1// nbtheory.cpp - written and placed in the public domain by Wei Dai
2
3#include "pch.h"
4
5#ifndef CRYPTOPP_IMPORTS
6
7#include "nbtheory.h"
8#include "modarith.h"
9#include "algparam.h"
10
11#include <math.h>
12#include <vector>
13
14#ifdef _OPENMP
15// needed in MSVC 2005 to generate correct manifest
16#include <omp.h>
17#endif
18
19NAMESPACE_BEGIN(CryptoPP)
20
21const word s_lastSmallPrime = 32719;
22
23struct NewPrimeTable
24{
25	std::vector<word16> * operator()() const
26	{
27		const unsigned int maxPrimeTableSize = 3511;
28
29		std::auto_ptr<std::vector<word16> > pPrimeTable(new std::vector<word16>);
30		std::vector<word16> &primeTable = *pPrimeTable;
31		primeTable.reserve(maxPrimeTableSize);
32
33		primeTable.push_back(2);
34		unsigned int testEntriesEnd = 1;
35
36		for (unsigned int p=3; p<=s_lastSmallPrime; p+=2)
37		{
38			unsigned int j;
39			for (j=1; j<testEntriesEnd; j++)
40				if (p%primeTable[j] == 0)
41					break;
42			if (j == testEntriesEnd)
43			{
44				primeTable.push_back(p);
45				testEntriesEnd = UnsignedMin(54U, primeTable.size());
46			}
47		}
48
49		return pPrimeTable.release();
50	}
51};
52
53const word16 * GetPrimeTable(unsigned int &size)
54{
55	const std::vector<word16> &primeTable = Singleton<std::vector<word16>, NewPrimeTable>().Ref();
56	size = (unsigned int)primeTable.size();
57	return &primeTable[0];
58}
59
60bool IsSmallPrime(const Integer &p)
61{
62	unsigned int primeTableSize;
63	const word16 * primeTable = GetPrimeTable(primeTableSize);
64
65	if (p.IsPositive() && p <= primeTable[primeTableSize-1])
66		return std::binary_search(primeTable, primeTable+primeTableSize, (word16)p.ConvertToLong());
67	else
68		return false;
69}
70
71bool TrialDivision(const Integer &p, unsigned bound)
72{
73	unsigned int primeTableSize;
74	const word16 * primeTable = GetPrimeTable(primeTableSize);
75
76	assert(primeTable[primeTableSize-1] >= bound);
77
78	unsigned int i;
79	for (i = 0; primeTable[i]<bound; i++)
80		if ((p % primeTable[i]) == 0)
81			return true;
82
83	if (bound == primeTable[i])
84		return (p % bound == 0);
85	else
86		return false;
87}
88
89bool SmallDivisorsTest(const Integer &p)
90{
91	unsigned int primeTableSize;
92	const word16 * primeTable = GetPrimeTable(primeTableSize);
93	return !TrialDivision(p, primeTable[primeTableSize-1]);
94}
95
96bool IsFermatProbablePrime(const Integer &n, const Integer &b)
97{
98	if (n <= 3)
99		return n==2 || n==3;
100
101	assert(n>3 && b>1 && b<n-1);
102	return a_exp_b_mod_c(b, n-1, n)==1;
103}
104
105bool IsStrongProbablePrime(const Integer &n, const Integer &b)
106{
107	if (n <= 3)
108		return n==2 || n==3;
109
110	assert(n>3 && b>1 && b<n-1);
111
112	if ((n.IsEven() && n!=2) || GCD(b, n) != 1)
113		return false;
114
115	Integer nminus1 = (n-1);
116	unsigned int a;
117
118	// calculate a = largest power of 2 that divides (n-1)
119	for (a=0; ; a++)
120		if (nminus1.GetBit(a))
121			break;
122	Integer m = nminus1>>a;
123
124	Integer z = a_exp_b_mod_c(b, m, n);
125	if (z==1 || z==nminus1)
126		return true;
127	for (unsigned j=1; j<a; j++)
128	{
129		z = z.Squared()%n;
130		if (z==nminus1)
131			return true;
132		if (z==1)
133			return false;
134	}
135	return false;
136}
137
138bool RabinMillerTest(RandomNumberGenerator &rng, const Integer &n, unsigned int rounds)
139{
140	if (n <= 3)
141		return n==2 || n==3;
142
143	assert(n>3);
144
145	Integer b;
146	for (unsigned int i=0; i<rounds; i++)
147	{
148		b.Randomize(rng, 2, n-2);
149		if (!IsStrongProbablePrime(n, b))
150			return false;
151	}
152	return true;
153}
154
155bool IsLucasProbablePrime(const Integer &n)
156{
