genfs_io.c revision 1.53
1/*	$NetBSD: genfs_io.c,v 1.53 2011/10/31 12:49:32 yamt Exp $	*/
2
3/*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33#include <sys/cdefs.h>
34__KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.53 2011/10/31 12:49:32 yamt Exp $");
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/proc.h>
39#include <sys/kernel.h>
40#include <sys/mount.h>
41#include <sys/vnode.h>
42#include <sys/kmem.h>
43#include <sys/kauth.h>
44#include <sys/fstrans.h>
45#include <sys/buf.h>
46
47#include <miscfs/genfs/genfs.h>
48#include <miscfs/genfs/genfs_node.h>
49#include <miscfs/specfs/specdev.h>
50#include <miscfs/syncfs/syncfs.h>
51
52#include <uvm/uvm.h>
53#include <uvm/uvm_pager.h>
54
55static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
56    off_t, enum uio_rw);
57static void genfs_dio_iodone(struct buf *);
58
59static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
60    void (*)(struct buf *));
61static void genfs_rel_pages(struct vm_page **, int);
62static void genfs_markdirty(struct vnode *);
63
64int genfs_maxdio = MAXPHYS;
65
66static void
67genfs_rel_pages(struct vm_page **pgs, int npages)
68{
69	int i;
70
71	for (i = 0; i < npages; i++) {
72		struct vm_page *pg = pgs[i];
73
74		if (pg == NULL || pg == PGO_DONTCARE)
75			continue;
76		if (pg->flags & PG_FAKE) {
77			pg->flags |= PG_RELEASED;
78		}
79	}
80	mutex_enter(&uvm_pageqlock);
81	uvm_page_unbusy(pgs, npages);
82	mutex_exit(&uvm_pageqlock);
83}
84
85static void
86genfs_markdirty(struct vnode *vp)
87{
88	struct genfs_node * const gp = VTOG(vp);
89
90	KASSERT(mutex_owned(vp->v_interlock));
91	gp->g_dirtygen++;
92	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
93		vn_syncer_add_to_worklist(vp, filedelay);
94	}
95	if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
96		vp->v_iflag |= VI_WRMAPDIRTY;
97	}
98}
99
100/*
101 * generic VM getpages routine.
102 * Return PG_BUSY pages for the given range,
103 * reading from backing store if necessary.
104 */
105
106int
107genfs_getpages(void *v)
108{
109	struct vop_getpages_args /* {
110		struct vnode *a_vp;
111		voff_t a_offset;
112		struct vm_page **a_m;
113		int *a_count;
114		int a_centeridx;
115		vm_prot_t a_access_type;
116		int a_advice;
117		int a_flags;
118	} */ * const ap = v;
119
120	off_t diskeof, memeof;
121	int i, error, npages;
122	const int flags = ap->a_flags;
123	struct vnode * const vp = ap->a_vp;
124	struct uvm_object * const uobj = &vp->v_uobj;
125	kauth_cred_t const cred = curlwp->l_cred;		/* XXXUBC curlwp */
126	const bool async = (flags & PGO_SYNCIO) == 0;
127	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
128	const bool overwrite = (flags & PGO_OVERWRITE) != 0;
129	const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
130	const bool glocked = (flags & PGO_GLOCKHELD) != 0;
131	const bool need_wapbl = blockalloc && vp->v_mount->mnt_wapbl;
132	bool has_trans_wapbl = false;
133	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
134
135	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
136	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
137
138	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
139	    vp->v_type == VLNK || vp->v_type == VBLK);
140
141startover:
142	error = 0;
143	const voff_t origvsize = vp->v_size;
144	const off_t origoffset = ap->a_offset;
145	const int orignpages = *ap->a_count;
146
147	GOP_SIZE(vp, origvsize, &diskeof, 0);
148	if (flags & PGO_PASTEOF) {
149		off_t newsize;
150#if defined(DIAGNOSTIC)
151		off_t writeeof;
152#endif /* defined(DIAGNOSTIC) */
153
154		newsize = MAX(origvsize,
155		    origoffset + (orignpages << PAGE_SHIFT));
156		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
157#if defined(DIAGNOSTIC)
158		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
159		if (newsize > round_page(writeeof)) {
160			panic("%s: past eof: %" PRId64 " vs. %" PRId64,
161			    __func__, newsize, round_page(writeeof));
162		}
163#endif /* defined(DIAGNOSTIC) */
164	} else {
165		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
166	}
167	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
168	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
169	KASSERT(orignpages > 0);
170
171	/*
172	 * Bounds-check the request.
173	 */
174
175	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
176		if ((flags & PGO_LOCKED) == 0) {
177			mutex_exit(uobj->vmobjlock);
178		}
179		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
180		    origoffset, *ap->a_count, memeof,0);
181		error = EINVAL;
182		goto out_err;
183	}
184
185	/* uobj is locked */
186
187	if ((flags & PGO_NOTIMESTAMP) == 0 &&
188	    (vp->v_type != VBLK ||
189	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
190		int updflags = 0;
191
192		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
193			updflags = GOP_UPDATE_ACCESSED;
194		}
195		if (memwrite) {
196			updflags |= GOP_UPDATE_MODIFIED;
197		}
198		if (updflags != 0) {
199			GOP_MARKUPDATE(vp, updflags);
200		}
201	}
202
203	/*
204	 * For PGO_LOCKED requests, just return whatever's in memory.
205	 */
206
207	if (flags & PGO_LOCKED) {
208		int nfound;
209		struct vm_page *pg;
210
211		KASSERT(!glocked);
212		npages = *ap->a_count;
213#if defined(DEBUG)
214		for (i = 0; i < npages; i++) {
215			pg = ap->a_m[i];
216			KASSERT(pg == NULL || pg == PGO_DONTCARE);
217		}
218#endif /* defined(DEBUG) */
219		nfound = uvn_findpages(uobj, origoffset, &npages,
220		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
221		KASSERT(npages == *ap->a_count);
222		if (nfound == 0) {
223			error = EBUSY;
224			goto out_err;
225		}
226		if (!genfs_node_rdtrylock(vp)) {
227			genfs_rel_pages(ap->a_m, npages);
228
229			/*
230			 * restore the array.
231			 */
232
233			for (i = 0; i < npages; i++) {
234				pg = ap->a_m[i];
235
236				if (pg != NULL && pg != PGO_DONTCARE) {
237					ap->a_m[i] = NULL;
238				}
239				KASSERT(ap->a_m[i] == NULL ||
240				    ap->a_m[i] == PGO_DONTCARE);
241			}
242		} else {
243			genfs_node_unlock(vp);
244		}
245		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
246		if (error == 0 && memwrite) {
247			genfs_markdirty(vp);
248		}
249		goto out_err;
250	}
251	mutex_exit(uobj->vmobjlock);
252
253	/*
254	 * find the requested pages and make some simple checks.
