1/*	$NetBSD: chfs_malloc.c,v 1.7 2021/12/07 21:37:37 andvar Exp $	*/
2
3/*-
4 * Copyright (c) 2010 Department of Software Engineering,
5 *		      University of Szeged, Hungary
6 * Copyright (C) 2010 Tamas Toth <ttoth@inf.u-szeged.hu>
7 * Copyright (C) 2010 Adam Hoka <ahoka@NetBSD.org>
8 * All rights reserved.
9 *
10 * This code is derived from software contributed to The NetBSD Foundation
11 * by the Department of Software Engineering, University of Szeged, Hungary
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35#include "chfs.h"
36#include <sys/pool.h>
37
38pool_cache_t chfs_vnode_cache;
39pool_cache_t chfs_nrefs_cache;
40pool_cache_t chfs_flash_vnode_cache;
41pool_cache_t chfs_flash_dirent_cache;
42pool_cache_t chfs_flash_dnode_cache;
43pool_cache_t chfs_node_frag_cache;
44pool_cache_t chfs_tmp_dnode_cache;
45pool_cache_t chfs_tmp_dnode_info_cache;
46
47/* chfs_alloc_pool_caches - allocating pool caches */
48int
49chfs_alloc_pool_caches(void)
50{
51	chfs_vnode_cache = pool_cache_init(
52		sizeof(struct chfs_vnode_cache),
53		0, 0, 0, "chfs_vnode_cache", NULL, IPL_NONE, NULL, NULL,
54		NULL);
55	if (!chfs_vnode_cache)
56		goto err_vnode;
57
58	chfs_nrefs_cache = pool_cache_init(
59		(REFS_BLOCK_LEN + 1) * sizeof(struct chfs_node_ref), 0, 0,
60		0, "chfs_nrefs_pool", NULL, IPL_NONE, NULL, NULL, NULL);
61	if (!chfs_nrefs_cache)
62		goto err_nrefs;
63
64	chfs_flash_vnode_cache = pool_cache_init(
65		sizeof(struct chfs_flash_vnode), 0, 0, 0,
66		"chfs_flash_vnode_pool", NULL, IPL_NONE, NULL, NULL, NULL);
67	if (!chfs_flash_vnode_cache)
68		goto err_flash_vnode;
69
70	chfs_flash_dirent_cache = pool_cache_init(
71		sizeof(struct chfs_flash_dirent_node), 0, 0, 0,
72		"chfs_flash_dirent_pool", NULL, IPL_NONE, NULL, NULL, NULL);
73	if (!chfs_flash_dirent_cache)
74		goto err_flash_dirent;
75
76	chfs_flash_dnode_cache = pool_cache_init(
77		sizeof(struct chfs_flash_data_node), 0, 0, 0,
78		"chfs_flash_dnode_pool", NULL, IPL_NONE, NULL, NULL, NULL);
79	if (!chfs_flash_dnode_cache)
80		goto err_flash_dnode;
81
82	chfs_node_frag_cache = pool_cache_init(
83		sizeof(struct chfs_node_frag), 0, 0, 0,
84		"chfs_node_frag_pool", NULL, IPL_NONE, NULL, NULL, NULL);
85	if (!chfs_node_frag_cache)
86		goto err_node_frag;
87
88	chfs_tmp_dnode_cache = pool_cache_init(
89		sizeof(struct chfs_tmp_dnode), 0, 0, 0,
90		"chfs_tmp_dnode_pool", NULL, IPL_NONE, NULL, NULL, NULL);
91	if (!chfs_tmp_dnode_cache)
92		goto err_tmp_dnode;
93
94	chfs_tmp_dnode_info_cache = pool_cache_init(
95		sizeof(struct chfs_tmp_dnode_info), 0, 0, 0,
96		"chfs_tmp_dnode_info_pool", NULL, IPL_NONE, NULL, NULL, NULL);
97	if (!chfs_tmp_dnode_info_cache)
98		goto err_tmp_dnode_info;
99
100	return 0;
101
102err_tmp_dnode_info:
103	pool_cache_destroy(chfs_tmp_dnode_cache);
104err_tmp_dnode:
105	pool_cache_destroy(chfs_node_frag_cache);
106err_node_frag:
107	pool_cache_destroy(chfs_flash_dnode_cache);
108err_flash_dnode:
109	pool_cache_destroy(chfs_flash_dirent_cache);
110err_flash_dirent:
111	pool_cache_destroy(chfs_flash_vnode_cache);
112err_flash_vnode:
113	pool_cache_destroy(chfs_nrefs_cache);
114err_nrefs:
115	pool_cache_destroy(chfs_vnode_cache);
116err_vnode:
117
118	return ENOMEM;
119}
120
121/* chfs_destroy_pool_caches - destroying pool caches */
122void
123chfs_destroy_pool_caches(void)
124{
125	if (chfs_vnode_cache)
126		pool_cache_destroy(chfs_vnode_cache);
127
128	if (chfs_nrefs_cache)
129		pool_cache_destroy(chfs_nrefs_cache);
130
131	if (chfs_flash_vnode_cache)
132		pool_cache_destroy(chfs_flash_vnode_cache);
133
134	if (chfs_flash_dirent_cache)
135		pool_cache_destroy(chfs_flash_dirent_cache);
136
137	if (chfs_flash_dnode_cache)