157	if (n <= 1)
158		return false;
159
160	if (n.IsEven())
161		return n==2;
162
163	assert(n>2);
164
165	Integer b=3;
166	unsigned int i=0;
167	int j;
168
169	while ((j=Jacobi(b.Squared()-4, n)) == 1)
170	{
171		if (++i==64 && n.IsSquare())	// avoid infinite loop if n is a square
172			return false;
173		++b; ++b;
174	}
175
176	if (j==0)
177		return false;
178	else
179		return Lucas(n+1, b, n)==2;
180}
181
182bool IsStrongLucasProbablePrime(const Integer &n)
183{
184	if (n <= 1)
185		return false;
186
187	if (n.IsEven())
188		return n==2;
189
190	assert(n>2);
191
192	Integer b=3;
193	unsigned int i=0;
194	int j;
195
196	while ((j=Jacobi(b.Squared()-4, n)) == 1)
197	{
198		if (++i==64 && n.IsSquare())	// avoid infinite loop if n is a square
199			return false;
200		++b; ++b;
201	}
202
203	if (j==0)
204		return false;
205
206	Integer n1 = n+1;
207	unsigned int a;
208
209	// calculate a = largest power of 2 that divides n1
210	for (a=0; ; a++)
211		if (n1.GetBit(a))
212			break;
213	Integer m = n1>>a;
214
215	Integer z = Lucas(m, b, n);
216	if (z==2 || z==n-2)
217		return true;
218	for (i=1; i<a; i++)
219	{
220		z = (z.Squared()-2)%n;
221		if (z==n-2)
222			return true;
223		if (z==2)
224			return false;
225	}
226	return false;
227}
228
229struct NewLastSmallPrimeSquared
230{
231	Integer * operator()() const
232	{
233		return new Integer(Integer(s_lastSmallPrime).Squared());
234	}
235};
236
237bool IsPrime(const Integer &p)
238{
239	if (p <= s_lastSmallPrime)
240		return IsSmallPrime(p);
241	else if (p <= Singleton<Integer, NewLastSmallPrimeSquared>().Ref())
242		return SmallDivisorsTest(p);
243	else
244		return SmallDivisorsTest(p) && IsStrongProbablePrime(p, 3) && IsStrongLucasProbablePrime(p);
245}
246
247bool VerifyPrime(RandomNumberGenerator &rng, const Integer &p, unsigned int level)
248{
249	bool pass = IsPrime(p) && RabinMillerTest(rng, p, 1);
250	if (level >= 1)
251		pass = pass && RabinMillerTest(rng, p, 10);
252	return pass;
253}
254
255unsigned int PrimeSearchInterval(const Integer &max)
256{
257	return max.BitCount();
258}
259
260static inline bool FastProbablePrimeTest(const Integer &n)
261{
262	return IsStrongProbablePrime(n,2);
263}
264
265AlgorithmParameters MakeParametersForTwoPrimesOfEqualSize(unsigned int productBitLength)
266{
267	if (productBitLength < 16)
268		throw InvalidArgument("invalid bit length");
269
270	Integer minP, maxP;
271
272	if (productBitLength%2==0)
273	{
274		minP = Integer(182) << (productBitLength/2-8);
275		maxP = Integer::Power2(productBitLength/2)-1;
276	}
277	else
278	{
279		minP = Integer::Power2((productBitLength-1)/2);
280		maxP = Integer(181) << ((productBitLength+1)/2-8);
281	}
282
283	return MakeParameters("RandomNumberType", Integer::PRIME)("Min", minP)("Max", maxP);
284}
285
286class PrimeSieve
287{
288public:
289	// delta == 1 or -1 means double sieve with p = 2*q + delta
290	PrimeSieve(const Integer &first, const Integer &last, const Integer &step, signed int delta=0);
291	bool NextCandidate(Integer &c);
292
293	void DoSieve();
294	static void SieveSingle(std::vector<bool> &sieve, word16 p, const Integer &first, const Integer &step, word16 stepInv);
295
296	Integer m_first, m_last, m_step;
297	signed int m_delta;
298	word m_next;
299	std::vector<bool> m_sieve;
300};
301
302PrimeSieve::PrimeSieve(const Integer &first, const Integer &last, const Integer &step, signed int delta)
303	: m_first(first), m_last(last), m_step(step), m_delta(delta), m_next(0)
304{
305	DoSieve();
306}
307
308bool PrimeSieve::NextCandidate(Integer &c)
309{
310	bool safe = SafeConvert(std::find(m_sieve.begin()+m_next, m_sieve.end(), false) - m_sieve.begin(), m_next);
