1/*	$NetBSD: uvm_pdaemon.c,v 1.134 2023/09/10 15:01:11 ad Exp $	*/
2
3/*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	@(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
37 * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
56 *  School of Computer Science
57 *  Carnegie Mellon University
58 *  Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64/*
65 * uvm_pdaemon.c: the page daemon
66 */
67
68#include <sys/cdefs.h>
69__KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.134 2023/09/10 15:01:11 ad Exp $");
70
71#include "opt_uvmhist.h"
72#include "opt_readahead.h"
73
74#define	__RWLOCK_PRIVATE
75
76#include <sys/param.h>
77#include <sys/proc.h>
78#include <sys/systm.h>
79#include <sys/kernel.h>
80#include <sys/pool.h>
81#include <sys/buf.h>
82#include <sys/module.h>
83#include <sys/atomic.h>
84#include <sys/kthread.h>
85
86#include <uvm/uvm.h>
87#include <uvm/uvm_pdpolicy.h>
88#include <uvm/uvm_pgflcache.h>
89
90#ifdef UVMHIST
91#ifndef UVMHIST_PDHIST_SIZE
92#define UVMHIST_PDHIST_SIZE 100
93#endif
94static struct kern_history_ent pdhistbuf[UVMHIST_PDHIST_SIZE];
95UVMHIST_DEFINE(pdhist) = UVMHIST_INITIALIZER(pdhisthist, pdhistbuf);
96#endif
97
98/*
99 * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
100 * in a pass thru the inactive list when swap is full.  the value should be
101 * "small"... if it's too large we'll cycle the active pages thru the inactive
102 * queue too quickly to for them to be referenced and avoid being freed.
103 */
104
105#define	UVMPD_NUMDIRTYREACTS	16
106
107/*
108 * local prototypes
109 */
110
111static void	uvmpd_scan(void);
112static void	uvmpd_scan_queue(void);
113static void	uvmpd_tune(void);
114static void	uvmpd_pool_drain_thread(void *);
115static void	uvmpd_pool_drain_wakeup(void);
116
117static unsigned int uvm_pagedaemon_waiters;
118
119/* State for the pool drainer thread */
120static kmutex_t uvmpd_lock __cacheline_aligned;
121static kcondvar_t uvmpd_pool_drain_cv;
122static bool uvmpd_pool_drain_run = false;
123
124/*
125 * XXX hack to avoid hangs when large processes fork.
126 */
127u_int uvm_extrapages;
128
129/*
130 * uvm_wait: wait (sleep) for the page daemon to free some pages
131 *
132 * => should be called with all locks released
133 * => should _not_ be called by the page daemon (to avoid deadlock)
134 */
135
136void
137uvm_wait(const char *wmsg)
138{
139	int timo = 0;
140
141	if (uvm.pagedaemon_lwp == NULL)
142		panic("out of memory before the pagedaemon thread exists");
143
144	mutex_spin_enter(&uvmpd_lock);
145
146	/*
147	 * check for page daemon going to sleep (waiting for itself)
148	 */
149
150	if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
151		/*
152		 * now we have a problem: the pagedaemon wants to go to
153		 * sleep until it frees more memory.   but how can it
154		 * free more memory if it is asleep?  that is a deadlock.
155		 * we have two options:
156		 *  [1] panic now
157		 *  [2] put a timeout on the sleep, thus causing the
158		 *      pagedaemon to only pause (rather than sleep forever)
159		 *
160		 * note that option [2] will only help us if we get lucky
161		 * and some other process on the system breaks the deadlock
162		 * by exiting or freeing memory (thus allowing the pagedaemon
163		 * to continue).  for now we panic if DEBUG is defined,
164		 * otherwise we hope for the best with option [2] (better
165		 * yet, this should never happen in the first place!).
