1/*
2 * AC-3 encoder float/fixed template
3 * Copyright (c) 2000 Fabrice Bellard
4 * Copyright (c) 2006-2011 Justin Ruggles <justin.ruggles@gmail.com>
5 * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
6 *
7 * This file is part of Libav.
8 *
9 * Libav is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * Libav is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with Libav; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24/**
25 * @file
26 * AC-3 encoder float/fixed template
27 */
28
29#include <stdint.h>
30
31
32/* prototypes for static functions in ac3enc_fixed.c and ac3enc_float.c */
33
34static void scale_coefficients(AC3EncodeContext *s);
35
36static void apply_window(DSPContext *dsp, SampleType *output,
37                         const SampleType *input, const SampleType *window,
38                         unsigned int len);
39
40static int normalize_samples(AC3EncodeContext *s);
41
42static void clip_coefficients(DSPContext *dsp, CoefType *coef, unsigned int len);
43
44static CoefType calc_cpl_coord(CoefSumType energy_ch, CoefSumType energy_cpl);
45
46
47int AC3_NAME(allocate_sample_buffers)(AC3EncodeContext *s)
48{
49    int ch;
50
51    FF_ALLOC_OR_GOTO(s->avctx, s->windowed_samples, AC3_WINDOW_SIZE *
52                     sizeof(*s->windowed_samples), alloc_fail);
53    FF_ALLOC_OR_GOTO(s->avctx, s->planar_samples, s->channels * sizeof(*s->planar_samples),
54                     alloc_fail);
55    for (ch = 0; ch < s->channels; ch++) {
56        FF_ALLOCZ_OR_GOTO(s->avctx, s->planar_samples[ch],
57                          (AC3_FRAME_SIZE+AC3_BLOCK_SIZE) * sizeof(**s->planar_samples),
58                          alloc_fail);
59    }
60
61    return 0;
62alloc_fail:
63    return AVERROR(ENOMEM);
64}
65
66
67/*
68 * Deinterleave input samples.
69 * Channels are reordered from Libav's default order to AC-3 order.
70 */
71static void deinterleave_input_samples(AC3EncodeContext *s,
72                                       const SampleType *samples)
73{
74    int ch, i;
75
76    /* deinterleave and remap input samples */
77    for (ch = 0; ch < s->channels; ch++) {
78        const SampleType *sptr;
79        int sinc;
80
81        /* copy last 256 samples of previous frame to the start of the current frame */
82        memcpy(&s->planar_samples[ch][0], &s->planar_samples[ch][AC3_BLOCK_SIZE * s->num_blocks],
83               AC3_BLOCK_SIZE * sizeof(s->planar_samples[0][0]));
84
85        /* deinterleave */
86        sinc = s->channels;
87        sptr = samples + s->channel_map[ch];
88        for (i = AC3_BLOCK_SIZE; i < AC3_BLOCK_SIZE * (s->num_blocks + 1); i++) {
89            s->planar_samples[ch][i] = *sptr;
90            sptr += sinc;
91        }
92    }
93}
94
95
96/*
97 * Apply the MDCT to input samples to generate frequency coefficients.
98 * This applies the KBD window and normalizes the input to reduce precision
99 * loss due to fixed-point calculations.
100 */
101static void apply_mdct(AC3EncodeContext *s)
102{
103    int blk, ch;
104
105    for (ch = 0; ch < s->channels; ch++) {
106        for (blk = 0; blk < s->num_blocks; blk++) {
107            AC3Block *block = &s->blocks[blk];
108            const SampleType *input_samples = &s->planar_samples[ch][blk * AC3_BLOCK_SIZE];
109
110            apply_window(&s->dsp, s->windowed_samples, input_samples,
111                         s->mdct_window, AC3_WINDOW_SIZE);
112
113            if (s->fixed_point)
114                block->coeff_shift[ch+1] = normalize_samples(s);
115
116            s->mdct.mdct_calcw(&s->mdct, block->mdct_coef[ch+1],
117                               s->windowed_samples);
118        }
119    }
120}
121
122
123/*
124 * Calculate coupling channel and coupling coordinates.