255	 * leave space in the page array for a whole block.
256	 */
257
258	const int fs_bshift = (vp->v_type != VBLK) ?
259	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
260	const int dev_bshift = (vp->v_type != VBLK) ?
261	    vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
262	const int fs_bsize = 1 << fs_bshift;
263#define	blk_mask	(fs_bsize - 1)
264#define	trunc_blk(x)	((x) & ~blk_mask)
265#define	round_blk(x)	(((x) + blk_mask) & ~blk_mask)
266
267	const int orignmempages = MIN(orignpages,
268	    round_page(memeof - origoffset) >> PAGE_SHIFT);
269	npages = orignmempages;
270	const off_t startoffset = trunc_blk(origoffset);
271	const off_t endoffset = MIN(
272	    round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
273	    round_page(memeof));
274	const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
275
276	const int pgs_size = sizeof(struct vm_page *) *
277	    ((endoffset - startoffset) >> PAGE_SHIFT);
278	struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
279
280	if (pgs_size > sizeof(pgs_onstack)) {
281		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
282		if (pgs == NULL) {
283			pgs = pgs_onstack;
284			error = ENOMEM;
285			goto out_err;
286		}
287	} else {
288		pgs = pgs_onstack;
289		(void)memset(pgs, 0, pgs_size);
290	}
291
292	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
293	    ridx, npages, startoffset, endoffset);
294
295	if (!has_trans_wapbl) {
296		fstrans_start(vp->v_mount, FSTRANS_SHARED);
297		/*
298		 * XXX: This assumes that we come here only via
299		 * the mmio path
300		 */
301		if (need_wapbl) {
302			error = WAPBL_BEGIN(vp->v_mount);
303			if (error) {
304				fstrans_done(vp->v_mount);
305				goto out_err_free;
306			}
307		}
308		has_trans_wapbl = true;
309	}
310
311	/*
312	 * hold g_glock to prevent a race with truncate.
313	 *
314	 * check if our idea of v_size is still valid.
315	 */
316
317	KASSERT(!glocked || genfs_node_wrlocked(vp));
318	if (!glocked) {
319		if (blockalloc) {
320			genfs_node_wrlock(vp);
321		} else {
322			genfs_node_rdlock(vp);
323		}
324	}
325	mutex_enter(uobj->vmobjlock);
326	if (vp->v_size < origvsize) {
327		if (!glocked) {
328			genfs_node_unlock(vp);
329		}
330		if (pgs != pgs_onstack)
331			kmem_free(pgs, pgs_size);
332		goto startover;
333	}
334
335	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
336	    async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
337		if (!glocked) {
338			genfs_node_unlock(vp);
339		}
340		KASSERT(async != 0);
341		genfs_rel_pages(&pgs[ridx], orignmempages);
342		mutex_exit(uobj->vmobjlock);
343		error = EBUSY;
344		goto out_err_free;
345	}
346
347	/*
348	 * if the pages are already resident, just return them.
349	 */
350
351	for (i = 0; i < npages; i++) {
352		struct vm_page *pg = pgs[ridx + i];
353
354		if ((pg->flags & PG_FAKE) ||
355		    (blockalloc && (pg->flags & PG_RDONLY))) {
356			break;
357		}
358	}
359	if (i == npages) {
360		if (!glocked) {
361			genfs_node_unlock(vp);
362		}
363		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
364		npages += ridx;
365		goto out;
366	}
367
368	/*
369	 * if PGO_OVERWRITE is set, don't bother reading the pages.
370	 */
371
372	if (overwrite) {
373		if (!glocked) {
374			genfs_node_unlock(vp);
375		}
376		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
377
378		for (i = 0; i < npages; i++) {
379			struct vm_page *pg = pgs[ridx + i];
380
381			pg->flags &= ~(PG_RDONLY|PG_CLEAN);
382		}
383		npages += ridx;
384		goto out;
385	}
386
387	/*
388	 * the page wasn't resident and we're not overwriting,
389	 * so we're going to have to do some i/o.
390	 * find any additional pages needed to cover the expanded range.
391	 */
392
393	npages = (endoffset - startoffset) >> PAGE_SHIFT;
394	if (startoffset != origoffset || npages != orignmempages) {
395		int npgs;
396
397		/*
398		 * we need to avoid deadlocks caused by locking
399		 * additional pages at lower offsets than pages we
400		 * already have locked.  unlock them all and start over.
401		 */
402
403		genfs_rel_pages(&pgs[ridx], orignmempages);
404		memset(pgs, 0, pgs_size);
405
406		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
407		    startoffset, endoffset, 0,0);
408		npgs = npages;
409		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
410		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
411			if (!glocked) {
412				genfs_node_unlock(vp);
413			}
414			KASSERT(async != 0);
415			genfs_rel_pages(pgs, npages);
416			mutex_exit(uobj->vmobjlock);
417			error = EBUSY;
418			goto out_err_free;
419		}
420	}
421
422	mutex_exit(uobj->vmobjlock);
423
424    {
425	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
426	vaddr_t kva;
427	struct buf *bp, *mbp;
428	bool sawhole = false;
429
430	/*
431	 * read the desired page(s).
432	 */
433
434	totalbytes = npages << PAGE_SHIFT;
435	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
436	tailbytes = totalbytes - bytes;
437	skipbytes = 0;
438
439	kva = uvm_pagermapin(pgs, npages,
440	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
441
442	mbp = getiobuf(vp, true);
443	mbp->b_bufsize = totalbytes;
444	mbp->b_data = (void *)kva;
445	mbp->b_resid = mbp->b_bcount = bytes;
446	mbp->b_cflags = BC_BUSY;
447	if (async) {
448		mbp->b_flags = B_READ | B_ASYNC;
449		mbp->b_iodone = uvm_aio_biodone;
450	} else {
451		mbp->b_flags = B_READ;
452		mbp->b_iodone = NULL;
453	}
454	if (async)
455		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
456	else
457		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
458
459	/*
460	 * if EOF is in the middle of the range, zero the part past EOF.
461	 * skip over pages which are not PG_FAKE since in that case they have
462	 * valid data that we need to preserve.