138		pool_cache_destroy(chfs_flash_dnode_cache);
139
140	if (chfs_node_frag_cache)
141		pool_cache_destroy(chfs_node_frag_cache);
142
143	if (chfs_tmp_dnode_cache)
144		pool_cache_destroy(chfs_tmp_dnode_cache);
145
146	if (chfs_tmp_dnode_info_cache)
147		pool_cache_destroy(chfs_tmp_dnode_info_cache);
148}
149
150/* chfs_vnode_cache_alloc - allocating and initializing a vnode cache */
151struct chfs_vnode_cache *
152chfs_vnode_cache_alloc(ino_t vno)
153{
154	struct chfs_vnode_cache* vc;
155	vc = pool_cache_get(chfs_vnode_cache, PR_WAITOK);
156
157	memset(vc, 0, sizeof(*vc));
158	vc->vno = vno;
159	/* vnode cache is the last element of all chain */
160	vc->v = (void *)vc;
161	vc->dirents = (void *)vc;
162	vc->dnode = (void *)vc;
163	TAILQ_INIT(&vc->scan_dirents);
164	vc->highest_version = 0;
165
166	return vc;
167}
168
169/* chfs_vnode_cache_free - freeing a vnode cache */
170void
171chfs_vnode_cache_free(struct chfs_vnode_cache *vc)
172{
173	pool_cache_put(chfs_vnode_cache, vc);
174}
175
176/*
177 * chfs_alloc_refblock - allocating a refblock
178 *
179 * Returns a pointer of the first element in the block.
180 *
181 * We are not allocating just one node ref, instead we allocating REFS_BLOCK_LEN
182 * number of node refs, the last element will be a pointer to the next block.
183 * We do this, because we need a chain of nodes which have been ordered by the
184 * physical address of them.
185 *
186 */
187struct chfs_node_ref*
188chfs_alloc_refblock(void)
189{
190	int i;
191	struct chfs_node_ref *nref;
192	nref = pool_cache_get(chfs_nrefs_cache, PR_WAITOK);
193
194	for (i = 0; i < REFS_BLOCK_LEN; i++) {
195		nref[i].nref_lnr = REF_EMPTY_NODE;
196		nref[i].nref_next = NULL;
197	}
198	i = REFS_BLOCK_LEN;
199	nref[i].nref_lnr = REF_LINK_TO_NEXT;
200	nref[i].nref_next = NULL;
201
202	return nref;
203}
204
205/* chfs_free_refblock - freeing a refblock */
206void
207chfs_free_refblock(struct chfs_node_ref *nref)
208{
209	pool_cache_put(chfs_nrefs_cache, nref);
210}
211
212/*
213 * chfs_alloc_node_ref - allocating a node ref from a refblock
214 *
215 * Allocating a node ref from a refblock, it there isn't any free element in the
216 * block, a new block will be allocated and be linked to the current block.
217 */
218struct chfs_node_ref*
219chfs_alloc_node_ref(struct chfs_eraseblock *cheb)
220{
221	struct chfs_node_ref *nref, *new, *old __diagused;
222	old = cheb->last_node;
223	nref = cheb->last_node;
224
225	if (!nref) {
226		/* There haven't been any nref allocated for this block yet */
227		nref = chfs_alloc_refblock();
228
229		cheb->first_node = nref;
230		cheb->last_node = nref;
231		nref->nref_lnr = cheb->lnr;
232		KASSERT(cheb->lnr == nref->nref_lnr);
233
234		return nref;
235	}
236
237	nref++;
238	if (nref->nref_lnr == REF_LINK_TO_NEXT) {
239		/* this was the last element, allocate a new block */
240		new = chfs_alloc_refblock();
241		nref->nref_next = new;
242		nref = new;
243	}
244
245	cheb->last_node = nref;
246	nref->nref_lnr = cheb->lnr;
247
248	KASSERT(old->nref_lnr == nref->nref_lnr &&
249	    nref->nref_lnr == cheb->lnr);
250
251	return nref;
252}
253
254/* chfs_free_node_refs - freeing an eraseblock's node refs */
255void
256chfs_free_node_refs(struct chfs_eraseblock *cheb)
257{
258	struct chfs_node_ref *nref, *block;
259
260	block = nref = cheb->first_node;
261
262	while (nref) {
263		if (nref->nref_lnr == REF_LINK_TO_NEXT) {
264			nref = nref->nref_next;
265			chfs_free_refblock(block);
266			block = nref;
267			continue;
268		}
269		nref++;
270	}
271}
272
273/* chfs_alloc_dirent - allocating a directory entry */
274struct chfs_dirent*
275chfs_alloc_dirent(int namesize)