166		 */
167
168		printf("pagedaemon: deadlock detected!\n");
169		timo = hz >> 3;		/* set timeout */
170#if defined(DEBUG)
171		/* DEBUG: panic so we can debug it */
172		panic("pagedaemon deadlock");
173#endif
174	}
175
176	uvm_pagedaemon_waiters++;
177	wakeup(&uvm.pagedaemon);		/* wake the daemon! */
178	UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvmpd_lock, false, wmsg, timo);
179}
180
181/*
182 * uvm_kick_pdaemon: perform checks to determine if we need to
183 * give the pagedaemon a nudge, and do so if necessary.
184 */
185
186void
187uvm_kick_pdaemon(void)
188{
189	int fpages = uvm_availmem(false);
190
191	if (fpages + uvmexp.paging < uvmexp.freemin ||
192	    (fpages + uvmexp.paging < uvmexp.freetarg &&
193	     uvmpdpol_needsscan_p()) ||
194	     uvm_km_va_starved_p()) {
195	     	mutex_spin_enter(&uvmpd_lock);
196		wakeup(&uvm.pagedaemon);
197	     	mutex_spin_exit(&uvmpd_lock);
198	}
199}
200
201/*
202 * uvmpd_tune: tune paging parameters
203 *
204 * => called when ever memory is added (or removed?) to the system
205 */
206
207static void
208uvmpd_tune(void)
209{
210	int val;
211
212	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
213
214	/*
215	 * try to keep 0.5% of available RAM free, but limit to between
216	 * 128k and 1024k per-CPU.  XXX: what are these values good for?
217	 */
218	val = uvmexp.npages / 200;
219	val = MAX(val, (128*1024) >> PAGE_SHIFT);
220	val = MIN(val, (1024*1024) >> PAGE_SHIFT);
221	val *= ncpu;
222
223	/* Make sure there's always a user page free. */
224	if (val < uvmexp.reserve_kernel + 1)
225		val = uvmexp.reserve_kernel + 1;
226	uvmexp.freemin = val;
227
228	/* Calculate free target. */
229	val = (uvmexp.freemin * 4) / 3;
230	if (val <= uvmexp.freemin)
231		val = uvmexp.freemin + 1;
232	uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);
233
234	uvmexp.wiredmax = uvmexp.npages / 3;
235	UVMHIST_LOG(pdhist, "<- done, freemin=%jd, freetarg=%jd, wiredmax=%jd",
236	      uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
237}
238
239/*
240 * uvm_pageout: the main loop for the pagedaemon
241 */
242
243void
244uvm_pageout(void *arg)
245{
246	int npages = 0;
247	int extrapages = 0;
248	int fpages;
249
250	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
251
252	UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);
253
254	mutex_init(&uvmpd_lock, MUTEX_DEFAULT, IPL_VM);
255	cv_init(&uvmpd_pool_drain_cv, "pooldrain");
256
257	/* Create the pool drainer kernel thread. */
258	if (kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL,
259	    uvmpd_pool_drain_thread, NULL, NULL, "pooldrain"))
260		panic("fork pooldrain");
261
262	/*
263	 * ensure correct priority and set paging parameters...
264	 */
265
266	uvm.pagedaemon_lwp = curlwp;
267	npages = uvmexp.npages;
268	uvmpd_tune();
269
270	/*
271	 * main loop
272	 */
273
274	for (;;) {
275		bool needsscan, needsfree, kmem_va_starved;
276
277		kmem_va_starved = uvm_km_va_starved_p();
278
279		mutex_spin_enter(&uvmpd_lock);
280		if ((uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) &&
281		    !kmem_va_starved) {
282			UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
283			UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
284			    &uvmpd_lock, false, "pgdaemon", 0);
285			uvmexp.pdwoke++;
286			UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
287		} else {
288			mutex_spin_exit(&uvmpd_lock);
289		}
290
291		/*
292		 * now recompute inactive count
293		 */
294
295		if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
296			npages = uvmexp.npages;
297			extrapages = uvm_extrapages;
298			uvmpd_tune();
299		}
300
301		uvmpdpol_tune();
302
303		/*
304		 * Estimate a hint.  Note that bufmem are returned to
305		 * system only when entire pool page is empty.