463	 */
464
465	tailstart = bytes;
466	while (tailbytes > 0) {
467		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
468
469		KASSERT(len <= tailbytes);
470		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
471			memset((void *)(kva + tailstart), 0, len);
472			UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
473			    kva, tailstart, len, 0);
474		}
475		tailstart += len;
476		tailbytes -= len;
477	}
478
479	/*
480	 * now loop over the pages, reading as needed.
481	 */
482
483	bp = NULL;
484	off_t offset;
485	for (offset = startoffset;
486	    bytes > 0;
487	    offset += iobytes, bytes -= iobytes) {
488		int run;
489		daddr_t lbn, blkno;
490		int pidx;
491		struct vnode *devvp;
492
493		/*
494		 * skip pages which don't need to be read.
495		 */
496
497		pidx = (offset - startoffset) >> PAGE_SHIFT;
498		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
499			size_t b;
500
501			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
502			if ((pgs[pidx]->flags & PG_RDONLY)) {
503				sawhole = true;
504			}
505			b = MIN(PAGE_SIZE, bytes);
506			offset += b;
507			bytes -= b;
508			skipbytes += b;
509			pidx++;
510			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
511			    offset, 0,0,0);
512			if (bytes == 0) {
513				goto loopdone;
514			}
515		}
516
517		/*
518		 * bmap the file to find out the blkno to read from and
519		 * how much we can read in one i/o.  if bmap returns an error,
520		 * skip the rest of the top-level i/o.
521		 */
522
523		lbn = offset >> fs_bshift;
524		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
525		if (error) {
526			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
527			    lbn,error,0,0);
528			skipbytes += bytes;
529			bytes = 0;
530			goto loopdone;
531		}
532
533		/*
534		 * see how many pages can be read with this i/o.
535		 * reduce the i/o size if necessary to avoid
536		 * overwriting pages with valid data.
537		 */
538
539		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
540		    bytes);
541		if (offset + iobytes > round_page(offset)) {
542			int pcount;
543
544			pcount = 1;
545			while (pidx + pcount < npages &&
546			    pgs[pidx + pcount]->flags & PG_FAKE) {
547				pcount++;
548			}
549			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
550			    (offset - trunc_page(offset)));
551		}
552
553		/*
554		 * if this block isn't allocated, zero it instead of
555		 * reading it.  unless we are going to allocate blocks,
556		 * mark the pages we zeroed PG_RDONLY.
557		 */
558
559		if (blkno == (daddr_t)-1) {
560			int holepages = (round_page(offset + iobytes) -
561			    trunc_page(offset)) >> PAGE_SHIFT;
562			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
563
564			sawhole = true;
565			memset((char *)kva + (offset - startoffset), 0,
566			    iobytes);
567			skipbytes += iobytes;
568
569			mutex_enter(uobj->vmobjlock);
570			for (i = 0; i < holepages; i++) {
571				if (memwrite) {
572					pgs[pidx + i]->flags &= ~PG_CLEAN;
573				}
574				if (!blockalloc) {
575					pgs[pidx + i]->flags |= PG_RDONLY;
576				}
577			}
578			mutex_exit(uobj->vmobjlock);
579			continue;
580		}
581
582		/*
583		 * allocate a sub-buf for this piece of the i/o
584		 * (or just use mbp if there's only 1 piece),
585		 * and start it going.
586		 */
587
588		if (offset == startoffset && iobytes == bytes) {
589			bp = mbp;
590		} else {
591			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
592			    vp, bp, vp->v_numoutput, 0);
593			bp = getiobuf(vp, true);
594			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
595		}
596		bp->b_lblkno = 0;
597
598		/* adjust physical blkno for partial blocks */
599		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
600		    dev_bshift);
601
602		UVMHIST_LOG(ubchist,
603		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
604		    bp, offset, bp->b_bcount, bp->b_blkno);
605
606		VOP_STRATEGY(devvp, bp);
607	}
608
609loopdone:
610	nestiobuf_done(mbp, skipbytes, error);
611	if (async) {
612		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
613		if (!glocked) {
614			genfs_node_unlock(vp);
615		}
616		error = 0;
617		goto out_err_free;
618	}
619	if (bp != NULL) {
620		error = biowait(mbp);
621	}
622
623	/* Remove the mapping (make KVA available as soon as possible) */
624	uvm_pagermapout(kva, npages);
625
626	/*
627	 * if this we encountered a hole then we have to do a little more work.
628	 * for read faults, we marked the page PG_RDONLY so that future
629	 * write accesses to the page will fault again.
630	 * for write faults, we must make sure that the backing store for
631	 * the page is completely allocated while the pages are locked.
632	 */
633
634	if (!error && sawhole && blockalloc) {
635		error = GOP_ALLOC(vp, startoffset,
636		    npages << PAGE_SHIFT, 0, cred);
637		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
638		    startoffset, npages << PAGE_SHIFT, error,0);
639		if (!error) {
640			mutex_enter(uobj->vmobjlock);
641			for (i = 0; i < npages; i++) {
642				struct vm_page *pg = pgs[i];
643
644				if (pg == NULL) {
645					continue;
646				}
647				pg->flags &= ~(PG_CLEAN|PG_RDONLY);
648				UVMHIST_LOG(ubchist, "mark dirty pg %p",
649				    pg,0,0,0);
650			}
651			mutex_exit(uobj->vmobjlock);
652		}
653	}
654	if (!glocked) {
655		genfs_node_unlock(vp);
656	}
657
658	putiobuf(mbp);
659    }
660
661	mutex_enter(uobj->vmobjlock);
662
663	/*
664	 * we're almost done!  release the pages...
665	 * for errors, we free the pages.
666	 * otherwise we activate them and mark them as valid and clean.
667	 * also, unbusy pages that were not actually requested.
