1/*	$NetBSD: lfs_accessors.h,v 1.51 2022/04/24 20:32:44 rillig Exp $	*/
2
3/*  from NetBSD: lfs.h,v 1.165 2015/07/24 06:59:32 dholland Exp  */
4/*  from NetBSD: dinode.h,v 1.25 2016/01/22 23:06:10 dholland Exp  */
5/*  from NetBSD: dir.h,v 1.25 2015/09/01 06:16:03 dholland Exp  */
6
7/*-
8 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to The NetBSD Foundation
12 * by Konrad E. Schroder <perseant@hhhh.org>.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35/*-
36 * Copyright (c) 1991, 1993
37 *	The Regents of the University of California.  All rights reserved.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 *    notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 *    notice, this list of conditions and the following disclaimer in the
46 *    documentation and/or other materials provided with the distribution.
47 * 3. Neither the name of the University nor the names of its contributors
48 *    may be used to endorse or promote products derived from this software
49 *    without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 *
63 *	@(#)lfs.h	8.9 (Berkeley) 5/8/95
64 */
65/*
66 * Copyright (c) 2002 Networks Associates Technology, Inc.
67 * All rights reserved.
68 *
69 * This software was developed for the FreeBSD Project by Marshall
70 * Kirk McKusick and Network Associates Laboratories, the Security
71 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
72 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
73 * research program
74 *
75 * Copyright (c) 1982, 1989, 1993
76 *	The Regents of the University of California.  All rights reserved.
77 * (c) UNIX System Laboratories, Inc.
78 * All or some portions of this file are derived from material licensed
79 * to the University of California by American Telephone and Telegraph
80 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
81 * the permission of UNIX System Laboratories, Inc.
82 *
83 * Redistribution and use in source and binary forms, with or without
84 * modification, are permitted provided that the following conditions
85 * are met:
86 * 1. Redistributions of source code must retain the above copyright
87 *    notice, this list of conditions and the following disclaimer.
88 * 2. Redistributions in binary form must reproduce the above copyright
89 *    notice, this list of conditions and the following disclaimer in the
90 *    documentation and/or other materials provided with the distribution.
91 * 3. Neither the name of the University nor the names of its contributors
92 *    may be used to endorse or promote products derived from this software
93 *    without specific prior written permission.
94 *
95 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
96 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
97 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
98 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
99 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
100 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
101 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
102 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
103 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
104 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
105 * SUCH DAMAGE.
106 *
107 *	@(#)dinode.h	8.9 (Berkeley) 3/29/95
108 */
109/*
110 * Copyright (c) 1982, 1986, 1989, 1993
111 *	The Regents of the University of California.  All rights reserved.
112 * (c) UNIX System Laboratories, Inc.
113 * All or some portions of this file are derived from material licensed
114 * to the University of California by American Telephone and Telegraph
115 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
116 * the permission of UNIX System Laboratories, Inc.
117 *
118 * Redistribution and use in source and binary forms, with or without
119 * modification, are permitted provided that the following conditions
120 * are met:
121 * 1. Redistributions of source code must retain the above copyright
122 *    notice, this list of conditions and the following disclaimer.
123 * 2. Redistributions in binary form must reproduce the above copyright
124 *    notice, this list of conditions and the following disclaimer in the
125 *    documentation and/or other materials provided with the distribution.
126 * 3. Neither the name of the University nor the names of its contributors
127 *    may be used to endorse or promote products derived from this software
128 *    without specific prior written permission.
129 *
130 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
131 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
132 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
133 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
134 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
135 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
136 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
137 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
138 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
139 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
140 * SUCH DAMAGE.
141 *
142 *	@(#)dir.h	8.5 (Berkeley) 4/27/95
143 */
144
145#ifndef _UFS_LFS_LFS_ACCESSORS_H_
146#define _UFS_LFS_LFS_ACCESSORS_H_
147
148#if defined(_KERNEL_OPT)
149#include "opt_lfs.h"
150#endif
151
152#include <sys/bswap.h>
153
154#include <ufs/lfs/lfs.h>
155
156#if !defined(_KERNEL) && !defined(_STANDALONE)
157#include <assert.h>
158#include <string.h>
159#define KASSERT assert
160#else
161#include <sys/systm.h>
162#endif
163
164/*
165 * STRUCT_LFS is used by the libsa code to get accessors that work
166 * with struct salfs instead of struct lfs, and by the cleaner to
167 * get accessors that work with struct clfs.
168 */
169
170#ifndef STRUCT_LFS
171#define STRUCT_LFS struct lfs
172#endif
173
174/*
175 * byte order
176 */
177
178/*
179 * For now at least, the bootblocks shall not be endian-independent.
180 * We can see later if it fits in the size budget. Also disable the
181 * byteswapping if LFS_EI is off.
182 *
183 * Caution: these functions "know" that bswap16/32/64 are unsigned,
184 * and if that changes will likely break silently.
185 */
186
187#if defined(_STANDALONE) || (defined(_KERNEL) && !defined(LFS_EI))
188#define LFS_SWAP_int16_t(fs, val) (val)
189#define LFS_SWAP_int32_t(fs, val) (val)
190#define LFS_SWAP_int64_t(fs, val) (val)
191#define LFS_SWAP_uint16_t(fs, val) (val)
192#define LFS_SWAP_uint32_t(fs, val) (val)
193#define LFS_SWAP_uint64_t(fs, val) (val)
194#else
195#define LFS_SWAP_int16_t(fs, val) \
196	((fs)->lfs_dobyteswap ? (int16_t)bswap16(val) : (val))
197#define LFS_SWAP_int32_t(fs, val) \
198	((fs)->lfs_dobyteswap ? (int32_t)bswap32(val) : (val))
199#define LFS_SWAP_int64_t(fs, val) \
200	((fs)->lfs_dobyteswap ? (int64_t)bswap64(val) : (val))
201#define LFS_SWAP_uint16_t(fs, val) \
202	((fs)->lfs_dobyteswap ? bswap16(val) : (val))
203#define LFS_SWAP_uint32_t(fs, val) \
204	((fs)->lfs_dobyteswap ? bswap32(val) : (val))
205#define LFS_SWAP_uint64_t(fs, val) \
206	((fs)->lfs_dobyteswap ? bswap64(val) : (val))
207#endif
208
209/*
210 * For handling directories we will need to know if the volume is
211 * little-endian.
212 */
213#if BYTE_ORDER == LITTLE_ENDIAN
214#define LFS_LITTLE_ENDIAN_ONDISK(fs) (!(fs)->lfs_dobyteswap)
215#else
216#define LFS_LITTLE_ENDIAN_ONDISK(fs) ((fs)->lfs_dobyteswap)
217#endif
218
219
220/*
221 * Suppress spurious warnings -- we use
222 *
223 *	type *foo = &obj->member;
224 *
225 * in macros to verify that obj->member has the right type.  When the
226 * object is a packed structure with misaligned members, this causes
227 * some compiles to squeal that taking the address might lead to
228 * undefined behaviour later on -- which is helpful in general, not
229 * relevant in this case, because we don't do anything with foo
230 * afterward; we only declare it to get a type check and then we
231 * discard it.
232 */
233#ifdef __GNUC__
234#if defined(__clang__)
235#pragma clang diagnostic push
236#pragma clang diagnostic ignored "-Waddress-of-packed-member"
237#elif __GNUC_PREREQ__(9,0)
238#pragma GCC diagnostic push
239#pragma GCC diagnostic ignored "-Waddress-of-packed-member"
240#endif
241#endif
242
243
244
245/*
246 * directories
247 */
248
249#define LFS_DIRHEADERSIZE(fs) \
250	((fs)->lfs_is64 ? sizeof(struct lfs_dirheader64) : sizeof(struct lfs_dirheader32))
251
252/*
253 * The LFS_DIRSIZ macro gives the minimum record length which will hold
254 * the directory entry.  This requires the amount of space in struct lfs_direct
255 * without the d_name field, plus enough space for the name with a terminating
256 * null byte (dp->d_namlen+1), rounded up to a 4 byte boundary.
