1/*
2 * adaptive and fixed codebook vector operations for ACELP-based codecs
3 *
4 * Copyright (c) 2008 Vladimir Voroshilov
5 *
6 * This file is part of Libav.
7 *
8 * Libav is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * Libav is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with Libav; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23#include <inttypes.h>
24#include "avcodec.h"
25#include "acelp_vectors.h"
26#include "celp_math.h"
27
28const uint8_t ff_fc_2pulses_9bits_track1[16] =
29{
30    1,  3,
31    6,  8,
32    11, 13,
33    16, 18,
34    21, 23,
35    26, 28,
36    31, 33,
37    36, 38
38};
39const uint8_t ff_fc_2pulses_9bits_track1_gray[16] =
40{
41  1,  3,
42  8,  6,
43  18, 16,
44  11, 13,
45  38, 36,
46  31, 33,
47  21, 23,
48  28, 26,
49};
50
51const uint8_t ff_fc_4pulses_8bits_tracks_13[16] =
52{
53  0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75,
54};
55
56const uint8_t ff_fc_4pulses_8bits_track_4[32] =
57{
58    3,  4,
59    8,  9,
60    13, 14,
61    18, 19,
62    23, 24,
63    28, 29,
64    33, 34,
65    38, 39,
66    43, 44,
67    48, 49,
68    53, 54,
69    58, 59,
70    63, 64,
71    68, 69,
72    73, 74,
73    78, 79,
74};
75
76const float ff_pow_0_7[10] = {
77    0.700000, 0.490000, 0.343000, 0.240100, 0.168070,
78    0.117649, 0.082354, 0.057648, 0.040354, 0.028248
79};
80
81const float ff_pow_0_75[10] = {
82    0.750000, 0.562500, 0.421875, 0.316406, 0.237305,
83    0.177979, 0.133484, 0.100113, 0.075085, 0.056314
84};
85
86const float ff_pow_0_55[10] = {
87    0.550000, 0.302500, 0.166375, 0.091506, 0.050328,
88    0.027681, 0.015224, 0.008373, 0.004605, 0.002533
89};
90
91const float ff_b60_sinc[61] = {
92 0.898529  ,  0.865051  ,  0.769257  ,  0.624054  ,  0.448639  ,  0.265289   ,
93 0.0959167 , -0.0412598 , -0.134338  , -0.178986  , -0.178528  , -0.142609   ,
94-0.0849304 , -0.0205078 ,  0.0369568 ,  0.0773926 ,  0.0955200 ,  0.0912781  ,
95 0.0689392 ,  0.0357056 ,  0.        , -0.0305481 , -0.0504150 , -0.0570068  ,
96-0.0508423 , -0.0350037 , -0.0141602 ,  0.00665283,  0.0230713 ,  0.0323486  ,
97 0.0335388 ,  0.0275879 ,  0.0167847 ,  0.00411987, -0.00747681, -0.0156860  ,
98-0.0193481 , -0.0183716 , -0.0137634 , -0.00704956,  0.        ,  0.00582886 ,
99 0.00939941,  0.0103760 ,  0.00903320,  0.00604248,  0.00238037, -0.00109863 ,
100-0.00366211, -0.00497437, -0.00503540, -0.00402832, -0.00241089, -0.000579834,
101 0.00103760,  0.00222778,  0.00277710,  0.00271606,  0.00213623,  0.00115967 ,
102 0.