311	assert(safe);
312	if (m_next == m_sieve.size())
313	{
314		m_first += long(m_sieve.size())*m_step;
315		if (m_first > m_last)
316			return false;
317		else
318		{
319			m_next = 0;
320			DoSieve();
321			return NextCandidate(c);
322		}
323	}
324	else
325	{
326		c = m_first + long(m_next)*m_step;
327		++m_next;
328		return true;
329	}
330}
331
332void PrimeSieve::SieveSingle(std::vector<bool> &sieve, word16 p, const Integer &first, const Integer &step, word16 stepInv)
333{
334	if (stepInv)
335	{
336		size_t sieveSize = sieve.size();
337		size_t j = (word32(p-(first%p))*stepInv) % p;
338		// if the first multiple of p is p, skip it
339		if (first.WordCount() <= 1 && first + step*long(j) == p)
340			j += p;
341		for (; j < sieveSize; j += p)
342			sieve[j] = true;
343	}
344}
345
346void PrimeSieve::DoSieve()
347{
348	unsigned int primeTableSize;
349	const word16 * primeTable = GetPrimeTable(primeTableSize);
350
351	const unsigned int maxSieveSize = 32768;
352	unsigned int sieveSize = STDMIN(Integer(maxSieveSize), (m_last-m_first)/m_step+1).ConvertToLong();
353
354	m_sieve.clear();
355	m_sieve.resize(sieveSize, false);
356
357	if (m_delta == 0)
358	{
359		for (unsigned int i = 0; i < primeTableSize; ++i)
360			SieveSingle(m_sieve, primeTable[i], m_first, m_step, (word16)m_step.InverseMod(primeTable[i]));
361	}
362	else
363	{
364		assert(m_step%2==0);
365		Integer qFirst = (m_first-m_delta) >> 1;
366		Integer halfStep = m_step >> 1;
367		for (unsigned int i = 0; i < primeTableSize; ++i)
368		{
369			word16 p = primeTable[i];
370			word16 stepInv = (word16)m_step.InverseMod(p);
371			SieveSingle(m_sieve, p, m_first, m_step, stepInv);
372
373			word16 halfStepInv = 2*stepInv < p ? 2*stepInv : 2*stepInv-p;
374			SieveSingle(m_sieve, p, qFirst, halfStep, halfStepInv);
375		}
376	}
377}
378
379bool FirstPrime(Integer &p, const Integer &max, const Integer &equiv, const Integer &mod, const PrimeSelector *pSelector)
380{
381	assert(!equiv.IsNegative() && equiv < mod);
382
383	Integer gcd = GCD(equiv, mod);
384	if (gcd != Integer::One())
385	{
386		// the only possible prime p such that p%mod==equiv where GCD(mod,equiv)!=1 is GCD(mod,equiv)
387		if (p <= gcd && gcd <= max && IsPrime(gcd) && (!pSelector || pSelector->IsAcceptable(gcd)))
388		{
389			p = gcd;
390			return true;
391		}
392		else
393			return false;
394	}
395
396	unsigned int primeTableSize;
397	const word16 * primeTable = GetPrimeTable(primeTableSize);
398
399	if (p <= primeTable[primeTableSize-1])
400	{
401		const word16 *pItr;
402
403		--p;
404		if (p.IsPositive())
405			pItr = std::upper_bound(primeTable, primeTable+primeTableSize, (word)p.ConvertToLong());
406		else
407			pItr = primeTable;
408
409		while (pItr < primeTable+primeTableSize && !(*pItr%mod == equiv && (!pSelector || pSelector->IsAcceptable(*pItr))))
410			++pItr;
411
412		if (pItr < primeTable+primeTableSize)
413		{
414			p = *pItr;
415			return p <= max;
416		}
417
418		p = primeTable[primeTableSize-1]+1;
419	}
420
421	assert(p > primeTable[primeTableSize-1]);
422
423	if (mod.IsOdd())
424		return FirstPrime(p, max, CRT(equiv, mod, 1, 2, 1), mod<<1, pSelector);
425
426	p += (equiv-p)%mod;
427
428	if (p>max)
429		return false;
430
431	PrimeSieve sieve(p, max, mod);
432
433	while (sieve.NextCandidate(p))
434	{
435		if ((!pSelector || pSelector->IsAcceptable(p)) && FastProbablePrimeTest(p) && IsPrime(p))
436			return true;
437	}
438
439	return false;
440}
441
442// the following two functions are based on code and comments provided by Preda Mihailescu