257 */
258#define	LFS_DIRECTSIZ(fs, namlen) \
259	(LFS_DIRHEADERSIZE(fs) + (((namlen)+1 + 3) &~ 3))
260
261/*
262 * The size of the largest possible directory entry. This is
263 * used by ulfs_dirhash to figure the size of an array, so we
264 * need a single constant value true for both lfs32 and lfs64.
265 */
266#define LFS_MAXDIRENTRYSIZE \
267	(sizeof(struct lfs_dirheader64) + (((LFS_MAXNAMLEN+1)+1 + 3) & ~3))
268
269#if (BYTE_ORDER == LITTLE_ENDIAN)
270#define LFS_OLDDIRSIZ(oldfmt, dp, needswap)	\
271    (((oldfmt) && !(needswap)) ?		\
272    LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
273#else
274#define LFS_OLDDIRSIZ(oldfmt, dp, needswap)	\
275    (((oldfmt) && (needswap)) ?			\
276    LFS_DIRECTSIZ((dp)->d_type) : LFS_DIRECTSIZ((dp)->d_namlen))
277#endif
278
279#define LFS_DIRSIZ(fs, dp) LFS_DIRECTSIZ(fs, lfs_dir_getnamlen(fs, dp))
280
281/* Constants for the first argument of LFS_OLDDIRSIZ */
282#define LFS_OLDDIRFMT	1
283#define LFS_NEWDIRFMT	0
284
285#define LFS_NEXTDIR(fs, dp) \
286	((LFS_DIRHEADER *)((char *)(dp) + lfs_dir_getreclen(fs, dp)))
287
288static __inline char *
289lfs_dir_nameptr(const STRUCT_LFS *fs, LFS_DIRHEADER *dh)
290{
291	if (fs->lfs_is64) {
292		return (char *)(&dh->u_64 + 1);
293	} else {
294		return (char *)(&dh->u_32 + 1);
295	}
296}
297
298static __inline uint64_t
299lfs_dir_getino(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
300{
301	if (fs->lfs_is64) {
302		return LFS_SWAP_uint64_t(fs, dh->u_64.dh_ino);
303	} else {
304		return LFS_SWAP_uint32_t(fs, dh->u_32.dh_ino);
305	}
306}
307
308static __inline uint16_t
309lfs_dir_getreclen(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
310{
311	if (fs->lfs_is64) {
312		return LFS_SWAP_uint16_t(fs, dh->u_64.dh_reclen);
313	} else {
314		return LFS_SWAP_uint16_t(fs, dh->u_32.dh_reclen);
315	}
316}
317
318static __inline uint8_t
319lfs_dir_gettype(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
320{
321	if (fs->lfs_is64) {
322		KASSERT(fs->lfs_hasolddirfmt == 0);
323		return dh->u_64.dh_type;
324	} else if (fs->lfs_hasolddirfmt) {
325		return LFS_DT_UNKNOWN;
326	} else {
327		return dh->u_32.dh_type;
328	}
329}
330
331static __inline uint8_t
332lfs_dir_getnamlen(const STRUCT_LFS *fs, const LFS_DIRHEADER *dh)
333{
334	if (fs->lfs_is64) {
335		KASSERT(fs->lfs_hasolddirfmt == 0);
336		return dh->u_64.dh_namlen;
337	} else if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
338		/* low-order byte of old 16-bit namlen field */
339		return dh->u_32.dh_type;
340	} else {
341		return dh->u_32.dh_namlen;
342	}
343}
344
345static __inline void
346lfs_dir_setino(STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint64_t ino)
347{
348	if (fs->lfs_is64) {
349		dh->u_64.dh_ino = LFS_SWAP_uint64_t(fs, ino);
350	} else {
351		dh->u_32.dh_ino = LFS_SWAP_uint32_t(fs, ino);
352	}
353}
354
355static __inline void
356lfs_dir_setreclen(STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint16_t reclen)
357{
358	if (fs->lfs_is64) {
359		dh->u_64.dh_reclen = LFS_SWAP_uint16_t(fs, reclen);
360	} else {
361		dh->u_32.dh_reclen = LFS_SWAP_uint16_t(fs, reclen);
362	}
363}
364
365static __inline void
366lfs_dir_settype(const STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint8_t type)
367{
368	if (fs->lfs_is64) {
369		KASSERT(fs->lfs_hasolddirfmt == 0);
370		dh->u_64.dh_type = type;
371	} else if (fs->lfs_hasolddirfmt) {
372		/* do nothing */
373		return;
374	} else {
375		dh->u_32.dh_type = type;
376	}
377}
378
379static __inline void
380lfs_dir_setnamlen(const STRUCT_LFS *fs, LFS_DIRHEADER *dh, uint8_t namlen)
381{
382	if (fs->lfs_is64) {
383		KASSERT(fs->lfs_hasolddirfmt == 0);
384		dh->u_64.dh_namlen = namlen;
385	} else if (fs->lfs_hasolddirfmt && LFS_LITTLE_ENDIAN_ONDISK(fs)) {
386		/* low-order byte of old 16-bit namlen field */
387		dh->u_32.dh_type = namlen;
388	} else {
389		dh->u_32.dh_namlen = namlen;
390	}
391}
392
393static __inline void
394lfs_copydirname(STRUCT_LFS *fs, char *dest, const char *src,
395		unsigned namlen, unsigned reclen)
396{
397	unsigned spacelen;
398
399	KASSERT(reclen > LFS_DIRHEADERSIZE(fs));
400	spacelen = reclen - LFS_DIRHEADERSIZE(fs);
401
402	/* must always be at least 1 byte as a null terminator */
403	KASSERT(spacelen > namlen);
404
405	memcpy(dest, src, namlen);
406	memset(dest + namlen, '\0', spacelen - namlen);
407}
408
409static __inline LFS_DIRHEADER *
410lfs_dirtemplate_dotdot(STRUCT_LFS *fs, union lfs_dirtemplate *dt)
411{
412	/* XXX blah, be nice to have a way to do this w/o casts */
413	if (fs->lfs_is64) {
414		return (LFS_DIRHEADER *)&dt->u_64.dotdot_header;
415	} else {
416		return (LFS_DIRHEADER *)&dt->u_32.dotdot_header;
417	}
418}
419
420static __inline char *
421lfs_dirtemplate_dotdotname(STRUCT_LFS *fs, union lfs_dirtemplate *dt)
422{
423	if (fs->lfs_is64) {
424		return dt->u_64.dotdot_name;
425	} else {
426		return dt->u_32.dotdot_name;
427	}
428}
429
430/*
431 * dinodes
432 */
433
434/*
435 * Maximum length of a symlink that can be stored within the inode.
436 */
437#define LFS32_MAXSYMLINKLEN	((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int32_t))
438#define LFS64_MAXSYMLINKLEN	((ULFS_NDADDR + ULFS_NIADDR) * sizeof(int64_t))
439
440#define LFS_MAXSYMLINKLEN(fs) \
441	((fs)->lfs_is64 ? LFS64_MAXSYMLINKLEN : LFS32_MAXSYMLINKLEN)
442
443#define DINOSIZE(fs) ((fs)->lfs_is64 ? sizeof(struct lfs64_dinode) : sizeof(struct lfs32_dinode))
444
445#define DINO_IN_BLOCK(fs, base, ix) \
446	((union lfs_dinode *)((char *)(base) + DINOSIZE(fs) * (ix)))
447
448static __inline void
449lfs_copy_dinode(STRUCT_LFS *fs,
450    union lfs_dinode *dst, const union lfs_dinode *src)
451{
452	/*
453	 * We can do structure assignment of the structs, but not of
454	 * the whole union, as the union is the size of the (larger)
455	 * 64-bit struct and on a 32-bit fs the upper half of it might
456	 * be off the end of a buffer or otherwise invalid.