668	 */
669
670	if (error) {
671		for (i = 0; i < npages; i++) {
672			struct vm_page *pg = pgs[i];
673
674			if (pg == NULL) {
675				continue;
676			}
677			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
678			    pg, pg->flags, 0,0);
679			if (pg->flags & PG_FAKE) {
680				pg->flags |= PG_RELEASED;
681			}
682		}
683		mutex_enter(&uvm_pageqlock);
684		uvm_page_unbusy(pgs, npages);
685		mutex_exit(&uvm_pageqlock);
686		mutex_exit(uobj->vmobjlock);
687		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
688		goto out_err_free;
689	}
690
691out:
692	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
693	error = 0;
694	mutex_enter(&uvm_pageqlock);
695	for (i = 0; i < npages; i++) {
696		struct vm_page *pg = pgs[i];
697		if (pg == NULL) {
698			continue;
699		}
700		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
701		    pg, pg->flags, 0,0);
702		if (pg->flags & PG_FAKE && !overwrite) {
703			pg->flags &= ~(PG_FAKE);
704			pmap_clear_modify(pgs[i]);
705		}
706		KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
707		if (i < ridx || i >= ridx + orignmempages || async) {
708			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
709			    pg, pg->offset,0,0);
710			if (pg->flags & PG_WANTED) {
711				wakeup(pg);
712			}
713			if (pg->flags & PG_FAKE) {
714				KASSERT(overwrite);
715				uvm_pagezero(pg);
716			}
717			if (pg->flags & PG_RELEASED) {
718				uvm_pagefree(pg);
719				continue;
720			}
721			uvm_pageenqueue(pg);
722			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
723			UVM_PAGE_OWN(pg, NULL);
724		}
725	}
726	mutex_exit(&uvm_pageqlock);
727	if (memwrite) {
728		genfs_markdirty(vp);
729	}
730	mutex_exit(uobj->vmobjlock);
731	if (ap->a_m != NULL) {
732		memcpy(ap->a_m, &pgs[ridx],
733		    orignmempages * sizeof(struct vm_page *));
734	}
735
736out_err_free:
737	if (pgs != NULL && pgs != pgs_onstack)
738		kmem_free(pgs, pgs_size);
739out_err:
740	if (has_trans_wapbl) {
741		if (need_wapbl)
742			WAPBL_END(vp->v_mount);
743		fstrans_done(vp->v_mount);
744	}
745	return error;
746}
747
748/*
749 * generic VM putpages routine.
750 * Write the given range of pages to backing store.
751 *
752 * => "offhi == 0" means flush all pages at or after "offlo".
753 * => object should be locked by caller.  we return with the
754 *      object unlocked.
755 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
756 *	thus, a caller might want to unlock higher level resources
757 *	(e.g. vm_map) before calling flush.
758 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
759 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
760 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
761 *	that new pages are inserted on the tail end of the list.   thus,
762 *	we can make a complete pass through the object in one go by starting
763 *	at the head and working towards the tail (new pages are put in
764 *	front of us).
765 * => NOTE: we are allowed to lock the page queues, so the caller
766 *	must not be holding the page queue lock.
767 *
768 * note on "cleaning" object and PG_BUSY pages:
769 *	this routine is holding the lock on the object.   the only time
770 *	that it can run into a PG_BUSY page that it does not own is if
771 *	some other process has started I/O on the page (e.g. either
772 *	a pagein, or a pageout).    if the PG_BUSY page is being paged
773 *	in, then it can not be dirty (!PG_CLEAN) because no one has
774 *	had a chance to modify it yet.    if the PG_BUSY page is being
775 *	paged out then it means that someone else has already started
776 *	cleaning the page for us (how nice!).    in this case, if we
777 *	have syncio specified, then after we make our pass through the
778 *	object we need to wait for the other PG_BUSY pages to clear
779 *	off (i.e. we need to do an iosync).   also note that once a
780 *	page is PG_BUSY it must stay in its object until it is un-busyed.
781 *
782 * note on page traversal:
783 *	we can traverse the pages in an object either by going down the
784 *	linked list in "uobj->memq", or we can go over the address range
785 *	by page doing hash table lookups for each address.    depending
786 *	on how many pages are in the object it may be cheaper to do one
787 *	or the other.   we set "by_list" to true if we are using memq.
788 *	if the cost of a hash lookup was equal to the cost of the list
789 *	traversal we could compare the number of pages in the start->stop
790 *	range to the total number of pages in the object.   however, it
791 *	seems that a hash table lookup is more expensive than the linked
792 *	list traversal, so we multiply the number of pages in the
793 *	range by an estimate of the relatively higher cost of the hash lookup.
794 */
795
796int
797genfs_putpages(void *v)
798{
799	struct vop_putpages_args /* {
800		struct vnode *a_vp;
801		voff_t a_offlo;
802		voff_t a_offhi;
803		int a_flags;
804	} */ * const ap = v;
805
806	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
807	    ap->a_flags, NULL);
808}
809
810int
811genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
812    int origflags, struct vm_page **busypg)
813{
814	struct uvm_object * const uobj = &vp->v_uobj;
815	kmutex_t * const slock = uobj->vmobjlock;
816	off_t off;
817	/* Even for strange MAXPHYS, the shift rounds down to a page */
818#define maxpages (MAXPHYS >> PAGE_SHIFT)
819	int i, error, npages, nback;
820	int freeflag;
821	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
822	bool wasclean, by_list, needs_clean, yld;
823	bool async = (origflags & PGO_SYNCIO) == 0;
824	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
825	struct lwp * const l = curlwp ? curlwp : &lwp0;
826	struct genfs_node * const gp = VTOG(vp);
827	int flags;
828	int dirtygen;
829	bool modified;
830	bool need_wapbl;
831	bool has_trans;
832	bool cleanall;
833	bool onworklst;
834
835	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
836
837	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
838	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
839	KASSERT(startoff < endoff || endoff == 0);
840
841	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
842	    vp, uobj->uo_npages, startoff, endoff - startoff);
843
844	has_trans = false;
845	need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
846	    (origflags & PGO_JOURNALLOCKED) == 0);
847
848retry:
849	modified = false;
850	flags = origflags;
851	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
852	    (vp->v_iflag & VI_WRMAPDIRTY) == 0);
853	if (uobj->uo_npages == 0) {
854		if (vp->v_iflag & VI_ONWORKLST) {
855			vp->v_iflag &= ~VI_WRMAPDIRTY;
856			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
857				vn_syncer_remove_from_worklist(vp);
858		}
859		if (has_trans) {
860			if (need_wapbl)
861				WAPBL_END(vp->v_mount);
862			fstrans_done(vp->v_mount);
863		}
864		mutex_exit(slock);
865		return (0);
866	}
867
868	/*
869	 * the vnode has pages, set up to process the request.
870	 */
871
872	if (!has_trans && (flags & PGO_CLEANIT) != 0) {
873		mutex_exit(slock);
874		if (pagedaemon) {
875			error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
876			if (error)
877				return error;
878		} else
879			fstrans_start(vp->v_mount, FSTRANS_LAZY);
880		if (need_wapbl) {
881			error = WAPBL_BEGIN(vp->v_mount);
882			if (error) {
883				fstrans_done(vp->v_mount);
884				return error;
885			}
886		}
887		has_trans = true;
888		mutex_enter(slock);
889		goto retry;
890	}
891
892	error = 0;
893	wasclean = (vp->v_numoutput == 0);
894	off = startoff;
895	if (endoff == 0 || flags & PGO_ALLPAGES) {
896		endoff = trunc_page(LLONG_MAX);
897	}
898	by_list = (uobj->uo_npages <=
899	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
900
901	/*
902	 * if this vnode is known not to have dirty pages,
903	 * don't bother to clean it out.
