1/*	$NetBSD: operator.c,v 1.9 2006/10/11 19:51:10 apb Exp $	*/
2
3/*-
4 * Copyright (c) 1990, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Cimarron D. Taylor of the University of California, Berkeley.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35#include <sys/cdefs.h>
36#ifndef lint
37#if 0
38static char sccsid[] = "from: @(#)operator.c	8.1 (Berkeley) 6/6/93";
39#else
40__RCSID("$NetBSD: operator.c,v 1.9 2006/10/11 19:51:10 apb Exp $");
41#endif
42#endif /* not lint */
43
44#include <sys/types.h>
45
46#include <err.h>
47#include <fts.h>
48#include <stdio.h>
49
50#include "find.h"
51
52static PLAN *yanknode(PLAN **);
53static PLAN *yankexpr(PLAN **);
54
55/*
56 * yanknode --
57 *	destructively removes the top from the plan
58 */
59static PLAN *
60yanknode(PLAN **planp)		/* pointer to top of plan (modified) */
61{
62	PLAN *node;		/* top node removed from the plan */
63
64	if ((node = (*planp)) == NULL)
65		return (NULL);
66	(*planp) = (*planp)->next;
67	node->next = NULL;
68	return (node);
69}
70
71/*
72 * yankexpr --
73 *	Removes one expression from the plan.  This is used mainly by
74 *	paren_squish.  In comments below, an expression is either a
75 *	simple node or a N_EXPR node containing a list of simple nodes.
76 */
77static PLAN *
78yankexpr(PLAN **planp)		/* pointer to top of plan (modified) */
79{
80	PLAN *next;		/* temp node holding subexpression results */
81	PLAN *node;		/* pointer to returned node or expression */
82	PLAN *tail;		/* pointer to tail of subplan */
83	PLAN *subplan;		/* pointer to head of ( ) expression */
84
85	/* first pull the top node from the plan */
86	if ((node = yanknode(planp)) == NULL)
87		return (NULL);
88
89	/*
90	 * If the node is an '(' then we recursively slurp up expressions
91	 * until we find its associated ')'.  If it's a closing paren we
92	 * just return it and unwind our recursion; all other nodes are
93	 * complete expressions, so just return them.
94	 */
95	if (node->type == N_OPENPAREN)
96		for (tail = subplan = NULL;;) {
97			if ((next = yankexpr(planp)) == NULL)
98				err(1, "(: missing closing ')'");
99			/*
100			 * If we find a closing ')' we store the collected
101			 * subplan in our '(' node and convert the node to
102			 * a N_EXPR.  The ')' we found is ignored.  Otherwise,
103			 * we just continue to add whatever we get to our
104			 * subplan.
105			 */
106			if (next->type == N_CLOSEPAREN) {
107				if (subplan == NULL)
108					errx(1, "(): empty inner expression");
109				node->p_data[0] = subplan;
110				node->type = N_EXPR;
111				node->eval = f_expr;
112				break;
113			} else {
114				if (subplan == NULL)
115					tail = subplan = next;
116				else {
117					tail->next = next;
118					tail = next;
119				}
120				tail->next = NULL;
121			}
122		}
123	return (node);
124}
125
126/*
127 * paren_squish --
128 *	replaces "parentheisized" plans in our search plan with "expr" nodes.
129 */
130PLAN *
131paren_squish(PLAN *plan)	/* plan with ( ) nodes */
132{
133	PLAN *expr;		/* pointer to next expression */
134	PLAN *tail;		/* pointer to tail of result plan */
135	PLAN *result;		/* pointer to head of result plan */
136
137	result = tail = NULL;
138
139	/*
140	 * the basic idea is to have yankexpr do all our work and just
141	 * collect its results together.
142	 */
143	while ((expr = yankexpr(&plan)) != NULL) {
144		/*
145		 * if we find an unclaimed ')' it means there is a missing
146		 * '(' someplace.
147		 */
148		if (expr->type == N_CLOSEPAREN)
149			errx(1, "): no beginning '('");
150
151		/* add the expression to our result plan */
152		if (result == NULL)
153			tail = result = expr;
154		else {
155			tail->next = expr;
156			tail = expr;
157		}
158		tail->next = NULL;
159	}
160	return (result);
161}
162
163/*
164 * not_squish --
165 *	compresses "!" expressions in our search plan.
166 */
167PLAN *
168not_squish(PLAN *plan)		/* plan to process */
169{
170	PLAN *next;		/* next node being processed */
171	PLAN *node;		/* temporary node used in N_NOT processing */
172	PLAN *tail;		/* pointer to tail of result plan */
173	PLAN *result;		/* pointer to head of result plan */
174
175	tail = result = next = NULL;
176
177	while ((next = yanknode(&plan)) != NULL) {
178		/*
179		 * if we encounter a ( expression ) then look for nots in
180		 * the expr subplan.
181		 */
182		if (next->type == N_EXPR)
183			next->p_data[0] = not_squish(next->p_data[0]);
184
185		/*
186		 * if we encounter a not, then snag the next node and place
187		 * it in the not's subplan.  As an optimization we compress
188		 * several not's to zero or one not.
189		 */
190		if (next->type == N_NOT) {
191			int notlevel = 1;
192
193			node = yanknode(&plan);
194			while (node != NULL && node->type == N_NOT) {
195				++notlevel;
196				node = yanknode(&plan);
197			}
198			if (node == NULL)
199				errx(1, "!: no following expression");
200			if (node->type == N_OR)
201				errx(1, "!: nothing between ! and -o");
202			if (node->type == N_EXPR)
203				node = not_squish(node);
204			if (notlevel % 2 != 1)
205				next = node;
206			else
207				next->p_data[0] = node;
208		}
209
210		/* add the node to our result plan */
211		if (result == NULL)
212			tail = result = next;
213		else {
214			tail->next = next;
215			tail = next;
216		}
217		tail->next = NULL;
218	}
219	return (result);
220}
221
222/*
223 * or_squish --
224 *	compresses -o expressions in our search plan.
225 */
226PLAN *
227or_squish(PLAN *plan)		/* plan with ors to be squished */
228{
229	PLAN *next;		/* next node being processed */
230	PLAN *tail;		/* pointer to tail of result plan */
231	PLAN *result;		/* pointer to head of result plan */
232
233	tail = result = next = NULL;
234
235	while ((next = yanknode(&plan)) != NULL) {
236		/*
237		 * if we encounter a ( expression ) then look for or's in
238		 * the expr subplan.
239		 */
240		if (next->type == N_EXPR)
241			next->p_data[0] = or_squish(next->p_data[0]);
242
243		/* if we encounter a not then look for not's in the subplan */
244		if (next->type == N_NOT)
245			next->p_data[0] = or_squish(next->p_data[0]);
246
247		/*
248		 * if we encounter an or, then place our collected plan in the
249		 * or's first subplan and then recursively collect the
250		 * remaining stuff into the second subplan and return the or.
251		 */
252		if (next->type == N_OR) {
253			if (result == NULL)
254				errx(1, "-o: no expression before -o");
255			next->p_data[0] = result;
256			next->p_data[1] = or_squish(plan);
257			if (next->p_data[1] == NULL)
258				errx(1, "-o: no expression after -o");
259			return (next);
260		}
261
262		/* add the node to our result plan */
263		if (result == NULL)
264			tail = result = next;
265		else {
266			tail->next = next;
267			tail = next;
268		}
269		tail->next = NULL;
270	}
271	return (result);
272}
273