457	 */
458	if (fs->lfs_is64) {
459		dst->u_64 = src->u_64;
460	} else {
461		dst->u_32 = src->u_32;
462	}
463}
464
465#define LFS_DEF_DINO_ACCESSOR(type, type32, field) \
466	static __inline type				\
467	lfs_dino_get##field(STRUCT_LFS *fs, union lfs_dinode *dip) \
468	{							\
469		if (fs->lfs_is64) {				\
470			return LFS_SWAP_##type(fs, dip->u_64.di_##field); \
471		} else {					\
472			return LFS_SWAP_##type32(fs, dip->u_32.di_##field); \
473		}						\
474	}							\
475	static __inline void				\
476	lfs_dino_set##field(STRUCT_LFS *fs, union lfs_dinode *dip, type val) \
477	{							\
478		if (fs->lfs_is64) {				\
479			type *p = &dip->u_64.di_##field;	\
480			(void)p;				\
481			dip->u_64.di_##field = LFS_SWAP_##type(fs, val); \
482		} else {					\
483			type32 *p = &dip->u_32.di_##field;	\
484			(void)p;				\
485			dip->u_32.di_##field = LFS_SWAP_##type32(fs, val); \
486		}						\
487	}							\
488
489LFS_DEF_DINO_ACCESSOR(uint16_t, uint16_t, mode)
490LFS_DEF_DINO_ACCESSOR(int16_t, int16_t, nlink)
491LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, inumber)
492LFS_DEF_DINO_ACCESSOR(uint64_t, uint64_t, size)
493LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, atime)
494LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, atimensec)
495LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, mtime)
496LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, mtimensec)
497LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, ctime)
498LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, ctimensec)
499LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, flags)
500LFS_DEF_DINO_ACCESSOR(uint64_t, uint32_t, blocks)
501LFS_DEF_DINO_ACCESSOR(int32_t, int32_t, gen)
502LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, uid)
503LFS_DEF_DINO_ACCESSOR(uint32_t, uint32_t, gid)
504
505/* XXX this should be done differently (it's a fake field) */
506LFS_DEF_DINO_ACCESSOR(int64_t, int32_t, rdev)
507
508static __inline daddr_t
509lfs_dino_getdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
510{
511	KASSERT(ix < ULFS_NDADDR);
512	if (fs->lfs_is64) {
513		return LFS_SWAP_int64_t(fs, dip->u_64.di_db[ix]);
514	} else {
515		/* note: this must sign-extend or UNWRITTEN gets trashed */
516		return (int32_t)LFS_SWAP_int32_t(fs, dip->u_32.di_db[ix]);
517	}
518}
519
520static __inline daddr_t
521lfs_dino_getib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix)
522{
523	KASSERT(ix < ULFS_NIADDR);
524	if (fs->lfs_is64) {
525		return LFS_SWAP_int64_t(fs, dip->u_64.di_ib[ix]);
526	} else {
527		/* note: this must sign-extend or UNWRITTEN gets trashed */
528		return (int32_t)LFS_SWAP_int32_t(fs, dip->u_32.di_ib[ix]);
529	}
530}
531
532static __inline void
533lfs_dino_setdb(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
534{
535	KASSERT(ix < ULFS_NDADDR);
536	if (fs->lfs_is64) {
537		dip->u_64.di_db[ix] = LFS_SWAP_int64_t(fs, val);
538	} else {
539		dip->u_32.di_db[ix] = LFS_SWAP_uint32_t(fs, val);
540	}
541}
542
543static __inline void
544lfs_dino_setib(STRUCT_LFS *fs, union lfs_dinode *dip, unsigned ix, daddr_t val)
545{
546	KASSERT(ix < ULFS_NIADDR);
547	if (fs->lfs_is64) {
548		dip->u_64.di_ib[ix] = LFS_SWAP_int64_t(fs, val);
549	} else {
550		dip->u_32.di_ib[ix] = LFS_SWAP_uint32_t(fs, val);
551	}
552}
553
554/* birthtime is present only in the 64-bit inode */
555static __inline void
556lfs_dino_setbirthtime(STRUCT_LFS *fs, union lfs_dinode *dip,
557    const struct timespec *ts)
558{
559	if (fs->lfs_is64) {
560		dip->u_64.di_birthtime = ts->tv_sec;
561		dip->u_64.di_birthnsec = ts->tv_nsec;
562	} else {
563		/* drop it on the floor */
564	}
565}
566
567/*
568 * indirect blocks
569 */
570
571static __inline daddr_t
572lfs_iblock_get(STRUCT_LFS *fs, void *block, unsigned ix)
573{
574	if (fs->lfs_is64) {
575		// XXX re-enable these asserts after reorging this file
576		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
577		return (daddr_t)(((int64_t *)block)[ix]);
578	} else {
579		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
580		/* must sign-extend or UNWRITTEN gets trashed */
581		return (daddr_t)(int64_t)(((int32_t *)block)[ix]);
582	}
583}
584
585static __inline void
586lfs_iblock_set(STRUCT_LFS *fs, void *block, unsigned ix, daddr_t val)
587{
588	if (fs->lfs_is64) {
589		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int64_t));
590		((int64_t *)block)[ix] = val;
591	} else {
592		//KASSERT(ix < lfs_sb_getbsize(fs) / sizeof(int32_t));
593		((int32_t *)block)[ix] = val;
594	}
595}
596
597/*
598 * "struct buf" associated definitions
599 */
600
601# define LFS_LOCK_BUF(bp) do {						\
602	if (((bp)->b_flags & B_LOCKED) == 0 && bp->b_iodone == NULL) {	\
603		mutex_enter(&lfs_lock);					\
604		++locked_queue_count;					\
605		locked_queue_bytes += bp->b_bufsize;			\
606		mutex_exit(&lfs_lock);					\
607	}								\
608	(bp)->b_flags |= B_LOCKED;					\
609} while (0)
610
611# define LFS_UNLOCK_BUF(bp) do {					\
612	if (((bp)->b_flags & B_LOCKED) != 0 && bp->b_iodone == NULL) {	\
613		mutex_enter(&lfs_lock);					\
614		--locked_queue_count;					\
615		locked_queue_bytes -= bp->b_bufsize;			\
616		if (locked_queue_count < LFS_WAIT_BUFS &&		\
617		    locked_queue_bytes < LFS_WAIT_BYTES)		\
618			cv_broadcast(&locked_queue_cv);			\
619		mutex_exit(&lfs_lock);					\
620	}								\
621	(bp)->b_flags &= ~B_LOCKED;					\
622} while (0)
623
624/*
625 * "struct inode" associated definitions
626 */
627
628#define LFS_SET_UINO(ip, states) do {					\
629	if (((states) & IN_ACCESSED) && !((ip)->i_state & IN_ACCESSED))	\
630		lfs_sb_adduinodes((ip)->i_lfs, 1);			\
631	if (((states) & IN_CLEANING) && !((ip)->i_state & IN_CLEANING))	\
632		lfs_sb_adduinodes((ip)->i_lfs, 1);			\
633	if (((states) & IN_MODIFIED) && !((ip)->i_state & IN_MODIFIED))	\
634		lfs_sb_adduinodes((ip)->i_lfs, 1);			\
635	(ip)->i_state |= (states);					\
636} while (0)
637
638#define LFS_CLR_UINO(ip, states) do {					\
639	if (((states) & IN_ACCESSED) && ((ip)->i_state & IN_ACCESSED))	\
640		lfs_sb_subuinodes((ip)->i_lfs, 1);			\
641	if (((states) & IN_CLEANING) && ((ip)->i_state & IN_CLEANING))	\
642		lfs_sb_subuinodes((ip)->i_lfs, 1);			\
643	if (((states) & IN_MODIFIED) && ((ip)->i_state & IN_MODIFIED))	\
644		lfs_sb_subuinodes((ip)->i_lfs, 1);			\
645	(ip)->i_state &= ~(states);					\
646	if (lfs_sb_getuinodes((ip)->i_lfs) < 0) {			\
647		panic("lfs_uinodes < 0");				\
648	}								\
649} while (0)
650
651#define LFS_ITIMES(ip, acc, mod, cre) \
652	while ((ip)->i_state & (IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY)) \
653		lfs_itimes(ip, acc, mod, cre)
654
655/*
656 * On-disk and in-memory checkpoint segment usage structure.