904	 */
905
906	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
907#if !defined(DEBUG)
908		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
909			goto skip_scan;
910		}
911#endif /* !defined(DEBUG) */
912		flags &= ~PGO_CLEANIT;
913	}
914
915	/*
916	 * start the loop.  when scanning by list, hold the last page
917	 * in the list before we start.  pages allocated after we start
918	 * will be added to the end of the list, so we can stop at the
919	 * current last page.
920	 */
921
922	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
923	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
924	    (vp->v_iflag & VI_ONWORKLST) != 0;
925	dirtygen = gp->g_dirtygen;
926	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
927	if (by_list) {
928		curmp.flags = PG_MARKER;
929		endmp.flags = PG_MARKER;
930		pg = TAILQ_FIRST(&uobj->memq);
931		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
932	} else {
933		pg = uvm_pagelookup(uobj, off);
934	}
935	nextpg = NULL;
936	while (by_list || off < endoff) {
937
938		/*
939		 * if the current page is not interesting, move on to the next.
940		 */
941
942		KASSERT(pg == NULL || pg->uobject == uobj ||
943		    (pg->flags & PG_MARKER) != 0);
944		KASSERT(pg == NULL ||
945		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
946		    (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
947		if (by_list) {
948			if (pg == &endmp) {
949				break;
950			}
951			if (pg->flags & PG_MARKER) {
952				pg = TAILQ_NEXT(pg, listq.queue);
953				continue;
954			}
955			if (pg->offset < startoff || pg->offset >= endoff ||
956			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
957				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
958					wasclean = false;
959				}
960				pg = TAILQ_NEXT(pg, listq.queue);
961				continue;
962			}
963			off = pg->offset;
964		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
965			if (pg != NULL) {
966				wasclean = false;
967			}
968			off += PAGE_SIZE;
969			if (off < endoff) {
970				pg = uvm_pagelookup(uobj, off);
971			}
972			continue;
973		}
974
975		/*
976		 * if the current page needs to be cleaned and it's busy,
977		 * wait for it to become unbusy.
978		 */
979
980		yld = (l->l_cpu->ci_schedstate.spc_flags &
981		    SPCF_SHOULDYIELD) && !pagedaemon;
982		if (pg->flags & PG_BUSY || yld) {
983			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
984			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
985				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
986				error = EDEADLK;
987				if (busypg != NULL)
988					*busypg = pg;
989				break;
990			}
991			if (pagedaemon) {
992				/*
993				 * someone has taken the page while we
994				 * dropped the lock for fstrans_start.
995				 */
996				break;
997			}
998			if (by_list) {
999				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
1000				UVMHIST_LOG(ubchist, "curmp next %p",
1001				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1002			}
1003			if (yld) {
1004				mutex_exit(slock);
1005				preempt();
1006				mutex_enter(slock);
1007			} else {
1008				pg->flags |= PG_WANTED;
1009				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1010				mutex_enter(slock);
1011			}
1012			if (by_list) {
1013				UVMHIST_LOG(ubchist, "after next %p",
1014				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1015				pg = TAILQ_NEXT(&curmp, listq.queue);
1016				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1017			} else {
1018				pg = uvm_pagelookup(uobj, off);
1019			}
1020			continue;
1021		}
1022
1023		/*
1024		 * if we're freeing, remove all mappings of the page now.
1025		 * if we're cleaning, check if the page is needs to be cleaned.
1026		 */
1027
1028		if (flags & PGO_FREE) {
1029			pmap_page_protect(pg, VM_PROT_NONE);
1030		} else if (flags & PGO_CLEANIT) {
1031
1032			/*
1033			 * if we still have some hope to pull this vnode off
1034			 * from the syncer queue, write-protect the page.
1035			 */
1036
1037			if (cleanall && wasclean &&
1038			    gp->g_dirtygen == dirtygen) {
1039
1040				/*
1041				 * uobj pages get wired only by uvm_fault
1042				 * where uobj is locked.
1043				 */
1044
1045				if (pg->wire_count == 0) {
1046					pmap_page_protect(pg,
1047					    VM_PROT_READ|VM_PROT_EXECUTE);
1048				} else {
1049					cleanall = false;
1050				}
1051			}
1052		}
1053
1054		if (flags & PGO_CLEANIT) {
1055			needs_clean = pmap_clear_modify(pg) ||
1056			    (pg->flags & PG_CLEAN) == 0;
1057			pg->flags |= PG_CLEAN;
1058		} else {
1059			needs_clean = false;
1060		}
1061
1062		/*
1063		 * if we're cleaning, build a cluster.
1064		 * the cluster will consist of pages which are currently dirty,
1065		 * but they will be returned to us marked clean.
1066		 * if not cleaning, just operate on the one page.
1067		 */
1068
1069		if (needs_clean) {
1070			KDASSERT((vp->v_iflag & VI_ONWORKLST));
1071			wasclean = false;
1072			memset(pgs, 0, sizeof(pgs));
1073			pg->flags |= PG_BUSY;
1074			UVM_PAGE_OWN(pg, "genfs_putpages");
1075
1076			/*
1077			 * first look backward.
1078			 */
1079
1080			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1081			nback = npages;
1082			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1083			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1084			if (nback) {
1085				memmove(&pgs[0], &pgs[npages - nback],
1086				    nback * sizeof(pgs[0]));
1087				if (npages - nback < nback)
1088					memset(&pgs[nback], 0,
1089					    (npages - nback) * sizeof(pgs[0]));
1090				else
1091					memset(&pgs[npages - nback], 0,
1092					    nback * sizeof(pgs[0]));
1093			}
1094
1095			/*
1096			 * then plug in our page of interest.
1097			 */
1098
1099			pgs[nback] = pg;
1100
1101			/*
1102			 * then look forward to fill in the remaining space in
1103			 * the array of pages.
1104			 */
1105
1106			npages = maxpages - nback - 1;
1107			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1108			    &pgs[nback + 1],
1109			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1110			npages += nback + 1;
1111		} else {
1112			pgs[0] = pg;
1113			npages = 1;
1114			nback = 0;
1115		}
1116
1117		/*
1118		 * apply FREE or DEACTIVATE options if requested.