443static bool ProvePrime(const Integer &p, const Integer &q)
444{
445	assert(p < q*q*q);
446	assert(p % q == 1);
447
448// this is the Quisquater test. Numbers p having passed the Lucas - Lehmer test
449// for q and verifying p < q^3 can only be built up of two factors, both = 1 mod q,
450// or be prime. The next two lines build the discriminant of a quadratic equation
451// which holds iff p is built up of two factors (excercise ... )
452
453	Integer r = (p-1)/q;
454	if (((r%q).Squared()-4*(r/q)).IsSquare())
455		return false;
456
457	unsigned int primeTableSize;
458	const word16 * primeTable = GetPrimeTable(primeTableSize);
459
460	assert(primeTableSize >= 50);
461	for (int i=0; i<50; i++)
462	{
463		Integer b = a_exp_b_mod_c(primeTable[i], r, p);
464		if (b != 1)
465			return a_exp_b_mod_c(b, q, p) == 1;
466	}
467	return false;
468}
469
470Integer MihailescuProvablePrime(RandomNumberGenerator &rng, unsigned int pbits)
471{
472	Integer p;
473	Integer minP = Integer::Power2(pbits-1);
474	Integer maxP = Integer::Power2(pbits) - 1;
475
476	if (maxP <= Integer(s_lastSmallPrime).Squared())
477	{
478		// Randomize() will generate a prime provable by trial division
479		p.Randomize(rng, minP, maxP, Integer::PRIME);
480		return p;
481	}
482
483	unsigned int qbits = (pbits+2)/3 + 1 + rng.GenerateWord32(0, pbits/36);
484	Integer q = MihailescuProvablePrime(rng, qbits);
485	Integer q2 = q<<1;
486
487	while (true)
488	{
489		// this initializes the sieve to search in the arithmetic
490		// progression p = p_0 + \lambda * q2 = p_0 + 2 * \lambda * q,
491		// with q the recursively generated prime above. We will be able
492		// to use Lucas tets for proving primality. A trick of Quisquater
493		// allows taking q > cubic_root(p) rather then square_root: this
494		// decreases the recursion.
495
496		p.Randomize(rng, minP, maxP, Integer::ANY, 1, q2);
497		PrimeSieve sieve(p, STDMIN(p+PrimeSearchInterval(maxP)*q2, maxP), q2);
498
499		while (sieve.NextCandidate(p))
500		{
501			if (FastProbablePrimeTest(p) && ProvePrime(p, q))
502				return p;
503		}
504	}
505
506	// not reached
507	return p;
508}
509
510Integer MaurerProvablePrime(RandomNumberGenerator &rng, unsigned int bits)
511{
512	const unsigned smallPrimeBound = 29, c_opt=10;
513	Integer p;
514
515	unsigned int primeTableSize;
516	const word16 * primeTable = GetPrimeTable(primeTableSize);
517
518	if (bits < smallPrimeBound)
519	{
520		do
521			p.Randomize(rng, Integer::Power2(bits-1), Integer::Power2(bits)-1, Integer::ANY, 1, 2);
522		while (TrialDivision(p, 1 << ((bits+1)/2)));
523	}
524	else
525	{
526		const unsigned margin = bits > 50 ? 20 : (bits-10)/2;
527		double relativeSize;
528		do
529			relativeSize = pow(2.0, double(rng.GenerateWord32())/0xffffffff - 1);
530		while (bits * relativeSize >= bits - margin);
531
532		Integer a,b;
533		Integer q = MaurerProvablePrime(rng, unsigned(bits*relativeSize));
534		Integer I = Integer::Power2(bits-2)/q;
535		Integer I2 = I << 1;
536		unsigned int trialDivisorBound = (unsigned int)STDMIN((unsigned long)primeTable[primeTableSize-1], (unsigned long)bits*bits/c_opt);
537		bool success = false;
538		while (!success)
539		{
540			p.Randomize(rng, I, I2, Integer::ANY);
541			p *= q; p <<= 1; ++p;
542			if (!TrialDivision(p, trialDivisorBound))
543			{
544				a.Randomize(rng, 2, p-1, Integer::ANY);
545				b = a_exp_b_mod_c(a, (p-1)/q, p);
546				success = (GCD(b-1, p) == 1) && (a_exp_b_mod_c(b, q, p) == 1);
547			}
548		}
549	}
550	return p;
551}
552
553Integer CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q, const Integer &u)
554{
555	// isn't operator overloading great?