657 */
658
659#define	SEGUPB(fs)	(lfs_sb_getsepb(fs))
660#define	SEGTABSIZE_SU(fs)						\
661	((lfs_sb_getnseg(fs) + SEGUPB(fs) - 1) / lfs_sb_getsepb(fs))
662
663#ifdef _KERNEL
664# define SHARE_IFLOCK(F) 						\
665  do {									\
666	rw_enter(&(F)->lfs_iflock, RW_READER);				\
667  } while(0)
668# define UNSHARE_IFLOCK(F)						\
669  do {									\
670	rw_exit(&(F)->lfs_iflock);					\
671  } while(0)
672#else /* ! _KERNEL */
673# define SHARE_IFLOCK(F)
674# define UNSHARE_IFLOCK(F)
675#endif /* ! _KERNEL */
676
677/* Read in the block with a specific segment usage entry from the ifile. */
678#define	LFS_SEGENTRY(SP, F, IN, BP) do {				\
679	int _e;								\
680	SHARE_IFLOCK(F);						\
681	VTOI((F)->lfs_ivnode)->i_state |= IN_ACCESS;			\
682	if ((_e = bread((F)->lfs_ivnode,				\
683	    ((IN) / lfs_sb_getsepb(F)) + lfs_sb_getcleansz(F),		\
684	    lfs_sb_getbsize(F), 0, &(BP))) != 0)			\
685		panic("lfs: ifile read: segentry %llu: error %d\n",	\
686			 (unsigned long long)(IN), _e);			\
687	if (lfs_sb_getversion(F) == 1)					\
688		(SP) = (SEGUSE *)((SEGUSE_V1 *)(BP)->b_data +		\
689			((IN) & (lfs_sb_getsepb(F) - 1)));		\
690	else								\
691		(SP) = (SEGUSE *)(BP)->b_data + ((IN) % lfs_sb_getsepb(F)); \
692	UNSHARE_IFLOCK(F);						\
693} while (0)
694
695#define LFS_WRITESEGENTRY(SP, F, IN, BP) do {				\
696	if ((SP)->su_nbytes == 0)					\
697		(SP)->su_flags |= SEGUSE_EMPTY;				\
698	else								\
699		(SP)->su_flags &= ~SEGUSE_EMPTY;			\
700	(F)->lfs_suflags[(F)->lfs_activesb][(IN)] = (SP)->su_flags;	\
701	LFS_BWRITE_LOG(BP);						\
702} while (0)
703
704/*
705 * FINFO (file info) entries.
706 */
707
708/* Size of an on-disk block pointer, e.g. in an indirect block. */
709/* XXX: move to a more suitable location in this file */
710#define LFS_BLKPTRSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
711
712/* Size of an on-disk inode number. */
713/* XXX: move to a more suitable location in this file */
714#define LFS_INUMSIZE(fs) ((fs)->lfs_is64 ? sizeof(int64_t) : sizeof(int32_t))
715
716/* size of a FINFO, without the block pointers */
717#define	FINFOSIZE(fs)	((fs)->lfs_is64 ? sizeof(FINFO64) : sizeof(FINFO32))
718
719/* Full size of the provided FINFO record, including its block pointers. */
720#define FINFO_FULLSIZE(fs, fip) \
721	(FINFOSIZE(fs) + lfs_fi_getnblocks(fs, fip) * LFS_BLKPTRSIZE(fs))
722
723#define NEXT_FINFO(fs, fip) \
724	((FINFO *)((char *)(fip) + FINFO_FULLSIZE(fs, fip)))
725
726#define LFS_DEF_FI_ACCESSOR(type, type32, field) \
727	static __inline type				\
728	lfs_fi_get##field(STRUCT_LFS *fs, FINFO *fip)		\
729	{							\
730		if (fs->lfs_is64) {				\
731			return fip->u_64.fi_##field; 		\
732		} else {					\
733			return fip->u_32.fi_##field; 		\
734		}						\
735	}							\
736	static __inline void				\
737	lfs_fi_set##field(STRUCT_LFS *fs, FINFO *fip, type val) \
738	{							\
739		if (fs->lfs_is64) {				\
740			type *p = &fip->u_64.fi_##field;	\
741			(void)p;				\
742			fip->u_64.fi_##field = val;		\
743		} else {					\
744			type32 *p = &fip->u_32.fi_##field;	\
745			(void)p;				\
746			fip->u_32.fi_##field = val;		\
747		}						\
748	}							\
749
750LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, nblocks)
751LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, version)
752LFS_DEF_FI_ACCESSOR(uint64_t, uint32_t, ino)
753LFS_DEF_FI_ACCESSOR(uint32_t, uint32_t, lastlength)
754
755static __inline daddr_t
756lfs_fi_getblock(STRUCT_LFS *fs, FINFO *fip, unsigned idx)
757{
758	void *firstblock;
759
760	firstblock = (char *)fip + FINFOSIZE(fs);
761	KASSERT(idx < lfs_fi_getnblocks(fs, fip));
762	if (fs->lfs_is64) {
763		return ((int64_t *)firstblock)[idx];
764	} else {
765		return ((int32_t *)firstblock)[idx];
766	}
767}
768
769static __inline void
770lfs_fi_setblock(STRUCT_LFS *fs, FINFO *fip, unsigned idx, daddr_t blk)
771{
772	void *firstblock;
773
774	firstblock = (char *)fip + FINFOSIZE(fs);
775	KASSERT(idx < lfs_fi_getnblocks(fs, fip));
776	if (fs->lfs_is64) {
777		((int64_t *)firstblock)[idx] = blk;
778	} else {
779		((int32_t *)firstblock)[idx] = blk;
780	}
781}
782
783/*
784 * inode info entries (in the segment summary)
785 */
786
787#define IINFOSIZE(fs)	((fs)->lfs_is64 ? sizeof(IINFO64) : sizeof(IINFO32))
788
789/* iinfos scroll backward from the end of the segment summary block */
790#define SEGSUM_IINFOSTART(fs, buf) \
791	((IINFO *)((char *)buf + lfs_sb_getsumsize(fs) - IINFOSIZE(fs)))
792
793#define NEXTLOWER_IINFO(fs, iip) \
794	((IINFO *)((char *)(iip) - IINFOSIZE(fs)))
795
796#define NTH_IINFO(fs, buf, n) \
797	((IINFO *)((char *)SEGSUM_IINFOSTART(fs, buf) - (n)*IINFOSIZE(fs)))
798
799static __inline uint64_t
800lfs_ii_getblock(STRUCT_LFS *fs, IINFO *iip)
801{
802	if (fs->lfs_is64) {
803		return iip->u_64.ii_block;
804	} else {
805		return iip->u_32.ii_block;
806	}
807}
808
809static __inline void
810lfs_ii_setblock(STRUCT_LFS *fs, IINFO *iip, uint64_t block)
811{
812	if (fs->lfs_is64) {
813		iip->u_64.ii_block = block;
814	} else {
815		iip->u_32.ii_block = block;
816	}
817}
818
819/*
820 * Index file inode entries.
821 */
822
823#define IFILE_ENTRYSIZE(fs) \
824	((fs)->lfs_is64 ? sizeof(IFILE64) : sizeof(IFILE32))
825
826/*
827 * LFSv1 compatibility code is not allowed to touch if_atime, since it
828 * may not be mapped!