103};
104
105void ff_acelp_fc_pulse_per_track(
106        int16_t* fc_v,
107        const uint8_t *tab1,
108        const uint8_t *tab2,
109        int pulse_indexes,
110        int pulse_signs,
111        int pulse_count,
112        int bits)
113{
114    int mask = (1 << bits) - 1;
115    int i;
116
117    for(i=0; i<pulse_count; i++)
118    {
119        fc_v[i + tab1[pulse_indexes & mask]] +=
120                (pulse_signs & 1) ? 8191 : -8192; // +/-1 in (2.13)
121
122        pulse_indexes >>= bits;
123        pulse_signs >>= 1;
124    }
125
126    fc_v[tab2[pulse_indexes]] += (pulse_signs & 1) ? 8191 : -8192;
127}
128
129void ff_decode_10_pulses_35bits(const int16_t *fixed_index,
130                                AMRFixed *fixed_sparse,
131                                const uint8_t *gray_decode,
132                                int half_pulse_count, int bits)
133{
134    int i;
135    int mask = (1 << bits) - 1;
136
137    fixed_sparse->no_repeat_mask = 0;
138    fixed_sparse->n = 2 * half_pulse_count;
139    for (i = 0; i < half_pulse_count; i++) {
140        const int pos1   = gray_decode[fixed_index[2*i+1] & mask] + i;
141        const int pos2   = gray_decode[fixed_index[2*i  ] & mask] + i;
142        const float sign = (fixed_index[2*i+1] & (1 << bits)) ? -1.0 : 1.0;
143        fixed_sparse->x[2*i+1] = pos1;
144        fixed_sparse->x[2*i  ] = pos2;
145        fixed_sparse->y[2*i+1] = sign;
146        fixed_sparse->y[2*i  ] = pos2 < pos1 ? -sign : sign;
147    }
148}
149
150void ff_acelp_weighted_vector_sum(
151        int16_t* out,
152        const int16_t *in_a,
153        const int16_t *in_b,
154        int16_t weight_coeff_a,
155        int16_t weight_coeff_b,
156        int16_t rounder,
157        int shift,
158        int length)
159{
160    int i;
161
162    // Clipping required here; breaks OVERFLOW test.
163    for(i=0; i<length; i++)
164        out[i] = av_clip_int16((
165                 in_a[i] * weight_coeff_a +
166                 in_b[i] * weight_coeff_b +
167                 rounder) >> shift);
168}
169
170void ff_weighted_vector_sumf(float *out, const float *in_a, const float *in_b,
171                             float weight_coeff_a, float weight_coeff_b, int length)
172{
173    int i;
174
175    for(i=0; i<length; i++)
176        out[i] = weight_coeff_a * in_a[i]
177               + weight_coeff_b * in_b[i];
178}
179
180void ff_adaptive_gain_control(float *out, const float *in, float speech_energ,
181                              int size, float alpha, float *gain_mem)
182{
183    int i;
184    float postfilter_energ = ff_dot_productf(in, in, size);
185    float gain_scale_factor = 1.0;
186    float mem = *gain_mem;
187
188    if (postfilter_energ)
189        gain_scale_factor = sqrt(speech_energ / postfilter_energ);
190
191    gain_scale_factor *= 1.0 - alpha;
192
193    for (i = 0; i < size; i++) {
194        mem = alpha * mem + gain_scale_factor;
195        out[i] = in[i] * mem;
196    }
197
198    *gain_mem = mem;
199}
200
201void ff_scale_vector_to_given_sum_of_squares(float *out, const float *in,
202                                             float sum_of_squares, const int n)
203{
204    int i;
205    float scalefactor = ff_dot_productf(in, in, n);
206    if (scalefactor)
207        scalefactor = sqrt(sum_of_squares / scalefactor);
208    for (i = 0; i < n; i++)
209        out[i] = in[i] * scalefactor;
210}
211
212void ff_set_fixed_vector(float *out, const AMRFixed *in, float scale, int size)
213{
214    int i;
215
216    for (i=0; i < in->n; i++) {
217        int x   = in->x[i], repeats = !((in->no_repeat_mask >> i) & 1);
218        float y = in->y[i] * scale;
219
220        do {
221            out[x] += y;
222            y *= in->pitch_fac;
223            x += in->pitch_lag;
224        } while (x < size && repeats);
225    }
226}
227
228void ff_clear_fixed_vector(float *out, const AMRFixed *in, int size)
229{
230    int i;
231
232    for (i=0; i < in->n; i++) {
233        int x  = in->x[i], repeats = !((in->no_repeat_mask >> i) & 1);
234
235        do {
236            out[x] = 0.0;
237            x += in->pitch_lag;
238        } while (x < size && repeats);
239    }
240}
241