556	return p * (u * (xq-xp) % q) + xp;
557/*
558	Integer t1 = xq-xp;
559	cout << hex << t1 << endl;
560	Integer t2 = u * t1;
561	cout << hex << t2 << endl;
562	Integer t3 = t2 % q;
563	cout << hex << t3 << endl;
564	Integer t4 = p * t3;
565	cout << hex << t4 << endl;
566	Integer t5 = t4 + xp;
567	cout << hex << t5 << endl;
568	return t5;
569*/
570}
571
572Integer ModularSquareRoot(const Integer &a, const Integer &p)
573{
574	if (p%4 == 3)
575		return a_exp_b_mod_c(a, (p+1)/4, p);
576
577	Integer q=p-1;
578	unsigned int r=0;
579	while (q.IsEven())
580	{
581		r++;
582		q >>= 1;
583	}
584
585	Integer n=2;
586	while (Jacobi(n, p) != -1)
587		++n;
588
589	Integer y = a_exp_b_mod_c(n, q, p);
590	Integer x = a_exp_b_mod_c(a, (q-1)/2, p);
591	Integer b = (x.Squared()%p)*a%p;
592	x = a*x%p;
593	Integer tempb, t;
594
595	while (b != 1)
596	{
597		unsigned m=0;
598		tempb = b;
599		do
600		{
601			m++;
602			b = b.Squared()%p;
603			if (m==r)
604				return Integer::Zero();
605		}
606		while (b != 1);
607
608		t = y;
609		for (unsigned i=0; i<r-m-1; i++)
610			t = t.Squared()%p;
611		y = t.Squared()%p;
612		r = m;
613		x = x*t%p;
614		b = tempb*y%p;
615	}
616
617	assert(x.Squared()%p == a);
618	return x;
619}
620
621bool SolveModularQuadraticEquation(Integer &r1, Integer &r2, const Integer &a, const Integer &b, const Integer &c, const Integer &p)
622{
623	Integer D = (b.Squared() - 4*a*c) % p;
624	switch (Jacobi(D, p))
625	{
626	default:
627		assert(false);	// not reached
628		return false;
629	case -1:
630		return false;
631	case 0:
632		r1 = r2 = (-b*(a+a).InverseMod(p)) % p;
633		assert(((r1.Squared()*a + r1*b + c) % p).IsZero());
634		return true;
635	case 1:
636		Integer s = ModularSquareRoot(D, p);
637		Integer t = (a+a).InverseMod(p);
638		r1 = (s-b)*t % p;
639		r2 = (-s-b)*t % p;
640		assert(((r1.Squared()*a + r1*b + c) % p).IsZero());
641		assert(((r2.Squared()*a + r2*b + c) % p).IsZero());
642		return true;
643	}
644}
645
646Integer ModularRoot(const Integer &a, const Integer &dp, const Integer &dq,
647					const Integer &p, const Integer &q, const Integer &u)
648{
649	Integer p2, q2;
650	#pragma omp parallel
651		#pragma omp sections
652		{
653			#pragma omp section
654				p2 = ModularExponentiation((a % p), dp, p);
655			#pragma omp section
656				q2 = ModularExponentiation((a % q), dq, q);
657		}
658	return CRT(p2, p, q2, q, u);
659}
660
661Integer ModularRoot(const Integer &a, const Integer &e,
662					const Integer &p, const Integer &q)
663{
664	Integer dp = EuclideanMultiplicativeInverse(e, p-1);
665	Integer dq = EuclideanMultiplicativeInverse(e, q-1);
666	Integer u = EuclideanMultiplicativeInverse(p, q);
667	assert(!!dp && !!dq && !!u);
668	return ModularRoot(a, dp, dq, p, q, u);
669}
670
671/*
672Integer GCDI(const Integer &x, const Integer &y)
673{
674	Integer a=x, b=y;
675	unsigned k=0;
676
677	assert(!!a && !!b);
678
679	while (a[0]==0 && b[0]==0)
680	{
681		a >>= 1;
682		b >>= 1;
683		k++;
684	}
685
686	while (a[0]==0)
687		a >>= 1;