829 */
830/* Read in the block with a specific inode from the ifile. */
831#define	LFS_IENTRY(IP, F, IN, BP) do {					\
832	int _e;								\
833	SHARE_IFLOCK(F);						\
834	VTOI((F)->lfs_ivnode)->i_state |= IN_ACCESS;			\
835	if ((_e = bread((F)->lfs_ivnode,				\
836	(IN) / lfs_sb_getifpb(F) + lfs_sb_getcleansz(F) + lfs_sb_getsegtabsz(F), \
837	lfs_sb_getbsize(F), 0, &(BP))) != 0)				\
838		panic("lfs: ifile ino %d read %d", (int)(IN), _e);	\
839	if ((F)->lfs_is64) {						\
840		(IP) = (IFILE *)((IFILE64 *)(BP)->b_data +		\
841				 (IN) % lfs_sb_getifpb(F));		\
842	} else if (lfs_sb_getversion(F) > 1) {				\
843		(IP) = (IFILE *)((IFILE32 *)(BP)->b_data +		\
844				(IN) % lfs_sb_getifpb(F)); 		\
845	} else {							\
846		(IP) = (IFILE *)((IFILE_V1 *)(BP)->b_data +		\
847				 (IN) % lfs_sb_getifpb(F));		\
848	}								\
849	UNSHARE_IFLOCK(F);						\
850} while (0)
851#define LFS_IENTRY_NEXT(IP, F) do { \
852	if ((F)->lfs_is64) {						\
853		(IP) = (IFILE *)((IFILE64 *)(IP) + 1);			\
854	} else if (lfs_sb_getversion(F) > 1) {				\
855		(IP) = (IFILE *)((IFILE32 *)(IP) + 1);			\
856	} else {							\
857		(IP) = (IFILE *)((IFILE_V1 *)(IP) + 1);			\
858	}								\
859} while (0)
860
861#define LFS_DEF_IF_ACCESSOR(type, type32, field) \
862	static __inline type				\
863	lfs_if_get##field(STRUCT_LFS *fs, IFILE *ifp)		\
864	{							\
865		if (fs->lfs_is64) {				\
866			return ifp->u_64.if_##field; 		\
867		} else {					\
868			return ifp->u_32.if_##field; 		\
869		}						\
870	}							\
871	static __inline void				\
872	lfs_if_set##field(STRUCT_LFS *fs, IFILE *ifp, type val) \
873	{							\
874		if (fs->lfs_is64) {				\
875			type *p = &ifp->u_64.if_##field;	\
876			(void)p;				\
877			ifp->u_64.if_##field = val;		\
878		} else {					\
879			type32 *p = &ifp->u_32.if_##field;	\
880			(void)p;				\
881			ifp->u_32.if_##field = val;		\
882		}						\
883	}							\
884
885LFS_DEF_IF_ACCESSOR(uint32_t, uint32_t, version)
886LFS_DEF_IF_ACCESSOR(int64_t, int32_t, daddr)
887LFS_DEF_IF_ACCESSOR(uint64_t, uint32_t, nextfree)
888LFS_DEF_IF_ACCESSOR(uint64_t, uint32_t, atime_sec)
889LFS_DEF_IF_ACCESSOR(uint32_t, uint32_t, atime_nsec)
890
891/*
892 * Cleaner information structure.  This resides in the ifile and is used
893 * to pass information from the kernel to the cleaner.
894 */
895
896#define	CLEANSIZE_SU(fs)						\
897	((((fs)->lfs_is64 ? sizeof(CLEANERINFO64) : sizeof(CLEANERINFO32)) + \
898		lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs))
899
900#define LFS_DEF_CI_ACCESSOR(type, type32, field) \
901	static __inline type				\
902	lfs_ci_get##field(STRUCT_LFS *fs, CLEANERINFO *cip)	\
903	{							\
904		if (fs->lfs_is64) {				\
905			return cip->u_64.field; 		\
906		} else {					\
907			return cip->u_32.field; 		\
908		}						\
909	}							\
910	static __inline void				\
911	lfs_ci_set##field(STRUCT_LFS *fs, CLEANERINFO *cip, type val) \
912	{							\
913		if (fs->lfs_is64) {				\
914			type *p = &cip->u_64.field;		\
915			(void)p;				\
916			cip->u_64.field = val;			\
917		} else {					\
918			type32 *p = &cip->u_32.field;		\
919			(void)p;				\
920			cip->u_32.field = val;			\
921		}						\
922	}							\
923
924LFS_DEF_CI_ACCESSOR(uint32_t, uint32_t, clean)
925LFS_DEF_CI_ACCESSOR(uint32_t, uint32_t, dirty)
926LFS_DEF_CI_ACCESSOR(int64_t, int32_t, bfree)
927LFS_DEF_CI_ACCESSOR(int64_t, int32_t, avail)
928LFS_DEF_CI_ACCESSOR(uint64_t, uint32_t, free_head)
929LFS_DEF_CI_ACCESSOR(uint64_t, uint32_t, free_tail)
930LFS_DEF_CI_ACCESSOR(uint32_t, uint32_t, flags)
931
932static __inline void
933lfs_ci_shiftcleantodirty(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
934{
935	lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) - num);
936	lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) + num);
937}
938
939static __inline void
940lfs_ci_shiftdirtytoclean(STRUCT_LFS *fs, CLEANERINFO *cip, unsigned num)
941{
942	lfs_ci_setdirty(fs, cip, lfs_ci_getdirty(fs, cip) - num);
943	lfs_ci_setclean(fs, cip, lfs_ci_getclean(fs, cip) + num);
944}
945
946/* Read in the block with the cleaner info from the ifile. */
947#define LFS_CLEANERINFO(CP, F, BP) do {					\
948	int _e;								\
949	SHARE_IFLOCK(F);						\
950	VTOI((F)->lfs_ivnode)->i_state |= IN_ACCESS;			\
951	_e = bread((F)->lfs_ivnode,					\
952	    (daddr_t)0, lfs_sb_getbsize(F), 0, &(BP));			\
953	if (_e)								\
954		panic("lfs: ifile read: cleanerinfo: error %d\n", _e);	\
955	(CP) = (CLEANERINFO *)(BP)->b_data;				\
956	UNSHARE_IFLOCK(F);						\
957} while (0)
958
959/*
960 * Synchronize the Ifile cleaner info with current avail and bfree.
961 */
962#define LFS_SYNC_CLEANERINFO(cip, fs, bp, w) do {		 	\
963    mutex_enter(&lfs_lock);						\
964    if ((w) || lfs_ci_getbfree(fs, cip) != lfs_sb_getbfree(fs) ||	\
965	lfs_ci_getavail(fs, cip) != lfs_sb_getavail(fs) - fs->lfs_ravail - \
966	fs->lfs_favail) {	 					\
967	lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs));		 	\
968	lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs) - fs->lfs_ravail -	\
969		fs->lfs_favail);				 	\
970	if (((bp)->b_flags & B_GATHERED) == 0) {		 	\
971		fs->lfs_flags |= LFS_IFDIRTY;				\
972	}								\
973	mutex_exit(&lfs_lock);						\
974	(void) LFS_BWRITE_LOG(bp); /* Ifile */			 	\
975    } else {							 	\
976	mutex_exit(&lfs_lock);						\
977	brelse(bp, 0);						 	\
978    }									\
979} while (0)
980
981/*
982 * Get the head of the inode free list.
983 * Always called with the segment lock held.
984 */
985#define LFS_GET_HEADFREE(FS, CIP, BP, FREEP) do {			\
986	if (lfs_sb_getversion(FS) > 1) {				\
987		LFS_CLEANERINFO((CIP), (FS), (BP));			\
988		lfs_sb_setfreehd(FS, lfs_ci_getfree_head(FS, CIP));	\
989		brelse(BP, 0);						\
990	}								\
991	*(FREEP) = lfs_sb_getfreehd(FS);				\
992} while (0)
993
994#define LFS_PUT_HEADFREE(FS, CIP, BP, VAL) do {				\
995	lfs_sb_setfreehd(FS, VAL);					\
996	if (lfs_sb_getversion(FS) > 1) {				\
997		LFS_CLEANERINFO((CIP), (FS), (BP));			\
998		lfs_ci_setfree_head(FS, CIP, VAL);			\
999		LFS_BWRITE_LOG(BP);					\
1000		mutex_enter(&lfs_lock);					\
1001		(FS)->lfs_flags |= LFS_IFDIRTY;				\
1002		mutex_exit(&lfs_lock);					\
1003	}								\
1004} while (0)
1005
1006#define LFS_GET_TAILFREE(FS, CIP, BP, FREEP) do {			\
1007	LFS_CLEANERINFO((CIP), (FS), (BP));				\
1008	*(FREEP) = lfs_ci_getfree_tail(FS, CIP);			\
1009	brelse(BP, 0);							\
1010} while (0)
1011
1012#define LFS_PUT_TAILFREE(FS, CIP, BP, VAL) do {				\
1013	LFS_CLEANERINFO((CIP), (FS), (BP));				\
1014	lfs_ci_setfree_tail(FS, CIP, VAL);				\
1015	LFS_BWRITE_LOG(BP);						\
1016	mutex_enter(&lfs_lock);						\
1017	(FS)->lfs_flags |= LFS_IFDIRTY;					\
1018	mutex_exit(&lfs_lock);						\
1019} while (0)
1020
1021/*
1022 * On-disk segment summary information
1023 */
1024
1025#define SEGSUM_SIZE(fs) \
1026	(fs->lfs_is64 ? sizeof(SEGSUM64) : \
1027	 lfs_sb_getversion(fs) > 1 ? sizeof(SEGSUM32) : sizeof(SEGSUM_V1))
1028
1029/*
1030 * The SEGSUM structure is followed by FINFO structures. Get the pointer
1031 * to the first FINFO.