276{
277	struct chfs_dirent *ret;
278	size_t size = sizeof(struct chfs_dirent) + namesize;
279
280	ret = kmem_alloc(size, KM_SLEEP);
281
282	return ret;
283}
284
285/* chfs_free_dirent - freeing a directory entry */
286void
287chfs_free_dirent(struct chfs_dirent *dirent)
288{
289	size_t size = sizeof(struct chfs_dirent) + dirent->nsize + 1;
290
291	kmem_free(dirent, size);
292}
293
294/* chfs_alloc_full_dnode - allocating a full data node */
295struct chfs_full_dnode*
296chfs_alloc_full_dnode(void)
297{
298	struct chfs_full_dnode *ret;
299	ret = kmem_alloc(sizeof(struct chfs_full_dnode), KM_SLEEP);
300	ret->nref = NULL;
301	ret->frags = 0;
302	return ret;
303}
304
305/* chfs_free_full_dnode - freeing a full data node */
306void
307chfs_free_full_dnode(struct chfs_full_dnode *fd)
308{
309	kmem_free(fd,(sizeof(struct chfs_full_dnode)));
310}
311
312/* chfs_alloc_flash_vnode - allocating vnode info (used on flash) */
313struct chfs_flash_vnode*
314chfs_alloc_flash_vnode(void)
315{
316	struct chfs_flash_vnode *ret;
317	ret = pool_cache_get(chfs_flash_vnode_cache, PR_WAITOK);
318	return ret;
319}
320
321/* chfs_free_flash_vnode - freeing vnode info */
322void
323chfs_free_flash_vnode(struct chfs_flash_vnode *fvnode)
324{
325	pool_cache_put(chfs_flash_vnode_cache, fvnode);
326}
327
328/* chfs_alloc_flash_dirent - allocating a directory entry (used on flash) */
329struct chfs_flash_dirent_node*
330chfs_alloc_flash_dirent(void)
331{
332	struct chfs_flash_dirent_node *ret;
333	ret = pool_cache_get(chfs_flash_dirent_cache, PR_WAITOK);
334	return ret;
335}
336
337/* chfs_free_flash_dirent - freeing a (flash) directory entry */
338void
339chfs_free_flash_dirent(struct chfs_flash_dirent_node *fdnode)
340{
341	pool_cache_put(chfs_flash_dirent_cache, fdnode);
342}
343
344/* chfs_alloc_flash_dnode - allocating a data node (used on flash) */
345struct chfs_flash_data_node*
346chfs_alloc_flash_dnode(void)
347{
348	struct chfs_flash_data_node *ret;
349	ret = pool_cache_get(chfs_flash_dnode_cache, PR_WAITOK);
350	return ret;
351}
352
353/* chfs_free_flash_dnode - freeing a (flash) data node */
354void
355chfs_free_flash_dnode(struct chfs_flash_data_node *fdnode)
356{
357	pool_cache_put(chfs_flash_dnode_cache, fdnode);
358}
359
360/* chfs_alloc_node_frag - allocating a fragment of a node */
361struct chfs_node_frag*
362chfs_alloc_node_frag(void)
363{
364	struct chfs_node_frag *ret;
365	ret = pool_cache_get(chfs_node_frag_cache, PR_WAITOK);
366	return ret;
367}
368
369/* chfs_free_node_frag - freeing a fragment of a node */
370void
371chfs_free_node_frag(struct chfs_node_frag *frag)
372{
373	pool_cache_put(chfs_node_frag_cache, frag);
374}
375
376/* chfs_alloc_tmp_dnode - allocating a temporarily used dnode */
377struct chfs_tmp_dnode *
378chfs_alloc_tmp_dnode(void)
379{
380	struct chfs_tmp_dnode *ret;
381	ret = pool_cache_get(chfs_tmp_dnode_cache, PR_WAITOK);
382	ret->next = NULL;
383	return ret;
384}
385
386/* chfs_free_tmp_dnode - freeing a temporarily used dnode */
387void
388chfs_free_tmp_dnode(struct chfs_tmp_dnode *td)
389{
390	pool_cache_put(chfs_tmp_dnode_cache, td);
391}
392
393/* chfs_alloc_tmp_dnode_info - allocating a temporarily used dnode descriptor */
394struct chfs_tmp_dnode_info *
395chfs_alloc_tmp_dnode_info(void)
396{
397	struct chfs_tmp_dnode_info *ret;
398	ret = pool_cache_get(chfs_tmp_dnode_info_cache, PR_WAITOK);
399	ret->tmpnode = NULL;
400	return ret;
401}
402
403/* chfs_free_tmp_dnode_info - freeing a temporarily used dnode descriptor */
404void
405chfs_free_tmp_dnode_info(struct chfs_tmp_dnode_info *di)
406{
407	pool_cache_put(chfs_tmp_dnode_info_cache, di);
408}
409
410