688
689	while (b[0]==0)
690		b >>= 1;
691
692	while (1)
693	{
694		switch (a.Compare(b))
695		{
696			case -1:
697				b -= a;
698				while (b[0]==0)
699					b >>= 1;
700				break;
701
702			case 0:
703				return (a <<= k);
704
705			case 1:
706				a -= b;
707				while (a[0]==0)
708					a >>= 1;
709				break;
710
711			default:
712				assert(false);
713		}
714	}
715}
716
717Integer EuclideanMultiplicativeInverse(const Integer &a, const Integer &b)
718{
719	assert(b.Positive());
720
721	if (a.Negative())
722		return EuclideanMultiplicativeInverse(a%b, b);
723
724	if (b[0]==0)
725	{
726		if (!b || a[0]==0)
727			return Integer::Zero();       // no inverse
728		if (a==1)
729			return 1;
730		Integer u = EuclideanMultiplicativeInverse(b, a);
731		if (!u)
732			return Integer::Zero();       // no inverse
733		else
734			return (b*(a-u)+1)/a;
735	}
736
737	Integer u=1, d=a, v1=b, v3=b, t1, t3, b2=(b+1)>>1;
738
739	if (a[0])
740	{
741		t1 = Integer::Zero();
742		t3 = -b;
743	}
744	else
745	{
746		t1 = b2;
747		t3 = a>>1;
748	}
749
750	while (!!t3)
751	{
752		while (t3[0]==0)
753		{
754			t3 >>= 1;
755			if (t1[0]==0)
756				t1 >>= 1;
757			else
758			{
759				t1 >>= 1;
760				t1 += b2;
761			}
762		}
763		if (t3.Positive())
764		{
765			u = t1;
766			d = t3;
767		}
768		else
769		{
770			v1 = b-t1;
771			v3 = -t3;
772		}
773		t1 = u-v1;
774		t3 = d-v3;
775		if (t1.Negative())
776			t1 += b;
777	}
778	if (d==1)
779		return u;
780	else
781		return Integer::Zero();   // no inverse
782}
783*/
784
785int Jacobi(const Integer &aIn, const Integer &bIn)
786{
787	assert(bIn.IsOdd());
788
789	Integer b = bIn, a = aIn%bIn;
790	int result = 1;
791
792	while (!!a)
793	{
794		unsigned i=0;
795		while (a.GetBit(i)==0)
796			i++;
797		a>>=i;
798
799		if (i%2==1 && (b%8==3 || b%8==5))
800			result = -result;
801
802		if (a%4==3 && b%4==3)
803			result = -result;
804
805		std::swap(a, b);
806		a %= b;
807	}
808
809	return (b==1) ? result : 0;
810}
811
812Integer Lucas(const Integer &e, const Integer &pIn, const Integer &n)
813{
814	unsigned i = e.BitCount();
815	if (i==0)
816		return Integer::Two();
817
818	MontgomeryRepresentation m(n);
819	Integer p=m.ConvertIn(pIn%n), two=m.ConvertIn(Integer::Two());
820	Integer v=p, v1=m.Subtract(m.Square(p), two);
821
822	i--;
823	while (i--)
824	{
825		if (e.GetBit(i))
826		{
827			// v = (v*v1 - p) % m;
828			v = m.Subtract(m.Multiply(v,v1), p);
829			// v1 = (v1*v1 - 2) % m;
830			v1 = m.Subtract(m.Square(v1), two);
831		}
832		else
833		{
834			// v1 = (v*v1 - p) % m;
835			v1 = m.Subtract(m.Multiply(v,v1), p);
836			// v = (v*v - 2) % m;
837			v = m.Subtract(m.Square(v), two);
838		}
839	}
840	return m.ConvertOut(v);
841}
842
843// This is Peter Montgomery's unpublished Lucas sequence evalutation algorithm.
844// The total number of multiplies and squares used is less than the binary
845// algorithm (see above).  Unfortunately I can't get it to run as fast as
846// the binary algorithm because of the extra overhead.