1032 *
1033 * XXX this can't be a macro yet; this file needs to be resorted.
1034 */
1035#if 0
1036static __inline FINFO *
1037segsum_finfobase(STRUCT_LFS *fs, SEGSUM *ssp)
1038{
1039	return (FINFO *)((char *)ssp + SEGSUM_SIZE(fs));
1040}
1041#else
1042#define SEGSUM_FINFOBASE(fs, ssp) \
1043	((FINFO *)((char *)(ssp) + SEGSUM_SIZE(fs)));
1044#endif
1045
1046#define LFS_DEF_SS_ACCESSOR(type, type32, field) \
1047	static __inline type				\
1048	lfs_ss_get##field(STRUCT_LFS *fs, SEGSUM *ssp)		\
1049	{							\
1050		if (fs->lfs_is64) {				\
1051			return ssp->u_64.ss_##field; 		\
1052		} else {					\
1053			return ssp->u_32.ss_##field; 		\
1054		}						\
1055	}							\
1056	static __inline void				\
1057	lfs_ss_set##field(STRUCT_LFS *fs, SEGSUM *ssp, type val) \
1058	{							\
1059		if (fs->lfs_is64) {				\
1060			type *p = &ssp->u_64.ss_##field;	\
1061			(void)p;				\
1062			ssp->u_64.ss_##field = val;		\
1063		} else {					\
1064			type32 *p = &ssp->u_32.ss_##field;	\
1065			(void)p;				\
1066			ssp->u_32.ss_##field = val;		\
1067		}						\
1068	}							\
1069
1070LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, sumsum)
1071LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, datasum)
1072LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, magic)
1073LFS_DEF_SS_ACCESSOR(uint32_t, uint32_t, ident)
1074LFS_DEF_SS_ACCESSOR(int64_t, int32_t, next)
1075LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, nfinfo)
1076LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, ninos)
1077LFS_DEF_SS_ACCESSOR(uint16_t, uint16_t, flags)
1078LFS_DEF_SS_ACCESSOR(uint64_t, uint32_t, reclino)
1079LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, serial)
1080LFS_DEF_SS_ACCESSOR(uint64_t, uint64_t, create)
1081
1082static __inline size_t
1083lfs_ss_getsumstart(STRUCT_LFS *fs)
1084{
1085	/* These are actually all the same. */
1086	if (fs->lfs_is64) {
1087		return offsetof(SEGSUM64, ss_datasum);
1088	} else /* if (lfs_sb_getversion(fs) > 1) */ {
1089		return offsetof(SEGSUM32, ss_datasum);
1090	} /* else {
1091		return offsetof(SEGSUM_V1, ss_datasum);
1092	} */
1093	/*
1094	 * XXX ^^^ until this file is resorted lfs_sb_getversion isn't
1095	 * defined yet.
1096	 */
1097}
1098
1099static __inline uint32_t
1100lfs_ss_getocreate(STRUCT_LFS *fs, SEGSUM *ssp)
1101{
1102	KASSERT(fs->lfs_is64 == 0);
1103	/* XXX need to resort this file before we can do this */
1104	//KASSERT(lfs_sb_getversion(fs) == 1);
1105
1106	return ssp->u_v1.ss_create;
1107}
1108
1109static __inline void
1110lfs_ss_setocreate(STRUCT_LFS *fs, SEGSUM *ssp, uint32_t val)
1111{
1112	KASSERT(fs->lfs_is64 == 0);
1113	/* XXX need to resort this file before we can do this */
1114	//KASSERT(lfs_sb_getversion(fs) == 1);
1115
1116	ssp->u_v1.ss_create = val;
1117}
1118
1119
1120/*
1121 * Super block.
1122 */
1123
1124/*
1125 * Generate accessors for the on-disk superblock fields with cpp.
1126 */
1127
1128#define LFS_DEF_SB_ACCESSOR_FULL(type, type32, field) \
1129	static __inline type				\
1130	lfs_sb_get##field(STRUCT_LFS *fs)			\
1131	{							\
1132		if (fs->lfs_is64) {				\
1133			return fs->lfs_dlfs_u.u_64.dlfs_##field; \
1134		} else {					\
1135			return fs->lfs_dlfs_u.u_32.dlfs_##field; \
1136		}						\
1137	}							\
1138	static __inline void				\
1139	lfs_sb_set##field(STRUCT_LFS *fs, type val)		\
1140	{							\
1141		if (fs->lfs_is64) {				\
1142			fs->lfs_dlfs_u.u_64.dlfs_##field = val;	\
1143		} else {					\
1144			fs->lfs_dlfs_u.u_32.dlfs_##field = val;	\
1145		}						\
1146	}							\
1147	static __inline void				\
1148	lfs_sb_add##field(STRUCT_LFS *fs, type val)		\
1149	{							\
1150		if (fs->lfs_is64) {				\
1151			type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
1152			*p64 += val;				\
1153		} else {					\
1154			type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
1155			*p32 += val;				\
1156		}						\
1157	}							\
1158	static __inline void				\
1159	lfs_sb_sub##field(STRUCT_LFS *fs, type val)		\
1160	{							\
1161		if (fs->lfs_is64) {				\
1162			type *p64 = &fs->lfs_dlfs_u.u_64.dlfs_##field; \
1163			*p64 -= val;				\
1164		} else {					\
1165			type32 *p32 = &fs->lfs_dlfs_u.u_32.dlfs_##field; \
1166			*p32 -= val;				\
1167		}						\
1168	}
1169
1170#define LFS_DEF_SB_ACCESSOR(t, f) LFS_DEF_SB_ACCESSOR_FULL(t, t, f)
1171
1172#define LFS_DEF_SB_ACCESSOR_32ONLY(type, field, val64) \
1173	static __inline type				\
1174	lfs_sb_get##field(STRUCT_LFS *fs)			\
1175	{							\
1176		if (fs->lfs_is64) {				\
1177			return val64;				\
1178		} else {					\
1179			return fs->lfs_dlfs_u.u_32.dlfs_##field; \
1180		}						\
1181	}
1182
1183LFS_DEF_SB_ACCESSOR(uint32_t, version)
1184LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, size)
1185LFS_DEF_SB_ACCESSOR(uint32_t, ssize)
1186LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, dsize)
1187LFS_DEF_SB_ACCESSOR(uint32_t, bsize)
1188LFS_DEF_SB_ACCESSOR(uint32_t, fsize)
1189LFS_DEF_SB_ACCESSOR(uint32_t, frag)
1190LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, freehd)
1191LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, bfree)
1192LFS_DEF_SB_ACCESSOR_FULL(uint64_t, uint32_t, nfiles)
1193LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, avail)
1194LFS_DEF_SB_ACCESSOR(int32_t, uinodes)
1195LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, idaddr)
1196LFS_DEF_SB_ACCESSOR_32ONLY(uint32_t, ifile, LFS_IFILE_INUM)
1197LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastseg)
1198LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, nextseg)
1199LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, curseg)
1200LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, offset)
1201LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, lastpseg)