1119		 */
1120
1121		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1122			mutex_enter(&uvm_pageqlock);
1123		}
1124		for (i = 0; i < npages; i++) {
1125			tpg = pgs[i];
1126			KASSERT(tpg->uobject == uobj);
1127			if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1128				pg = tpg;
1129			if (tpg->offset < startoff || tpg->offset >= endoff)
1130				continue;
1131			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1132				uvm_pagedeactivate(tpg);
1133			} else if (flags & PGO_FREE) {
1134				pmap_page_protect(tpg, VM_PROT_NONE);
1135				if (tpg->flags & PG_BUSY) {
1136					tpg->flags |= freeflag;
1137					if (pagedaemon) {
1138						uvm_pageout_start(1);
1139						uvm_pagedequeue(tpg);
1140					}
1141				} else {
1142
1143					/*
1144					 * ``page is not busy''
1145					 * implies that npages is 1
1146					 * and needs_clean is false.
1147					 */
1148
1149					nextpg = TAILQ_NEXT(tpg, listq.queue);
1150					uvm_pagefree(tpg);
1151					if (pagedaemon)
1152						uvmexp.pdfreed++;
1153				}
1154			}
1155		}
1156		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1157			mutex_exit(&uvm_pageqlock);
1158		}
1159		if (needs_clean) {
1160			modified = true;
1161
1162			/*
1163			 * start the i/o.  if we're traversing by list,
1164			 * keep our place in the list with a marker page.
1165			 */
1166
1167			if (by_list) {
1168				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1169				    listq.queue);
1170			}
1171			mutex_exit(slock);
1172			error = GOP_WRITE(vp, pgs, npages, flags);
1173			mutex_enter(slock);
1174			if (by_list) {
1175				pg = TAILQ_NEXT(&curmp, listq.queue);
1176				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1177			}
1178			if (error) {
1179				break;
1180			}
1181			if (by_list) {
1182				continue;
1183			}
1184		}
1185
1186		/*
1187		 * find the next page and continue if there was no error.
1188		 */
1189
1190		if (by_list) {
1191			if (nextpg) {
1192				pg = nextpg;
1193				nextpg = NULL;
1194			} else {
1195				pg = TAILQ_NEXT(pg, listq.queue);
1196			}
1197		} else {
1198			off += (npages - nback) << PAGE_SHIFT;
1199			if (off < endoff) {
1200				pg = uvm_pagelookup(uobj, off);
1201			}
1202		}
1203	}
1204	if (by_list) {
1205		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1206	}
1207
1208	if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1209	    (vp->v_type != VBLK ||
1210	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1211		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1212	}
1213
1214	/*
1215	 * if we're cleaning and there was nothing to clean,
1216	 * take us off the syncer list.  if we started any i/o
1217	 * and we're doing sync i/o, wait for all writes to finish.
1218	 */
1219
1220	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1221	    (vp->v_iflag & VI_ONWORKLST) != 0) {
1222#if defined(DEBUG)
1223		TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1224			if ((pg->flags & (PG_FAKE | PG_MARKER)) != 0) {
1225				continue;
1226			}
1227			if ((pg->flags & PG_CLEAN) == 0) {
1228				printf("%s: %p: !CLEAN\n", __func__, pg);
1229			}
1230			if (pmap_is_modified(pg)) {
1231				printf("%s: %p: modified\n", __func__, pg);
1232			}
1233		}
1234#endif /* defined(DEBUG) */
1235		vp->v_iflag &= ~VI_WRMAPDIRTY;
1236		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1237			vn_syncer_remove_from_worklist(vp);
1238	}
1239
1240#if !defined(DEBUG)
1241skip_scan:
1242#endif /* !defined(DEBUG) */
1243
1244	/* Wait for output to complete. */
1245	if (!wasclean && !async && vp->v_numoutput != 0) {
1246		while (vp->v_numoutput != 0)
1247			cv_wait(&vp->v_cv, slock);
1248	}
1249	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1250	mutex_exit(slock);
1251
1252	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1253		/*
1254		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1255		 * retrying is not a big deal because, in many cases,
1256		 * uobj->uo_npages is already 0 here.
1257		 */
1258		mutex_enter(slock);
1259		goto retry;
1260	}
1261
1262	if (has_trans) {
1263		if (need_wapbl)
1264			WAPBL_END(vp->v_mount);
1265		fstrans_done(vp->v_mount);
1266	}
1267
1268	return (error);
1269}
1270
1271int
1272genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1273{
1274	off_t off;
1275	vaddr_t kva;
1276	size_t len;
1277	int error;
1278	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1279
1280	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1281	    vp, pgs, npages, flags);
1282
1283	off = pgs[0]->offset;
1284	kva = uvm_pagermapin(pgs, npages,
1285	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1286	len = npages << PAGE_SHIFT;
1287
1288	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1289			    uvm_aio_biodone);
1290
1291	return error;
1292}
1293
1294int
1295genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1296{
1297	off_t off;
1298	vaddr_t kva;
1299	size_t len;
1300	int error;
1301	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1302
1303	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1304	    vp, pgs, npages, flags);
1305
1306	off = pgs[0]->offset;
1307	kva = uvm_pagermapin(pgs, npages,
1308	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1309	len = npages << PAGE_SHIFT;
1310
1311	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1312			    uvm_aio_biodone);
1313
1314	return error;
1315}
1316
1317/*
1318 * Backend routine for doing I/O to vnode pages.  Pages are already locked
1319 * and mapped into kernel memory.  Here we just look up the underlying
1320 * device block addresses and call the strategy routine.