125 */
126static void apply_channel_coupling(AC3EncodeContext *s)
127{
128    LOCAL_ALIGNED_16(CoefType, cpl_coords,      [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]);
129#if CONFIG_AC3ENC_FLOAT
130    LOCAL_ALIGNED_16(int32_t, fixed_cpl_coords, [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]);
131#else
132    int32_t (*fixed_cpl_coords)[AC3_MAX_CHANNELS][16] = cpl_coords;
133#endif
134    int blk, ch, bnd, i, j;
135    CoefSumType energy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][16] = {{{0}}};
136    int cpl_start, num_cpl_coefs;
137
138    memset(cpl_coords,       0, AC3_MAX_BLOCKS * sizeof(*cpl_coords));
139#if CONFIG_AC3ENC_FLOAT
140    memset(fixed_cpl_coords, 0, AC3_MAX_BLOCKS * sizeof(*cpl_coords));
141#endif
142
143    /* align start to 16-byte boundary. align length to multiple of 32.
144        note: coupling start bin % 4 will always be 1 */
145    cpl_start     = s->start_freq[CPL_CH] - 1;
146    num_cpl_coefs = FFALIGN(s->num_cpl_subbands * 12 + 1, 32);
147    cpl_start     = FFMIN(256, cpl_start + num_cpl_coefs) - num_cpl_coefs;
148
149    /* calculate coupling channel from fbw channels */
150    for (blk = 0; blk < s->num_blocks; blk++) {
151        AC3Block *block = &s->blocks[blk];
152        CoefType *cpl_coef = &block->mdct_coef[CPL_CH][cpl_start];
153        if (!block->cpl_in_use)
154            continue;
155        memset(cpl_coef, 0, num_cpl_coefs * sizeof(*cpl_coef));
156        for (ch = 1; ch <= s->fbw_channels; ch++) {
157            CoefType *ch_coef = &block->mdct_coef[ch][cpl_start];
158            if (!block->channel_in_cpl[ch])
159                continue;
160            for (i = 0; i < num_cpl_coefs; i++)
161                cpl_coef[i] += ch_coef[i];
162        }
163
164        /* coefficients must be clipped in order to be encoded */
165        clip_coefficients(&s->dsp, cpl_coef, num_cpl_coefs);
166    }
167
168    /* calculate energy in each band in coupling channel and each fbw channel */
169    /* TODO: possibly use SIMD to speed up energy calculation */
170    bnd = 0;
171    i = s->start_freq[CPL_CH];
172    while (i < s->cpl_end_freq) {
173        int band_size = s->cpl_band_sizes[bnd];
174        for (ch = CPL_CH; ch <= s->fbw_channels; ch++) {
175            for (blk = 0; blk < s->num_blocks; blk++) {
176                AC3Block *block = &s->blocks[blk];
177                if (!block->cpl_in_use || (ch > CPL_CH && !block->channel_in_cpl[ch]))
178                    continue;
179                for (j = 0; j < band_size; j++) {
180                    CoefType v = block->mdct_coef[ch][i+j];
181                    MAC_COEF(energy[blk][ch][bnd], v, v);
182                }
183            }
184        }
185        i += band_size;
186        bnd++;
187    }
188
189    /* calculate coupling coordinates for all blocks for all channels */
190    for (blk = 0; blk < s->num_blocks; blk++) {
191        AC3Block *block  = &s->blocks[blk];
192        if (!block->cpl_in_use)
193            continue;
194        for (ch = 1; ch <= s->fbw_channels; ch++) {
195            if (!block->channel_in_cpl[ch])
196                continue;
197            for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
198                cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy[blk][ch][bnd],
199                                                          energy[blk][CPL_CH][bnd]);
200            }
201        }
202    }
203
204    /* determine which blocks to send new coupling coordinates for */
205    for (blk = 0; blk < s->num_blocks; blk++) {
206        AC3Block *block  = &s->blocks[blk];
207        AC3Block *block0 = blk ? &s->blocks[blk-1] : NULL;
208
209        memset(block->new_cpl_coords, 0, sizeof(block->new_cpl_coords));
210
211        if (block->cpl_in_use) {
212            /* send new coordinates if this is the first block, if previous
213             * block did not use coupling but this block does, the channels
214             * using coupling has changed from the previous block, or the
215             * coordinate difference from the last block for any channel is
216             * greater than a threshold value. */
217            if (blk == 0 || !block0->cpl_in_use) {
218                for (ch = 1; ch <= s->fbw_channels; ch++)
219                    block->new_cpl_coords[ch] = 1;
220            } else {
221                for (ch = 1; ch <= s->fbw_channels; ch++) {
222                    if (!block->channel_in_cpl[ch])