1202LFS_DEF_SB_ACCESSOR(uint32_t, inopf)
1203LFS_DEF_SB_ACCESSOR(uint32_t, minfree)
1204LFS_DEF_SB_ACCESSOR(uint64_t, maxfilesize)
1205LFS_DEF_SB_ACCESSOR(uint32_t, fsbpseg)
1206LFS_DEF_SB_ACCESSOR(uint32_t, inopb)
1207LFS_DEF_SB_ACCESSOR(uint32_t, ifpb)
1208LFS_DEF_SB_ACCESSOR(uint32_t, sepb)
1209LFS_DEF_SB_ACCESSOR(uint32_t, nindir)
1210LFS_DEF_SB_ACCESSOR(uint32_t, nseg)
1211LFS_DEF_SB_ACCESSOR(uint32_t, nspf)
1212LFS_DEF_SB_ACCESSOR(uint32_t, cleansz)
1213LFS_DEF_SB_ACCESSOR(uint32_t, segtabsz)
1214LFS_DEF_SB_ACCESSOR_32ONLY(uint32_t, segmask, 0)
1215LFS_DEF_SB_ACCESSOR_32ONLY(uint32_t, segshift, 0)
1216LFS_DEF_SB_ACCESSOR(uint64_t, bmask)
1217LFS_DEF_SB_ACCESSOR(uint32_t, bshift)
1218LFS_DEF_SB_ACCESSOR(uint64_t, ffmask)
1219LFS_DEF_SB_ACCESSOR(uint32_t, ffshift)
1220LFS_DEF_SB_ACCESSOR(uint64_t, fbmask)
1221LFS_DEF_SB_ACCESSOR(uint32_t, fbshift)
1222LFS_DEF_SB_ACCESSOR(uint32_t, blktodb)
1223LFS_DEF_SB_ACCESSOR(uint32_t, fsbtodb)
1224LFS_DEF_SB_ACCESSOR(uint32_t, sushift)
1225LFS_DEF_SB_ACCESSOR(int32_t, maxsymlinklen)
1226LFS_DEF_SB_ACCESSOR(uint32_t, cksum)
1227LFS_DEF_SB_ACCESSOR(uint16_t, pflags)
1228LFS_DEF_SB_ACCESSOR(uint32_t, nclean)
1229LFS_DEF_SB_ACCESSOR(int32_t, dmeta)
1230LFS_DEF_SB_ACCESSOR(uint32_t, minfreeseg)
1231LFS_DEF_SB_ACCESSOR(uint32_t, sumsize)
1232LFS_DEF_SB_ACCESSOR(uint64_t, serial)
1233LFS_DEF_SB_ACCESSOR(uint32_t, ibsize)
1234LFS_DEF_SB_ACCESSOR_FULL(int64_t, int32_t, s0addr)
1235LFS_DEF_SB_ACCESSOR(uint64_t, tstamp)
1236LFS_DEF_SB_ACCESSOR(uint32_t, inodefmt)
1237LFS_DEF_SB_ACCESSOR(uint32_t, interleave)
1238LFS_DEF_SB_ACCESSOR(uint32_t, ident)
1239LFS_DEF_SB_ACCESSOR(uint32_t, resvseg)
1240
1241/* special-case accessors */
1242
1243/*
1244 * the v1 otstamp field lives in what's now dlfs_inopf
1245 */
1246#define lfs_sb_getotstamp(fs) lfs_sb_getinopf(fs)
1247#define lfs_sb_setotstamp(fs, val) lfs_sb_setinopf(fs, val)
1248
1249/*
1250 * lfs_sboffs is an array
1251 */
1252static __inline int32_t
1253lfs_sb_getsboff(STRUCT_LFS *fs, unsigned n)
1254{
1255#ifdef KASSERT /* ugh */
1256	KASSERT(n < LFS_MAXNUMSB);
1257#endif
1258	if (fs->lfs_is64) {
1259		return fs->lfs_dlfs_u.u_64.dlfs_sboffs[n];
1260	} else {
1261		return fs->lfs_dlfs_u.u_32.dlfs_sboffs[n];
1262	}
1263}
1264static __inline void
1265lfs_sb_setsboff(STRUCT_LFS *fs, unsigned n, int32_t val)
1266{
1267#ifdef KASSERT /* ugh */
1268	KASSERT(n < LFS_MAXNUMSB);
1269#endif
1270	if (fs->lfs_is64) {
1271		fs->lfs_dlfs_u.u_64.dlfs_sboffs[n] = val;
1272	} else {
1273		fs->lfs_dlfs_u.u_32.dlfs_sboffs[n] = val;
1274	}
1275}
1276
1277/*
1278 * lfs_fsmnt is a string
1279 */
1280static __inline const char *
1281lfs_sb_getfsmnt(STRUCT_LFS *fs)
1282{
1283	if (fs->lfs_is64) {
1284		return (const char *)fs->lfs_dlfs_u.u_64.dlfs_fsmnt;
1285	} else {
1286		return (const char *)fs->lfs_dlfs_u.u_32.dlfs_fsmnt;
1287	}
1288}
1289
1290static __inline void
1291lfs_sb_setfsmnt(STRUCT_LFS *fs, const char *str)
1292{
1293	if (fs->lfs_is64) {
1294		(void)strncpy((char *)fs->lfs_dlfs_u.u_64.dlfs_fsmnt, str,
1295			sizeof(fs->lfs_dlfs_u.u_64.dlfs_fsmnt));
1296	} else {
1297		(void)strncpy((char *)fs->lfs_dlfs_u.u_32.dlfs_fsmnt, str,
1298			sizeof(fs->lfs_dlfs_u.u_32.dlfs_fsmnt));
1299	}
1300}
1301
1302/* Highest addressable fsb */
1303#define LFS_MAX_DADDR(fs) \
1304	((fs)->lfs_is64 ? 0x7fffffffffffffff : 0x7fffffff)
1305
1306/* LFS_NINDIR is the number of indirects in a file system block. */
1307#define	LFS_NINDIR(fs)	(lfs_sb_getnindir(fs))
1308
1309/* LFS_INOPB is the number of inodes in a secondary storage block. */
1310#define	LFS_INOPB(fs)	(lfs_sb_getinopb(fs))
1311/* LFS_INOPF is the number of inodes in a fragment. */
1312#define LFS_INOPF(fs)	(lfs_sb_getinopf(fs))
1313
1314#define	lfs_blkoff(fs, loc)	((int)((loc) & lfs_sb_getbmask(fs)))
1315#define lfs_fragoff(fs, loc)    /* calculates (loc % fs->lfs_fsize) */ \
1316    ((int)((loc) & lfs_sb_getffmask(fs)))
1317
1318/* XXX: lowercase these as they're no longer macros */
1319/* Frags to diskblocks */
1320static __inline uint64_t
1321LFS_FSBTODB(STRUCT_LFS *fs, uint64_t b)
1322{
1323#if defined(_KERNEL)
1324	return b << (lfs_sb_getffshift(fs) - DEV_BSHIFT);
1325#else
1326	return b << lfs_sb_getfsbtodb(fs);
1327#endif
1328}
1329/* Diskblocks to frags */
1330static __inline uint64_t
1331LFS_DBTOFSB(STRUCT_LFS *fs, uint64_t b)
1332{
1333#if defined(_KERNEL)
1334	return b >> (lfs_sb_getffshift(fs) - DEV_BSHIFT);
1335#else
1336	return b >> lfs_sb_getfsbtodb(fs);
1337#endif
1338}
1339
1340#define	lfs_lblkno(fs, loc)	((loc) >> lfs_sb_getbshift(fs))
1341#define	lfs_lblktosize(fs, blk)	((blk) << lfs_sb_getbshift(fs))
1342
1343/* Frags to bytes */
1344static __inline uint64_t
1345lfs_fsbtob(STRUCT_LFS *fs, uint64_t b)
1346{
1347	return b << lfs_sb_getffshift(fs);
1348}
1349/* Bytes to frags */
1350static __inline uint64_t
1351lfs_btofsb(STRUCT_LFS *fs, uint64_t b)
1352{
1353	return b >> lfs_sb_getffshift(fs);
1354}
1355
1356#define lfs_numfrags(fs, loc)	/* calculates (loc / fs->lfs_fsize) */	\
1357	((loc) >> lfs_sb_getffshift(fs))
1358#define lfs_blkroundup(fs, size)/* calculates roundup(size, lfs_sb_getbsize(fs)) */ \
1359	((off_t)(((size) + lfs_sb_getbmask(fs)) & (~lfs_sb_getbmask(fs))))
1360#define lfs_fragroundup(fs, size)/* calculates roundup(size, fs->lfs_fsize) */ \
1361	((off_t)(((size) + lfs_sb_getffmask(fs)) & (~lfs_sb_getffmask(fs))))
1362#define lfs_fragstoblks(fs, frags)/* calculates (frags / fs->fs_frag) */ \
1363	((frags) >> lfs_sb_getfbshift(fs))
1364#define lfs_blkstofrags(fs, blks)/* calculates (blks * fs->fs_frag) */ \
1365	((blks) << lfs_sb_getfbshift(fs))
1366#define lfs_fragnum(fs, fsb)	/* calculates (fsb % fs->lfs_frag) */	\