306		 */
307		fpages = uvm_availmem(false);
308		UVMHIST_LOG(pdhist,"  free/ftarg=%jd/%jd",
309		    fpages, uvmexp.freetarg, 0,0);
310
311		needsfree = fpages + uvmexp.paging < uvmexp.freetarg;
312		needsscan = needsfree || uvmpdpol_needsscan_p();
313
314		/*
315		 * scan if needed
316		 */
317		if (needsscan) {
318			uvmpd_scan();
319		}
320
321		/*
322		 * if there's any free memory to be had,
323		 * wake up any waiters.
324		 */
325		if (uvm_availmem(false) > uvmexp.reserve_kernel ||
326		    uvmexp.paging == 0) {
327			mutex_spin_enter(&uvmpd_lock);
328			wakeup(&uvmexp.free);
329			uvm_pagedaemon_waiters = 0;
330			mutex_spin_exit(&uvmpd_lock);
331		}
332
333		/*
334		 * scan done.  if we don't need free memory, we're done.
335		 */
336
337		if (!needsfree && !kmem_va_starved)
338			continue;
339
340		/*
341		 * kick the pool drainer thread.
342		 */
343
344		uvmpd_pool_drain_wakeup();
345	}
346	/*NOTREACHED*/
347}
348
349void
350uvm_pageout_start(int npages)
351{
352
353	atomic_add_int(&uvmexp.paging, npages);
354}
355
356void
357uvm_pageout_done(int npages)
358{
359
360	KASSERT(atomic_load_relaxed(&uvmexp.paging) >= npages);
361
362	if (npages == 0) {
363		return;
364	}
365
366	atomic_add_int(&uvmexp.paging, -npages);
367
368	/*
369	 * wake up either of pagedaemon or LWPs waiting for it.
370	 */
371
372	mutex_spin_enter(&uvmpd_lock);
373	if (uvm_availmem(false) <= uvmexp.reserve_kernel) {
374		wakeup(&uvm.pagedaemon);
375	} else if (uvm_pagedaemon_waiters != 0) {
376		wakeup(&uvmexp.free);
377		uvm_pagedaemon_waiters = 0;
378	}
379	mutex_spin_exit(&uvmpd_lock);
380}
381
382static krwlock_t *
383uvmpd_page_owner_lock(struct vm_page *pg)
384{
385	struct uvm_object *uobj = pg->uobject;
386	struct vm_anon *anon = pg->uanon;
387	krwlock_t *slock;
388
389	KASSERT(mutex_owned(&pg->interlock));
390
391#ifdef DEBUG
392	if (uobj == (void *)0xdeadbeef || anon == (void *)0xdeadbeef) {
393		return NULL;
394	}
395#endif
396	if (uobj != NULL) {
397		slock = uobj->vmobjlock;
398		KASSERTMSG(slock != NULL, "pg %p uobj %p, NULL lock", pg, uobj);
399	} else if (anon != NULL) {
400		slock = anon->an_lock;
401		KASSERTMSG(slock != NULL, "pg %p anon %p, NULL lock", pg, anon);
402	} else {
403		slock = NULL;
404	}
405	return slock;
406}
407
408/*
409 * uvmpd_trylockowner: trylock the page's owner.
410 *
411 * => called with page interlock held.
412 * => resolve orphaned O->A loaned page.
413 * => return the locked mutex on success.  otherwise, return NULL.
414 */
415
416krwlock_t *
417uvmpd_trylockowner(struct vm_page *pg)
418{
419	krwlock_t *slock, *heldslock = NULL;
420
421	KASSERT(mutex_owned(&pg->interlock));
422
423	slock = uvmpd_page_owner_lock(pg);
424	if (slock == NULL) {
425		/* Page may be in state of flux - ignore. */
426		mutex_exit(&pg->interlock);
427		return NULL;
428	}
429
430	if (rw_tryenter(slock, RW_WRITER)) {
431		goto success;
432	}
433
434	/*
435	 * The try-lock didn't work, so now do a blocking lock after
436	 * dropping the page interlock.  Prevent the owner lock from
437	 * being freed by taking a hold on it first.