223                        continue;
224                    if (!block0->channel_in_cpl[ch]) {
225                        block->new_cpl_coords[ch] = 1;
226                    } else {
227                        CoefSumType coord_diff = 0;
228                        for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
229                            coord_diff += FFABS(cpl_coords[blk-1][ch][bnd] -
230                                                cpl_coords[blk  ][ch][bnd]);
231                        }
232                        coord_diff /= s->num_cpl_bands;
233                        if (coord_diff > NEW_CPL_COORD_THRESHOLD)
234                            block->new_cpl_coords[ch] = 1;
235                    }
236                }
237            }
238        }
239    }
240
241    /* calculate final coupling coordinates, taking into account reusing of
242       coordinates in successive blocks */
243    for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
244        blk = 0;
245        while (blk < s->num_blocks) {
246            int av_uninit(blk1);
247            AC3Block *block  = &s->blocks[blk];
248
249            if (!block->cpl_in_use) {
250                blk++;
251                continue;
252            }
253
254            for (ch = 1; ch <= s->fbw_channels; ch++) {
255                CoefSumType energy_ch, energy_cpl;
256                if (!block->channel_in_cpl[ch])
257                    continue;
258                energy_cpl = energy[blk][CPL_CH][bnd];
259                energy_ch = energy[blk][ch][bnd];
260                blk1 = blk+1;
261                while (!s->blocks[blk1].new_cpl_coords[ch] && blk1 < s->num_blocks) {
262                    if (s->blocks[blk1].cpl_in_use) {
263                        energy_cpl += energy[blk1][CPL_CH][bnd];
264                        energy_ch += energy[blk1][ch][bnd];
265                    }
266                    blk1++;
267                }
268                cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy_ch, energy_cpl);
269            }
270            blk = blk1;
271        }
272    }
273
274    /* calculate exponents/mantissas for coupling coordinates */
275    for (blk = 0; blk < s->num_blocks; blk++) {
276        AC3Block *block = &s->blocks[blk];
277        if (!block->cpl_in_use)
278            continue;
279
280#if CONFIG_AC3ENC_FLOAT
281        s->ac3dsp.float_to_fixed24(fixed_cpl_coords[blk][1],
282                                   cpl_coords[blk][1],
283                                   s->fbw_channels * 16);
284#endif
285        s->ac3dsp.extract_exponents(block->cpl_coord_exp[1],
286                                    fixed_cpl_coords[blk][1],
287                                    s->fbw_channels * 16);
288
289        for (ch = 1; ch <= s->fbw_channels; ch++) {
290            int bnd, min_exp, max_exp, master_exp;
291
292            if (!block->new_cpl_coords[ch])
293                continue;
294
295            /* determine master exponent */
296            min_exp = max_exp = block->cpl_coord_exp[ch][0];
297            for (bnd = 1; bnd < s->num_cpl_bands; bnd++) {
298                int exp = block->cpl_coord_exp[ch][bnd];
299                min_exp = FFMIN(exp, min_exp);
300                max_exp = FFMAX(exp, max_exp);
301            }
302            master_exp = ((max_exp - 15) + 2) / 3;
303            master_exp = FFMAX(master_exp, 0);
304            while (min_exp < master_exp * 3)
305                master_exp--;
306            for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
307                block->cpl_coord_exp[ch][bnd] = av_clip(block->cpl_coord_exp[ch][bnd] -
308                                                        master_exp * 3, 0, 15);
309            }
310            block->cpl_master_exp[ch] = master_exp;
311
312            /* quantize mantissas */
313            for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
314                int cpl_exp  = block->cpl_coord_exp[ch][bnd];
315                int cpl_mant = (fixed_cpl_coords[blk][ch][bnd] << (5 + cpl_exp + master_exp * 3)) >> 24;
316                if (cpl_exp == 15)
317                    cpl_mant >>= 1;
318                else
319                    cpl_mant -= 16;
320
321                block->cpl_coord_mant[ch][bnd] = cpl_mant;
322            }
323        }
324    }
325
326    if (CONFIG_EAC3_ENCODER && s->eac3)
327        ff_eac3_set_cpl_states(s);
328}
329
330
331/*
332 * Determine rematrixing flags for each block and band.