847/*
848Integer Lucas(const Integer &n, const Integer &P, const Integer &modulus)
849{
850	if (!n)
851		return 2;
852
853#define f(A, B, C)	m.Subtract(m.Multiply(A, B), C)
854#define X2(A) m.Subtract(m.Square(A), two)
855#define X3(A) m.Multiply(A, m.Subtract(m.Square(A), three))
856
857	MontgomeryRepresentation m(modulus);
858	Integer two=m.ConvertIn(2), three=m.ConvertIn(3);
859	Integer A=m.ConvertIn(P), B, C, p, d=n, e, r, t, T, U;
860
861	while (d!=1)
862	{
863		p = d;
864		unsigned int b = WORD_BITS * p.WordCount();
865		Integer alpha = (Integer(5)<<(2*b-2)).SquareRoot() - Integer::Power2(b-1);
866		r = (p*alpha)>>b;
867		e = d-r;
868		B = A;
869		C = two;
870		d = r;
871
872		while (d!=e)
873		{
874			if (d<e)
875			{
876				swap(d, e);
877				swap(A, B);
878			}
879
880			unsigned int dm2 = d[0], em2 = e[0];
881			unsigned int dm3 = d%3, em3 = e%3;
882
883//			if ((dm6+em6)%3 == 0 && d <= e + (e>>2))
884			if ((dm3+em3==0 || dm3+em3==3) && (t = e, t >>= 2, t += e, d <= t))
885			{
886				// #1
887//				t = (d+d-e)/3;
888//				t = d; t += d; t -= e; t /= 3;
889//				e = (e+e-d)/3;
890//				e += e; e -= d; e /= 3;
891//				d = t;
892
893//				t = (d+e)/3
894				t = d; t += e; t /= 3;
895				e -= t;
896				d -= t;
897
898				T = f(A, B, C);
899				U = f(T, A, B);
900				B = f(T, B, A);
901				A = U;
902				continue;
903			}
904
905//			if (dm6 == em6 && d <= e + (e>>2))
906			if (dm3 == em3 && dm2 == em2 && (t = e, t >>= 2, t += e, d <= t))
907			{
908				// #2
909//				d = (d-e)>>1;
910				d -= e; d >>= 1;
911				B = f(A, B, C);
912				A = X2(A);
913				continue;
914			}
915
916//			if (d <= (e<<2))
917			if (d <= (t = e, t <<= 2))
918			{
919				// #3
920				d -= e;
921				C = f(A, B, C);
922				swap(B, C);
923				continue;
924			}
925
926			if (dm2 == em2)
927			{
928				// #4
929//				d = (d-e)>>1;
930				d -= e; d >>= 1;
931				B = f(A, B, C);
932				A = X2(A);
933				continue;
934			}
935
936			if (dm2 == 0)
937			{
938				// #5
939				d >>= 1;
940				C = f(A, C, B);
941				A = X2(A);
942				continue;
943			}
944
945			if (dm3 == 0)
946			{
947				// #6
948//				d = d/3 - e;
949				d /= 3; d -= e;
950				T = X2(A);
951				C = f(T, f(A, B, C), C);
952				swap(B, C);
953				A = f(T, A, A);
954				continue;
955			}
956
957			if (dm3+em3==0 || dm3+em3==3)
958			{
959				// #7
960//				d = (d-e-e)/3;
961				d -= e; d -= e; d /= 3;
962				T = f(A, B, C);
963				B = f(T, A, B);
964				A = X3(A);
965				continue;
966			}
967
968			if (dm3 == em3)
969			{
970				// #8
971//				d = (d-e)/3;
972				d -= e; d /= 3;
973				T = f(A, B, C);
974				C = f(A, C, B);
975				B = T;
976				A = X3(A);
977				continue;
978			}
979
980			assert(em2 == 0);
981			// #9
982			e >>= 1;
983			C = f(C, B, A);
984			B = X2(B);
985		}
986
987		A = f(A, B, C);
988	}
989
990#undef f
991#undef X2
992#undef X3
993
994	return m.ConvertOut(A);
995}
996*/
997
998Integer InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q, const Integer &u)
999{
1000	Integer d = (m*m-4);
1001	Integer p2, q2;
1002	#pragma omp parallel
1003		#pragma omp sections
1004		{
1005			#pragma omp section
1006			{
1007				p2 = p-Jacobi(d,p);
1008				p2 = Lucas(EuclideanMultiplicativeInverse(e,p2), m, p);
1009			}
1010			#pragma omp section
1011			{
1012				q2 = q-Jacobi(d,q);
1013				q2 = Lucas(EuclideanMultiplicativeInverse(e,q2), m, q);