438	 */
439
440	rw_obj_hold(slock);
441	mutex_exit(&pg->interlock);
442	rw_enter(slock, RW_WRITER);
443	heldslock = slock;
444
445	/*
446	 * Now we hold some owner lock.  Check if the lock we hold
447	 * is still the lock for the owner of the page.
448	 * If it is then return it, otherwise release it and return NULL.
449	 */
450
451	mutex_enter(&pg->interlock);
452	slock = uvmpd_page_owner_lock(pg);
453	if (heldslock != slock) {
454		rw_exit(heldslock);
455		slock = NULL;
456	} else {
457success:
458		/*
459		 * Set PG_ANON if it isn't set already.
460		 */
461		if (pg->uobject == NULL && (pg->flags & PG_ANON) == 0) {
462			KASSERT(pg->loan_count > 0);
463			pg->loan_count--;
464			pg->flags |= PG_ANON;
465			/* anon now owns it */
466		}
467	}
468	mutex_exit(&pg->interlock);
469	if (heldslock != NULL) {
470		rw_obj_free(heldslock);
471	}
472	return slock;
473}
474
475#if defined(VMSWAP)
476struct swapcluster {
477	int swc_slot;
478	int swc_nallocated;
479	int swc_nused;
480	struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
481};
482
483static void
484swapcluster_init(struct swapcluster *swc)
485{
486
487	swc->swc_slot = 0;
488	swc->swc_nused = 0;
489}
490
491static int
492swapcluster_allocslots(struct swapcluster *swc)
493{
494	int slot;
495	int npages;
496
497	if (swc->swc_slot != 0) {
498		return 0;
499	}
500
501	/* Even with strange MAXPHYS, the shift
502	   implicitly rounds down to a page. */
503	npages = MAXPHYS >> PAGE_SHIFT;
504	slot = uvm_swap_alloc(&npages, true);
505	if (slot == 0) {
506		return ENOMEM;
507	}
508	swc->swc_slot = slot;
509	swc->swc_nallocated = npages;
510	swc->swc_nused = 0;
511
512	return 0;
513}
514
515static int
516swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
517{
518	int slot;
519	struct uvm_object *uobj;
520
521	KASSERT(swc->swc_slot != 0);
522	KASSERT(swc->swc_nused < swc->swc_nallocated);
523	KASSERT((pg->flags & PG_SWAPBACKED) != 0);
524
525	slot = swc->swc_slot + swc->swc_nused;
526	uobj = pg->uobject;
527	if (uobj == NULL) {
528		KASSERT(rw_write_held(pg->uanon->an_lock));
529		pg->uanon->an_swslot = slot;
530	} else {
531		int result;
532
533		KASSERT(rw_write_held(uobj->vmobjlock));
534		result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
535		if (result == -1) {
536			return ENOMEM;
537		}
538	}
539	swc->swc_pages[swc->swc_nused] = pg;
540	swc->swc_nused++;
541
542	return 0;
543}
544
545static void
546swapcluster_flush(struct swapcluster *swc, bool now)
547{
548	int slot;
549	int nused;
550	int nallocated;
551	int error __diagused;
552
553	if (swc->swc_slot == 0) {
554		return;
555	}
556	KASSERT(swc->swc_nused <= swc->swc_nallocated);
557
558	slot = swc->swc_slot;
559	nused = swc->swc_nused;
560	nallocated = swc->swc_nallocated;
561
562	/*
563	 * if this is the final pageout we could have a few
564	 * unused swap blocks.  if so, free them now.
