
1151            av_log(avctx, AV_LOG_DEBUG, "MONO\n");
1152            break;
1153        case STEREO:
1154            if (q->nb_channels != 1) {
1155                q->subpacket[s].bits_per_subpdiv = 1;
1156                q->subpacket[s].num_channels = 2;
1157            }
1158            av_log(avctx, AV_LOG_DEBUG, "STEREO\n");
1159            break;
1160        case JOINT_STEREO:
1161            if (q->nb_channels != 2) {
1162                av_log_ask_for_sample(avctx, "Container channels != 2.\n");
1163                return AVERROR_PATCHWELCOME;
1164            }
1165            av_log(avctx, AV_LOG_DEBUG, "JOINT_STEREO\n");
1166            if (avctx->extradata_size >= 16) {
1167                q->subpacket[s].total_subbands = q->subpacket[s].subbands +
1168                                                 q->subpacket[s].js_subband_start;
1169                q->subpacket[s].joint_stereo = 1;
1170                q->subpacket[s].num_channels = 2;
1171            }
1172            if (q->subpacket[s].samples_per_channel > 256) {
1173                q->subpacket[s].log2_numvector_size = 6;
1174            }
1175            if (q->subpacket[s].samples_per_channel > 512) {
1176                q->subpacket[s].log2_numvector_size = 7;
1177            }
1178            break;
1179        case MC_COOK:
1180            av_log(avctx, AV_LOG_DEBUG, "MULTI_CHANNEL\n");
1181            if (extradata_size >= 4)
1182                channel_mask |= q->subpacket[s].channel_mask = bytestream_get_be32(&edata_ptr);
1183
1184            if (cook_count_channels(q->subpacket[s].channel_mask) > 1) {
1185                q->subpacket[s].total_subbands = q->subpacket[s].subbands +
1186                                                 q->subpacket[s].js_subband_start;
1187                q->subpacket[s].joint_stereo = 1;
1188                q->subpacket[s].num_channels = 2;
1189                q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame >> 1;
1190
1191                if (q->subpacket[s].samples_per_channel > 256) {
1192                    q->subpacket[s].log2_numvector_size = 6;
1193                }
1194                if (q->subpacket[s].samples_per_channel > 512) {
1195                    q->subpacket[s].log2_numvector_size = 7;
1196                }
1197            } else
1198                q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame;
1199
1200            break;
1201        default:
1202            av_log_ask_for_sample(avctx, "Unknown Cook version.\n");
1203            return AVERROR_PATCHWELCOME;
1204        }
1205
1206        if (s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) {
1207            av_log(avctx, AV_LOG_ERROR, "different number of samples per channel!\n");
1208            return AVERROR_INVALIDDATA;
1209        } else
1210            q->samples_per_channel = q->subpacket[0].samples_per_channel;
1211
1212
1213        /* Initialize variable relations */
1214        q->subpacket[s].numvector_size = (1 << q->subpacket[s].log2_numvector_size);
1215
1216        /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1217        if (q->subpacket[s].total_subbands > 53) {
1218            av_log_ask_for_sample(avctx, "total_subbands > 53\n");
1219            return AVERROR_PATCHWELCOME;
1220        }
1221
1222        if ((q->subpacket[s].js_vlc_bits > 6) ||
1223            (q->subpacket[s].js_vlc_bits < 2 * q->subpacket[s].joint_stereo)) {
1224            av_log(avctx, AV_LOG_ERROR, "js_vlc_bits = %d, only >= %d and <= 6 allowed!\n",
1225                   q->subpacket[s].js_vlc_bits, 2 * q->subpacket[s].joint_stereo);
1226            return AVERROR_INVALIDDATA;
1227        }
1228
1229        if (q->subpacket[s].subbands > 50) {
1230            av_log_ask_for_sample(avctx, "subbands > 50\n");
1231            return AVERROR_PATCHWELCOME;
1232        }
1233        q->subpacket[s].gains1.now      = q->subpacket[s].gain_1;
1234        q->subpacket[s].gains1.previous = q->subpacket[s].gain_2;
1235        q->subpacket[s].gains2.now      = q->subpacket[s].gain_3;
1236        q->subpacket[s].gains2.previous = q->subpacket[s].gain_4;
1237
1238        q->num_subpackets++;
1239        s++;
1240        if (s > MAX_SUBPACKETS) {
1241            av_log_ask_for_sample(avctx, "Too many subpackets > 5\n");
1242            return AVERROR_PATCHWELCOME;
1243        }
1244    }
1245    /* Generate tables */
1246    init_pow2table();
1247    init_gain_table(q);
1248    init_cplscales_table(q);
1249
1250    if ((ret = init_cook_vlc_tables(q)))
1251        return ret;
1252
1253
1254    if (avctx->block_align >= UINT_MAX / 2)
1255        return AVERROR(EINVAL);
1256
1257    /* Pad the databuffer with:
1258       DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
1259       FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
1260    q->decoded_bytes_buffer =
1261        av_mallocz(avctx->block_align
1262                   + DECODE_BYTES_PAD1(avctx->block_align)
1263                   + FF_INPUT_BUFFER_PADDING_SIZE);
1264    if (q->decoded_bytes_buffer == NULL)
1265        return AVERROR(ENOMEM);
1266
1267    /* Initialize transform. */
1268    if ((ret = init_cook_mlt(q)))
1269        return ret;
1270
1271    /* Initialize COOK signal arithmetic handling */
1272    if (1) {
1273        q->scalar_dequant  = scalar_dequant_float;
1274        q->decouple        = decouple_float;
1275        q->imlt_window     = imlt_window_float;
1276        q->interpolate     = interpolate_float;
1277        q->saturate_output = saturate_output_float;
1278    }
1279
1280    /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1281    if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512)
1282                || (q->samples_per_channel == 1024)) {
1283    } else {
1284        av_log_ask_for_sample(avctx,
1285                              "unknown amount of samples_per_channel = %d\n",
1286                              q->samples_per_channel);
1287        return AVERROR_PATCHWELCOME;
1288    }
1289
1290    avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
1291    if (channel_mask)
1292        avctx->channel_layout = channel_mask;
1293    else
1294        avctx->channel_layout = (avctx->channels == 2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO;
1295
1296    avcodec_get_frame_defaults(&q->frame);
1297    avctx->coded_frame = &q->frame;
1298
1299#ifdef DEBUG
1300    dump_cook_context(q);
1301#endif
1302    return 0;
1303}
1304
1305AVCodec ff_cook_decoder = {
1306    .name           = "cook",
1307    .type           = AVMEDIA_TYPE_AUDIO,
1308    .id             = CODEC_ID_COOK,
1309    .priv_data_size = sizeof(COOKContext),
1310    .init           = cook_decode_init,
1311    .close          = cook_decode_close,
1312    .decode         = cook_decode_frame,
1313    .capabilities   = CODEC_CAP_DR1,
1314    .long_name      = NULL_IF_CONFIG_SMALL("COOK"),
1315};
1316