1321 */
1322
1323static int
1324genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1325    enum uio_rw rw, void (*iodone)(struct buf *))
1326{
1327	int s, error;
1328	int fs_bshift, dev_bshift;
1329	off_t eof, offset, startoffset;
1330	size_t bytes, iobytes, skipbytes;
1331	struct buf *mbp, *bp;
1332	const bool async = (flags & PGO_SYNCIO) == 0;
1333	const bool iowrite = rw == UIO_WRITE;
1334	const int brw = iowrite ? B_WRITE : B_READ;
1335	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1336
1337	UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1338	    vp, kva, len, flags);
1339
1340	KASSERT(vp->v_size <= vp->v_writesize);
1341	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1342	if (vp->v_type != VBLK) {
1343		fs_bshift = vp->v_mount->mnt_fs_bshift;
1344		dev_bshift = vp->v_mount->mnt_dev_bshift;
1345	} else {
1346		fs_bshift = DEV_BSHIFT;
1347		dev_bshift = DEV_BSHIFT;
1348	}
1349	error = 0;
1350	startoffset = off;
1351	bytes = MIN(len, eof - startoffset);
1352	skipbytes = 0;
1353	KASSERT(bytes != 0);
1354
1355	if (iowrite) {
1356		mutex_enter(vp->v_interlock);
1357		vp->v_numoutput += 2;
1358		mutex_exit(vp->v_interlock);
1359	}
1360	mbp = getiobuf(vp, true);
1361	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1362	    vp, mbp, vp->v_numoutput, bytes);
1363	mbp->b_bufsize = len;
1364	mbp->b_data = (void *)kva;
1365	mbp->b_resid = mbp->b_bcount = bytes;
1366	mbp->b_cflags = BC_BUSY | BC_AGE;
1367	if (async) {
1368		mbp->b_flags = brw | B_ASYNC;
1369		mbp->b_iodone = iodone;
1370	} else {
1371		mbp->b_flags = brw;
1372		mbp->b_iodone = NULL;
1373	}
1374	if (curlwp == uvm.pagedaemon_lwp)
1375		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1376	else if (async)
1377		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1378	else
1379		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1380
1381	bp = NULL;
1382	for (offset = startoffset;
1383	    bytes > 0;
1384	    offset += iobytes, bytes -= iobytes) {
1385		int run;
1386		daddr_t lbn, blkno;
1387		struct vnode *devvp;
1388
1389		/*
1390		 * bmap the file to find out the blkno to read from and
1391		 * how much we can read in one i/o.  if bmap returns an error,
1392		 * skip the rest of the top-level i/o.
1393		 */
1394
1395		lbn = offset >> fs_bshift;
1396		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1397		if (error) {
1398			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
1399			    lbn,error,0,0);
1400			skipbytes += bytes;
1401			bytes = 0;
1402			goto loopdone;
1403		}
1404
1405		/*
1406		 * see how many pages can be read with this i/o.
1407		 * reduce the i/o size if necessary to avoid
1408		 * overwriting pages with valid data.
1409		 */
1410
1411		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1412		    bytes);
1413
1414		/*
1415		 * if this block isn't allocated, zero it instead of
1416		 * reading it.  unless we are going to allocate blocks,
1417		 * mark the pages we zeroed PG_RDONLY.
1418		 */
1419
1420		if (blkno == (daddr_t)-1) {
1421			if (!iowrite) {
1422				memset((char *)kva + (offset - startoffset), 0,
1423				    iobytes);
1424			}
1425			skipbytes += iobytes;
1426			continue;
1427		}
1428
1429		/*
1430		 * allocate a sub-buf for this piece of the i/o
1431		 * (or just use mbp if there's only 1 piece),
1432		 * and start it going.
1433		 */
1434
1435		if (offset == startoffset && iobytes == bytes) {
1436			bp = mbp;
1437		} else {
1438			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1439			    vp, bp, vp->v_numoutput, 0);
1440			bp = getiobuf(vp, true);
1441			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1442		}
1443		bp->b_lblkno = 0;
1444
1445		/* adjust physical blkno for partial blocks */
1446		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1447		    dev_bshift);
1448
1449		UVMHIST_LOG(ubchist,
1450		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
1451		    bp, offset, bp->b_bcount, bp->b_blkno);
1452
1453		VOP_STRATEGY(devvp, bp);
1454	}
1455
1456loopdone:
1457	if (skipbytes) {
1458		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1459	}
1460	nestiobuf_done(mbp, skipbytes, error);
1461	if (async) {
1462		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1463		return (0);
1464	}
1465	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1466	error = biowait(mbp);
1467	s = splbio();
1468	(*iodone)(mbp);
1469	splx(s);
1470	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1471	return (error);
1472}
1473
1474int
1475genfs_compat_getpages(void *v)
1476{
1477	struct vop_getpages_args /* {
1478		struct vnode *a_vp;
1479		voff_t a_offset;
1480		struct vm_page **a_m;
1481		int *a_count;
1482		int a_centeridx;
1483		vm_prot_t a_access_type;
1484		int a_advice;
1485		int a_flags;
1486	} */ *ap = v;
1487
1488	off_t origoffset;
1489	struct vnode *vp = ap->a_vp;
1490	struct uvm_object *uobj = &vp->v_uobj;
1491	struct vm_page *pg, **pgs;
1492	vaddr_t kva;
1493	int i, error, orignpages, npages;
1494	struct iovec iov;
1495	struct uio uio;
1496	kauth_cred_t cred = curlwp->l_cred;
1497	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1498
1499	error = 0;
1500	origoffset = ap->a_offset;
1501	orignpages = *ap->a_count;
1502	pgs = ap->a_m;
1503
1504	if (ap->a_flags & PGO_LOCKED) {
1505		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1506		    UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1507
1508		error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1509		if (error == 0 && memwrite) {
1510			genfs_markdirty(vp);
1511		}
1512		return error;
1513	}
1514	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1515		mutex_exit(uobj->vmobjlock);
1516		return EINVAL;
1517	}
1518	if ((ap->a_flags & PGO_SYNCIO) == 0) {
1519		mutex_exit(uobj->vmobjlock);
1520		return 0;
1521	}
1522	npages = orignpages;
1523	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1524	mutex_exit(uobj->vmobjlock);
1525	kva = uvm_pagermapin(pgs, npages,
1526	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1527	for (i = 0; i < npages; i++) {
1528		pg = pgs[i];
1529		if ((pg->flags & PG_FAKE) == 0) {
1530			continue;
1531		}
1532		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1533		iov.iov_len = PAGE_SIZE;
1534		uio.uio_iov = &iov;
1535		uio.uio_iovcnt = 1;
1536		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1537		uio.uio_rw = UIO_READ;
1538		uio.uio_resid = PAGE_SIZE;
1539		UIO_SETUP_SYSSPACE(&uio);
1540		/* XXX vn_lock */
1541		error = VOP_READ(vp, &uio, 0, cred);
1542		if (error) {
1543			break;
1544		}
1545		if (uio.uio_resid) {
1546			memset(iov.iov_base, 0, uio.uio_resid);
1547		}
1548	}
1549	uvm_pagermapout(kva, npages);
1550	mutex_enter(uobj->vmobjlock);
1551	mutex_enter(&uvm_pageqlock);
1552	for (i = 0; i < npages; i++) {
1553		pg = pgs[i];
1554		if (error && (pg->flags & PG_FAKE) != 0) {
1555			pg->flags |= PG_RELEASED;
1556		} else {
1557			pmap_clear_modify(pg);
1558			uvm_pageactivate(pg);
1559		}
1560	}
1561	if (error) {
1562		uvm_page_unbusy(pgs, npages);
1563	}
1564	mutex_exit(&uvm_pageqlock);
1565	if (error == 0 && memwrite) {
1566		genfs_markdirty(vp);
1567	}
1568	mutex_exit(uobj->vmobjlock);
1569	return error;
1570}
1571
1572int
1573genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1574    int flags)
1575{
1576	off_t offset;
1577	struct iovec iov;
1578	struct uio uio;
1579	kauth_cred_t cred = curlwp->l_cred;
1580	struct buf *bp;
1581	vaddr_t kva;
1582	int error;
1583
1584	offset = pgs[0]->offset;
1585	kva = uvm_pagermapin(pgs, npages,
1586	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1587
1588	iov.iov_base = (void *)kva;
1589	iov.iov_len = npages << PAGE_SHIFT;
1590	uio.uio_iov = &iov;
1591	uio.uio_iovcnt = 1;
1592	uio.uio_offset = offset;
1593	uio.uio_rw = UIO_WRITE;
1594	uio.uio_resid = npages << PAGE_SHIFT;
1595	UIO_SETUP_SYSSPACE(&uio);
1596	/* XXX vn_lock */
1597	error = VOP_WRITE(vp, &uio, 0, cred);
1598
1599	mutex_enter(vp->v_interlock);
1600	vp->v_numoutput++;
1601	mutex_exit(vp->v_interlock);
1602
1603	bp = getiobuf(vp, true);
1604	bp->b_cflags = BC_BUSY | BC_AGE;
1605	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1606	bp->b_data = (char *)kva;
1607	bp->b_bcount = npages << PAGE_SHIFT;
1608	bp->b_bufsize = npages << PAGE_SHIFT;
1609	bp->b_resid = 0;
1610	bp->b_error = error;
1611	uvm_aio_aiodone(bp);
1612	return (error);
1613}
1614
1615/*
1616 * Process a uio using direct I/O.  If we reach a part of the request
1617 * which cannot be processed in this fashion for some reason, just return.