565	 */
566
567	if (nused < nallocated) {
568		if (!now) {
569			return;
570		}
571		uvm_swap_free(slot + nused, nallocated - nused);
572	}
573
574	/*
575	 * now start the pageout.
576	 */
577
578	if (nused > 0) {
579		uvmexp.pdpageouts++;
580		uvm_pageout_start(nused);
581		error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
582		KASSERT(error == 0 || error == ENOMEM);
583	}
584
585	/*
586	 * zero swslot to indicate that we are
587	 * no longer building a swap-backed cluster.
588	 */
589
590	swc->swc_slot = 0;
591	swc->swc_nused = 0;
592}
593
594static int
595swapcluster_nused(struct swapcluster *swc)
596{
597
598	return swc->swc_nused;
599}
600
601/*
602 * uvmpd_dropswap: free any swap allocated to this page.
603 *
604 * => called with owner locked.
605 * => return true if a page had an associated slot.
606 */
607
608bool
609uvmpd_dropswap(struct vm_page *pg)
610{
611	bool result = false;
612	struct vm_anon *anon = pg->uanon;
613
614	if ((pg->flags & PG_ANON) && anon->an_swslot) {
615		uvm_swap_free(anon->an_swslot, 1);
616		anon->an_swslot = 0;
617		uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
618		result = true;
619	} else if (pg->flags & PG_AOBJ) {
620		int slot = uao_set_swslot(pg->uobject,
621		    pg->offset >> PAGE_SHIFT, 0);
622		if (slot) {
623			uvm_swap_free(slot, 1);
624			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
625			result = true;
626		}
627	}
628
629	return result;
630}
631
632#endif /* defined(VMSWAP) */
633
634/*
635 * uvmpd_scan_queue: scan an replace candidate list for pages
636 * to clean or free.
637 *
638 * => we work on meeting our free target by converting inactive pages
639 *    into free pages.
640 * => we handle the building of swap-backed clusters
641 */
642
643static void
644uvmpd_scan_queue(void)
645{
646	struct vm_page *p;
647	struct uvm_object *uobj;
648	struct vm_anon *anon;
649#if defined(VMSWAP)
650	struct swapcluster swc;
651#endif /* defined(VMSWAP) */
652	int dirtyreacts;
653	krwlock_t *slock;
654	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
655
656	/*
657	 * swslot is non-zero if we are building a swap cluster.  we want
658	 * to stay in the loop while we have a page to scan or we have
659	 * a swap-cluster to build.
660	 */
661
662#if defined(VMSWAP)
663	swapcluster_init(&swc);
664#endif /* defined(VMSWAP) */
665
666	dirtyreacts = 0;
667	uvmpdpol_scaninit();
668
669	while (/* CONSTCOND */ 1) {
670
671		/*
672		 * see if we've met the free target.
673		 */
674
675		if (uvm_availmem(false) + uvmexp.paging
676#if defined(VMSWAP)
677		    + swapcluster_nused(&swc)
678#endif /* defined(VMSWAP) */
679		    >= uvmexp.freetarg << 2 ||
680		    dirtyreacts == UVMPD_NUMDIRTYREACTS) {
681			UVMHIST_LOG(pdhist,"  met free target: "
682				    "exit loop", 0, 0, 0, 0);
683			break;
684		}
685
686		/*
687		 * first we have the pdpolicy select a victim page
688		 * and attempt to lock the object that the page
689		 * belongs to.  if our attempt fails we skip on to
690		 * the next page (no harm done).  it is important to
691		 * "try" locking the object as we are locking in the
692		 * wrong order (pageq -> object) and we don't want to
693		 * deadlock.
694		 *
695		 * the only time we expect to see an ownerless page
696		 * (i.e. a page with no uobject and !PG_ANON) is if an
697		 * anon has loaned a page from a uvm_object and the
698		 * uvm_object has dropped the ownership.  in that
699		 * case, the anon can "take over" the loaned page
700		 * and make it its own.