333 */
334static void compute_rematrixing_strategy(AC3EncodeContext *s)
335{
336    int nb_coefs;
337    int blk, bnd, i;
338    AC3Block *block, *av_uninit(block0);
339
340    if (s->channel_mode != AC3_CHMODE_STEREO)
341        return;
342
343    for (blk = 0; blk < s->num_blocks; blk++) {
344        block = &s->blocks[blk];
345        block->new_rematrixing_strategy = !blk;
346
347        block->num_rematrixing_bands = 4;
348        if (block->cpl_in_use) {
349            block->num_rematrixing_bands -= (s->start_freq[CPL_CH] <= 61);
350            block->num_rematrixing_bands -= (s->start_freq[CPL_CH] == 37);
351            if (blk && block->num_rematrixing_bands != block0->num_rematrixing_bands)
352                block->new_rematrixing_strategy = 1;
353        }
354        nb_coefs = FFMIN(block->end_freq[1], block->end_freq[2]);
355
356        if (!s->rematrixing_enabled) {
357            block0 = block;
358            continue;
359        }
360
361        for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) {
362            /* calculate calculate sum of squared coeffs for one band in one block */
363            int start = ff_ac3_rematrix_band_tab[bnd];
364            int end   = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]);
365            CoefSumType sum[4] = {0,};
366            for (i = start; i < end; i++) {
367                CoefType lt = block->mdct_coef[1][i];
368                CoefType rt = block->mdct_coef[2][i];
369                CoefType md = lt + rt;
370                CoefType sd = lt - rt;
371                MAC_COEF(sum[0], lt, lt);
372                MAC_COEF(sum[1], rt, rt);
373                MAC_COEF(sum[2], md, md);
374                MAC_COEF(sum[3], sd, sd);
375            }
376
377            /* compare sums to determine if rematrixing will be used for this band */
378            if (FFMIN(sum[2], sum[3]) < FFMIN(sum[0], sum[1]))
379                block->rematrixing_flags[bnd] = 1;
380            else
381                block->rematrixing_flags[bnd] = 0;
382
383            /* determine if new rematrixing flags will be sent */
384            if (blk &&
385                block->rematrixing_flags[bnd] != block0->rematrixing_flags[bnd]) {
386                block->new_rematrixing_strategy = 1;
387            }
388        }
389        block0 = block;
390    }
391}
392
393
394int AC3_NAME(encode_frame)(AVCodecContext *avctx, unsigned char *frame,
395                           int buf_size, void *data)
396{
397    AC3EncodeContext *s = avctx->priv_data;
398    const SampleType *samples = data;
399    int ret;
400
401    if (s->options.allow_per_frame_metadata) {
402        ret = ff_ac3_validate_metadata(s);
403        if (ret)
404            return ret;
405    }
406
407    if (s->bit_alloc.sr_code == 1 || s->eac3)
408        ff_ac3_adjust_frame_size(s);
409
410    deinterleave_input_samples(s, samples);
411
412    apply_mdct(s);
413
414    if (s->fixed_point)
415        scale_coefficients(s);
416
417    clip_coefficients(&s->dsp, s->blocks[0].mdct_coef[1],
418                      AC3_MAX_COEFS * s->num_blocks * s->channels);
419
420    s->cpl_on = s->cpl_enabled;
421    ff_ac3_compute_coupling_strategy(s);
422
423    if (s->cpl_on)
424        apply_channel_coupling(s);
425
426    compute_rematrixing_strategy(s);
427
428    if (!s->fixed_point)
429        scale_coefficients(s);
430
431    ff_ac3_apply_rematrixing(s);
432
433    ff_ac3_process_exponents(s);
434
435    ret = ff_ac3_compute_bit_allocation(s);
436    if (ret) {
437        av_log(avctx, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
438        return ret;
439    }
440
441    ff_ac3_group_exponents(s);
442
443    ff_ac3_quantize_mantissas(s);
444
445    ff_ac3_output_frame(s, frame);
446
447    return s->frame_size;
448}
449