1014			}
1015		}
1016	return CRT(p2, p, q2, q, u);
1017}
1018
1019unsigned int FactoringWorkFactor(unsigned int n)
1020{
1021	// extrapolated from the table in Odlyzko's "The Future of Integer Factorization"
1022	// updated to reflect the factoring of RSA-130
1023	if (n<5) return 0;
1024	else return (unsigned int)(2.4 * pow((double)n, 1.0/3.0) * pow(log(double(n)), 2.0/3.0) - 5);
1025}
1026
1027unsigned int DiscreteLogWorkFactor(unsigned int n)
1028{
1029	// assuming discrete log takes about the same time as factoring
1030	if (n<5) return 0;
1031	else return (unsigned int)(2.4 * pow((double)n, 1.0/3.0) * pow(log(double(n)), 2.0/3.0) - 5);
1032}
1033
1034// ********************************************************
1035
1036void PrimeAndGenerator::Generate(signed int delta, RandomNumberGenerator &rng, unsigned int pbits, unsigned int qbits)
1037{
1038	// no prime exists for delta = -1, qbits = 4, and pbits = 5
1039	assert(qbits > 4);
1040	assert(pbits > qbits);
1041
1042	if (qbits+1 == pbits)
1043	{
1044		Integer minP = Integer::Power2(pbits-1);
1045		Integer maxP = Integer::Power2(pbits) - 1;
1046		bool success = false;
1047
1048		while (!success)
1049		{
1050			p.Randomize(rng, minP, maxP, Integer::ANY, 6+5*delta, 12);
1051			PrimeSieve sieve(p, STDMIN(p+PrimeSearchInterval(maxP)*12, maxP), 12, delta);
1052
1053			while (sieve.NextCandidate(p))
1054			{
1055				assert(IsSmallPrime(p) || SmallDivisorsTest(p));
1056				q = (p-delta) >> 1;
1057				assert(IsSmallPrime(q) || SmallDivisorsTest(q));
1058				if (FastProbablePrimeTest(q) && FastProbablePrimeTest(p) && IsPrime(q) && IsPrime(p))
1059				{
1060					success = true;
1061					break;
1062				}
1063			}
1064		}
1065
1066		if (delta == 1)
1067		{
1068			// find g such that g is a quadratic residue mod p, then g has order q
1069			// g=4 always works, but this way we get the smallest quadratic residue (other than 1)
1070			for (g=2; Jacobi(g, p) != 1; ++g) {}
1071			// contributed by Walt Tuvell: g should be the following according to the Law of Quadratic Reciprocity
1072			assert((p%8==1 || p%8==7) ? g==2 : (p%12==1 || p%12==11) ? g==3 : g==4);
1073		}
1074		else
1075		{
1076			assert(delta == -1);
1077			// find g such that g*g-4 is a quadratic non-residue,
1078			// and such that g has order q
1079			for (g=3; ; ++g)
1080				if (Jacobi(g*g-4, p)==-1 && Lucas(q, g, p)==2)
1081					break;
1082		}
1083	}
1084	else
1085	{
1086		Integer minQ = Integer::Power2(qbits-1);
1087		Integer maxQ = Integer::Power2(qbits) - 1;
1088		Integer minP = Integer::Power2(pbits-1);
1089		Integer maxP = Integer::Power2(pbits) - 1;
1090
1091		do
1092		{
1093			q.Randomize(rng, minQ, maxQ, Integer::PRIME);
1094		} while (!p.Randomize(rng, minP, maxP, Integer::PRIME, delta%q, q));
1095
1096		// find a random g of order q
1097		if (delta==1)
1098		{
1099			do
1100			{
1101				Integer h(rng, 2, p-2, Integer::ANY);
1102				g = a_exp_b_mod_c(h, (p-1)/q, p);
1103			} while (g <= 1);
1104			assert(a_exp_b_mod_c(g, q, p)==1);
1105		}
1106		else
1107		{
1108			assert(delta==-1);
1109			do
1110			{
1111				Integer h(rng, 3, p-1, Integer::ANY);
1112				if (Jacobi(h*h-4, p)==1)
1113					continue;
1114				g = Lucas((p+1)/q, h, p);
1115			} while (g <= 2);
1116			assert(Lucas(q, g, p) == 2);
1117		}
1118	}
1119}
1120
1121NAMESPACE_END
1122
1123#endif
1124