701		 */
702
703		p = uvmpdpol_selectvictim(&slock);
704		if (p == NULL) {
705			break;
706		}
707		KASSERT(uvmpdpol_pageisqueued_p(p));
708		KASSERT(uvm_page_owner_locked_p(p, true));
709		KASSERT(p->wire_count == 0);
710
711		/*
712		 * we are below target and have a new page to consider.
713		 */
714
715		anon = p->uanon;
716		uobj = p->uobject;
717
718		if (p->flags & PG_BUSY) {
719			rw_exit(slock);
720			uvmexp.pdbusy++;
721			continue;
722		}
723
724		/* does the page belong to an object? */
725		if (uobj != NULL) {
726			uvmexp.pdobscan++;
727		} else {
728#if defined(VMSWAP)
729			KASSERT(anon != NULL);
730			uvmexp.pdanscan++;
731#else /* defined(VMSWAP) */
732			panic("%s: anon", __func__);
733#endif /* defined(VMSWAP) */
734		}
735
736
737		/*
738		 * we now have the object locked.
739		 * if the page is not swap-backed, call the object's
740		 * pager to flush and free the page.
741		 */
742
743#if defined(READAHEAD_STATS)
744		if ((p->flags & PG_READAHEAD) != 0) {
745			p->flags &= ~PG_READAHEAD;
746			uvm_ra_miss.ev_count++;
747		}
748#endif /* defined(READAHEAD_STATS) */
749
750		if ((p->flags & PG_SWAPBACKED) == 0) {
751			KASSERT(uobj != NULL);
752			(void) (uobj->pgops->pgo_put)(uobj, p->offset,
753			    p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
754			continue;
755		}
756
757		/*
758		 * the page is swap-backed.  remove all the permissions
759		 * from the page so we can sync the modified info
760		 * without any race conditions.  if the page is clean
761		 * we can free it now and continue.
762		 */
763
764		pmap_page_protect(p, VM_PROT_NONE);
765		if (uvm_pagegetdirty(p) == UVM_PAGE_STATUS_UNKNOWN) {
766			if (pmap_clear_modify(p)) {
767				uvm_pagemarkdirty(p, UVM_PAGE_STATUS_DIRTY);
768			} else {
769				uvm_pagemarkdirty(p, UVM_PAGE_STATUS_CLEAN);
770			}
771		}
772		if (uvm_pagegetdirty(p) != UVM_PAGE_STATUS_DIRTY) {
773			int slot;
774			int pageidx;
775
776			pageidx = p->offset >> PAGE_SHIFT;
777			uvm_pagefree(p);
778			atomic_inc_uint(&uvmexp.pdfreed);
779
780			/*
781			 * for anons, we need to remove the page
782			 * from the anon ourselves.  for aobjs,
783			 * pagefree did that for us.
784			 */
785
786			if (anon) {
787				KASSERT(anon->an_swslot != 0);
788				anon->an_page = NULL;
789				slot = anon->an_swslot;
790			} else {
791				slot = uao_find_swslot(uobj, pageidx);
792			}
793			if (slot > 0) {
794				/* this page is now only in swap. */
795				KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
796				atomic_inc_uint(&uvmexp.swpgonly);
797			}
798			rw_exit(slock);
799			continue;
800		}
801
802#if defined(VMSWAP)
803		/*
804		 * this page is dirty, skip it if we'll have met our
805		 * free target when all the current pageouts complete.
806		 */
807
808		if (uvm_availmem(false) + uvmexp.paging >
809		    uvmexp.freetarg << 2) {
810			rw_exit(slock);
811			continue;
812		}
813
814		/*
815		 * free any swap space allocated to the page since
816		 * we'll have to write it again with its new data.
817		 */
818
819		uvmpd_dropswap(p);
820
821		/*
822		 * start new swap pageout cluster (if necessary).
823		 *
824		 * if swap is full reactivate this page so that
825		 * we eventually cycle all pages through the
826		 * inactive queue.