1367	((fsb) & ((fs)->lfs_frag - 1))
1368#define lfs_blknum(fs, fsb)	/* calculates rounddown(fsb, fs->lfs_frag) */ \
1369	((fsb) &~ ((fs)->lfs_frag - 1))
1370#define lfs_dblksize(fs, dp, lbn) \
1371	(((lbn) >= ULFS_NDADDR || lfs_dino_getsize(fs, dp) >= ((lbn) + 1) << lfs_sb_getbshift(fs)) \
1372	    ? lfs_sb_getbsize(fs) \
1373	    : (lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, dp)))))
1374
1375#define	lfs_segsize(fs)	(lfs_sb_getversion(fs) == 1 ?	     		\
1376			   lfs_lblktosize((fs), lfs_sb_getssize(fs)) :	\
1377			   lfs_sb_getssize(fs))
1378/* XXX segtod produces a result in frags despite the 'd' */
1379#define lfs_segtod(fs, seg) (lfs_btofsb(fs, lfs_segsize(fs)) * (seg))
1380#define	lfs_dtosn(fs, daddr)	/* block address to segment number */	\
1381	((uint32_t)(((daddr) - lfs_sb_gets0addr(fs)) / lfs_segtod((fs), 1)))
1382#define lfs_sntod(fs, sn)	/* segment number to disk address */	\
1383	((daddr_t)(lfs_segtod((fs), (sn)) + lfs_sb_gets0addr(fs)))
1384
1385/* XXX, blah. make this appear only if struct inode is defined */
1386#ifdef _UFS_LFS_LFS_INODE_H_
1387static __inline uint32_t
1388lfs_blksize(STRUCT_LFS *fs, struct inode *ip, uint64_t lbn)
1389{
1390	if (lbn >= ULFS_NDADDR || lfs_dino_getsize(fs, ip->i_din) >= (lbn + 1) << lfs_sb_getbshift(fs)) {
1391		return lfs_sb_getbsize(fs);
1392	} else {
1393		return lfs_fragroundup(fs, lfs_blkoff(fs, lfs_dino_getsize(fs, ip->i_din)));
1394	}
1395}
1396#endif
1397
1398/*
1399 * union lfs_blocks
1400 */
1401
1402static __inline void
1403lfs_blocks_fromvoid(STRUCT_LFS *fs, union lfs_blocks *bp, void *p)
1404{
1405	if (fs->lfs_is64) {
1406		bp->b64 = p;
1407	} else {
1408		bp->b32 = p;
1409	}
1410}
1411
1412static __inline void
1413lfs_blocks_fromfinfo(STRUCT_LFS *fs, union lfs_blocks *bp, FINFO *fip)
1414{
1415	void *firstblock;
1416
1417	firstblock = (char *)fip + FINFOSIZE(fs);
1418	if (fs->lfs_is64) {
1419		bp->b64 = (int64_t *)firstblock;
1420	}  else {
1421		bp->b32 = (int32_t *)firstblock;
1422	}
1423}
1424
1425static __inline daddr_t
1426lfs_blocks_get(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned idx)
1427{
1428	if (fs->lfs_is64) {
1429		return bp->b64[idx];
1430	} else {
1431		return bp->b32[idx];
1432	}
1433}
1434
1435static __inline void
1436lfs_blocks_set(STRUCT_LFS *fs, union lfs_blocks *bp, unsigned idx, daddr_t val)
1437{
1438	if (fs->lfs_is64) {
1439		bp->b64[idx] = val;
1440	} else {
1441		bp->b32[idx] = val;
1442	}
1443}
1444
1445static __inline void
1446lfs_blocks_inc(STRUCT_LFS *fs, union lfs_blocks *bp)
1447{
1448	if (fs->lfs_is64) {
1449		bp->b64++;
1450	} else {
1451		bp->b32++;
1452	}
1453}
1454
1455static __inline int
1456lfs_blocks_eq(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1457{
1458	if (fs->lfs_is64) {
1459		return bp1->b64 == bp2->b64;
1460	} else {
1461		return bp1->b32 == bp2->b32;
1462	}
1463}
1464
1465static __inline int
1466lfs_blocks_sub(STRUCT_LFS *fs, union lfs_blocks *bp1, union lfs_blocks *bp2)
1467{
1468	/* (remember that the pointers are typed) */
1469	if (fs->lfs_is64) {
1470		return bp1->b64 - bp2->b64;
1471	} else {
1472		return bp1->b32 - bp2->b32;
1473	}
1474}
1475
1476/*
1477 * struct segment
1478 */
1479
1480
1481/*
1482 * Macros for determining free space on the disk, with the variable metadata
1483 * of segment summaries and inode blocks taken into account.
1484 */
1485/*
1486 * Estimate number of clean blocks not available for writing because
1487 * they will contain metadata or overhead.  This is calculated as
1488 *
1489 *		E = ((C * M / D) * D + (0) * (T - D)) / T
1490 * or more simply
1491 *		E = (C * M) / T
1492 *
1493 * where
1494 * C is the clean space,
1495 * D is the dirty space,
1496 * M is the dirty metadata, and
1497 * T = C + D is the total space on disk.
1498 *
1499 * This approximates the old formula of E = C * M / D when D is close to T,
1500 * but avoids falsely reporting "disk full" when the sample size (D) is small.
1501 */
1502#define LFS_EST_CMETA(F) ((						\
1503	(lfs_sb_getdmeta(F) * (int64_t)lfs_sb_getnclean(F)) / 		\
1504	(lfs_sb_getnseg(F))))
1505
1506/* Estimate total size of the disk not including metadata */
1507#define LFS_EST_NONMETA(F) (lfs_sb_getdsize(F) - lfs_sb_getdmeta(F) - LFS_EST_CMETA(F))
1508
1509/* Estimate number of blocks actually available for writing */
1510#define LFS_EST_BFREE(F) (lfs_sb_getbfree(F) > LFS_EST_CMETA(F) ?	     \
1511			  lfs_sb_getbfree(F) - LFS_EST_CMETA(F) : 0)
1512
1513/* Amount of non-meta space not available to mortal man */
1514#define LFS_EST_RSVD(F) ((LFS_EST_NONMETA(F) *			     \
1515				   (uint64_t)lfs_sb_getminfree(F)) /	     \
1516				  100)
1517
1518/* Can credential C write BB blocks? XXX: kauth_cred_geteuid is abusive */
1519#define ISSPACE(F, BB, C)						\
1520	((((C) == NOCRED || kauth_cred_geteuid(C) == 0) &&		\
1521	  LFS_EST_BFREE(F) >= (BB)) ||					\
1522	 (kauth_cred_geteuid(C) != 0 && IS_FREESPACE(F, BB)))
1523
1524/* Can an ordinary user write BB blocks */
1525#define IS_FREESPACE(F, BB)						\
1526	  (LFS_EST_BFREE(F) >= (BB) + LFS_EST_RSVD(F))
1527
1528/*
1529 * The minimum number of blocks to create a new inode.  This is:
1530 * directory direct block (1) + ULFS_NIADDR indirect blocks + inode block (1) +
1531 * ifile direct block (1) + ULFS_NIADDR indirect blocks = 3 + 2 * ULFS_NIADDR blocks.
1532 */
1533#define LFS_NRESERVE(F) (lfs_btofsb((F), (2 * ULFS_NIADDR + 3) << lfs_sb_getbshift(F)))
1534
1535
1536/*
1537 * Suppress spurious clang warnings
1538 */
1539#ifdef __GNUC__
1540#if defined(__clang__)
1541#pragma clang diagnostic pop
1542#elif __GNUC_PREREQ__(9,0)
1543#pragma GCC diagnostic pop
1544#endif
1545#endif
1546
1547
1548#endif /* _UFS_LFS_LFS_ACCESSORS_H_ */
1549