827		 */
828
829		if (swapcluster_allocslots(&swc)) {
830			dirtyreacts++;
831			uvm_pagelock(p);
832			uvm_pageactivate(p);
833			uvm_pageunlock(p);
834			rw_exit(slock);
835			continue;
836		}
837
838		/*
839		 * at this point, we're definitely going reuse this
840		 * page.  mark the page busy and delayed-free.
841		 * we should remove the page from the page queues
842		 * so we don't ever look at it again.
843		 * adjust counters and such.
844		 */
845
846		p->flags |= PG_BUSY;
847		UVM_PAGE_OWN(p, "scan_queue");
848		p->flags |= PG_PAGEOUT;
849		uvmexp.pgswapout++;
850
851		uvm_pagelock(p);
852		uvm_pagedequeue(p);
853		uvm_pageunlock(p);
854
855		/*
856		 * add the new page to the cluster.
857		 */
858
859		if (swapcluster_add(&swc, p)) {
860			p->flags &= ~(PG_BUSY|PG_PAGEOUT);
861			UVM_PAGE_OWN(p, NULL);
862			dirtyreacts++;
863			uvm_pagelock(p);
864			uvm_pageactivate(p);
865			uvm_pageunlock(p);
866			rw_exit(slock);
867			continue;
868		}
869		rw_exit(slock);
870
871		swapcluster_flush(&swc, false);
872
873		/*
874		 * the pageout is in progress.  bump counters and set up
875		 * for the next loop.
876		 */
877
878		atomic_inc_uint(&uvmexp.pdpending);
879
880#else /* defined(VMSWAP) */
881		uvm_pagelock(p);
882		uvm_pageactivate(p);
883		uvm_pageunlock(p);
884		rw_exit(slock);
885#endif /* defined(VMSWAP) */
886	}
887
888	uvmpdpol_scanfini();
889
890#if defined(VMSWAP)
891	swapcluster_flush(&swc, true);
892#endif /* defined(VMSWAP) */
893}
894
895/*
896 * uvmpd_scan: scan the page queues and attempt to meet our targets.
897 */
898
899static void
900uvmpd_scan(void)
901{
902	int swap_shortage, pages_freed, fpages;
903	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
904
905	uvmexp.pdrevs++;
906
907	/*
908	 * work on meeting our targets.   first we work on our free target
909	 * by converting inactive pages into free pages.  then we work on
910	 * meeting our inactive target by converting active pages to
911	 * inactive ones.
912	 */
913
914	UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);
915
916	pages_freed = uvmexp.pdfreed;
917	uvmpd_scan_queue();
918	pages_freed = uvmexp.pdfreed - pages_freed;
919
920	/*
921	 * detect if we're not going to be able to page anything out
922	 * until we free some swap resources from active pages.
923	 */
924
925	swap_shortage = 0;
926	fpages = uvm_availmem(false);
927	if (fpages < uvmexp.freetarg &&
928	    uvmexp.swpginuse >= uvmexp.swpgavail &&
929	    !uvm_swapisfull() &&
930	    pages_freed == 0) {
931		swap_shortage = uvmexp.freetarg - fpages;
932	}
933
934	uvmpdpol_balancequeue(swap_shortage);
935
936	/*
937	 * if still below the minimum target, try unloading kernel
938	 * modules.
939	 */
940
941	if (uvm_availmem(false) < uvmexp.freemin) {
942		module_thread_kick();
943	}
944}
945
946/*
947 * uvm_reclaimable: decide whether to wait for pagedaemon.
948 *
949 * => return true if it seems to be worth to do uvm_wait.
950 *
951 * XXX should be tunable.
952 * XXX should consider pools, etc?
953 */
954
955bool
956uvm_reclaimable(void)
957{
958	int filepages;
959	int active, inactive;
960
961	/*
962	 * if swap is not full, no problem.
963	 */
964
965	if (!uvm_swapisfull()) {
966		return true;
967	}
968
969	/*
970	 * file-backed pages can be reclaimed even when swap is full.
971	 * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
972	 * NB: filepages calculation does not exclude EXECPAGES - intentional.
973	 *
974	 * XXX assume the worst case, ie. all wired pages are file-backed.
975	 *
976	 * XXX should consider about other reclaimable memory.
977	 * XXX ie. pools, traditional buffer cache.
978	 */
979
980	cpu_count_sync(false);
981	filepages = (int)(cpu_count_get(CPU_COUNT_FILECLEAN) +
982	    cpu_count_get(CPU_COUNT_FILEUNKNOWN) +
983	    cpu_count_get(CPU_COUNT_FILEDIRTY) - uvmexp.wired);
984	uvm_estimatepageable(&active, &inactive);
985	if (filepages >= MIN((active + inactive) >> 4,
986	    5 * 1024 * 1024 >> PAGE_SHIFT)) {
987		return true;
988	}
989
990	/*
991	 * kill the process, fail allocation, etc..
992	 */
993
994	return false;
995}
996
997void
998uvm_estimatepageable(int *active, int *inactive)
999{
1000
1001	uvmpdpol_estimatepageable(active, inactive);
1002}
1003
1004
1005/*
1006 * Use a separate thread for draining pools.
1007 * This work can't done from the main pagedaemon thread because
1008 * some pool allocators need to take vm_map locks.
1009 */
1010
1011static void
1012uvmpd_pool_drain_thread(void *arg)
1013{
1014	struct pool *firstpool, *curpool;
1015	int bufcnt, lastslept;
1016	bool cycled;
1017
1018	firstpool = NULL;
1019	cycled = true;
1020	for (;;) {
1021		/*
1022		 * sleep until awoken by the pagedaemon.
1023		 */
1024		mutex_enter(&uvmpd_lock);
1025		if (!uvmpd_pool_drain_run) {
1026			lastslept = getticks();
1027			cv_wait(&uvmpd_pool_drain_cv, &uvmpd_lock);
1028			if (getticks() != lastslept) {
1029				cycled = false;
1030				firstpool = NULL;
1031			}
1032		}
1033		uvmpd_pool_drain_run = false;
1034		mutex_exit(&uvmpd_lock);
1035
1036		/*
1037		 * rate limit draining, otherwise in desperate circumstances
1038		 * this can totally saturate the system with xcall activity.
1039		 */
1040		if (cycled) {
1041			kpause("uvmpdlmt", false, 1, NULL);
1042			cycled = false;
1043			firstpool = NULL;
1044		}
1045
1046		/*
1047		 * drain and temporarily disable the freelist cache.
1048		 */
1049		uvm_pgflcache_pause();
1050
1051		/*
1052		 * kill unused metadata buffers.
1053		 */
1054		bufcnt = uvmexp.freetarg - uvm_availmem(false);
1055		if (bufcnt < 0)
1056			bufcnt = 0;
1057
1058		mutex_enter(&bufcache_lock);
1059		buf_drain(bufcnt << PAGE_SHIFT);
1060		mutex_exit(&bufcache_lock);
1061
1062		/*
1063		 * drain a pool, and then re-enable the freelist cache.
1064		 */
1065		(void)pool_drain(&curpool);
1066		KASSERT(curpool != NULL);
1067		if (firstpool == NULL) {
1068			firstpool = curpool;
1069		} else if (firstpool == curpool) {
1070			cycled = true;
1071		}
1072		uvm_pgflcache_resume();
1073	}
1074	/*NOTREACHED*/
1075}
1076
1077static void
1078uvmpd_pool_drain_wakeup(void)
1079{
1080
1081	mutex_enter(&uvmpd_lock);
1082	uvmpd_pool_drain_run = true;
1083	cv_signal(&uvmpd_pool_drain_cv);
1084	mutex_exit(&uvmpd_lock);
1085}
1086