1618 * The caller must handle some additional part of the request using
1619 * buffered I/O before trying direct I/O again.
1620 */
1621
1622void
1623genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1624{
1625	struct vmspace *vs;
1626	struct iovec *iov;
1627	vaddr_t va;
1628	size_t len;
1629	const int mask = DEV_BSIZE - 1;
1630	int error;
1631	bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1632	    (ioflag & IO_JOURNALLOCKED) == 0);
1633
1634	/*
1635	 * We only support direct I/O to user space for now.
1636	 */
1637
1638	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1639		return;
1640	}
1641
1642	/*
1643	 * If the vnode is mapped, we would need to get the getpages lock
1644	 * to stabilize the bmap, but then we would get into trouble while
1645	 * locking the pages if the pages belong to this same vnode (or a
1646	 * multi-vnode cascade to the same effect).  Just fall back to
1647	 * buffered I/O if the vnode is mapped to avoid this mess.
1648	 */
1649
1650	if (vp->v_vflag & VV_MAPPED) {
1651		return;
1652	}
1653
1654	if (need_wapbl) {
1655		error = WAPBL_BEGIN(vp->v_mount);
1656		if (error)
1657			return;
1658	}
1659
1660	/*
1661	 * Do as much of the uio as possible with direct I/O.
1662	 */
1663
1664	vs = uio->uio_vmspace;
1665	while (uio->uio_resid) {
1666		iov = uio->uio_iov;
1667		if (iov->iov_len == 0) {
1668			uio->uio_iov++;
1669			uio->uio_iovcnt--;
1670			continue;
1671		}
1672		va = (vaddr_t)iov->iov_base;
1673		len = MIN(iov->iov_len, genfs_maxdio);
1674		len &= ~mask;
1675
1676		/*
1677		 * If the next chunk is smaller than DEV_BSIZE or extends past
1678		 * the current EOF, then fall back to buffered I/O.
1679		 */
1680
1681		if (len == 0 || uio->uio_offset + len > vp->v_size) {
1682			break;
1683		}
1684
1685		/*
1686		 * Check alignment.  The file offset must be at least
1687		 * sector-aligned.  The exact constraint on memory alignment
1688		 * is very hardware-dependent, but requiring sector-aligned
1689		 * addresses there too is safe.
1690		 */
1691
1692		if (uio->uio_offset & mask || va & mask) {
1693			break;
1694		}
1695		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1696					  uio->uio_rw);
1697		if (error) {
1698			break;
1699		}
1700		iov->iov_base = (char *)iov->iov_base + len;
1701		iov->iov_len -= len;
1702		uio->uio_offset += len;
1703		uio->uio_resid -= len;
1704	}
1705
1706	if (need_wapbl)
1707		WAPBL_END(vp->v_mount);
1708}
1709
1710/*
1711 * Iodone routine for direct I/O.  We don't do much here since the request is
1712 * always synchronous, so the caller will do most of the work after biowait().
1713 */
1714
1715static void
1716genfs_dio_iodone(struct buf *bp)
1717{
1718
1719	KASSERT((bp->b_flags & B_ASYNC) == 0);
1720	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1721		mutex_enter(bp->b_objlock);
1722		vwakeup(bp);
1723		mutex_exit(bp->b_objlock);
1724	}
1725	putiobuf(bp);
1726}
1727
1728/*
1729 * Process one chunk of a direct I/O request.
1730 */
1731
1732static int
1733genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1734    off_t off, enum uio_rw rw)
1735{
1736	struct vm_map *map;
1737	struct pmap *upm, *kpm;
1738	size_t klen = round_page(uva + len) - trunc_page(uva);
1739	off_t spoff, epoff;
1740	vaddr_t kva, puva;
1741	paddr_t pa;
1742	vm_prot_t prot;
1743	int error, rv, poff, koff;
1744	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
1745		(rw == UIO_WRITE ? PGO_FREE : 0);
1746
1747	/*
1748	 * For writes, verify that this range of the file already has fully
1749	 * allocated backing store.  If there are any holes, just punt and
1750	 * make the caller take the buffered write path.
1751	 */
1752
1753	if (rw == UIO_WRITE) {
1754		daddr_t lbn, elbn, blkno;
1755		int bsize, bshift, run;
1756
1757		bshift = vp->v_mount->mnt_fs_bshift;
1758		bsize = 1 << bshift;
1759		lbn = off >> bshift;
1760		elbn = (off + len + bsize - 1) >> bshift;
1761		while (lbn < elbn) {
1762			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1763			if (error) {
1764				return error;
1765			}
1766			if (blkno == (daddr_t)-1) {
1767				return ENOSPC;
1768			}
1769			lbn += 1 + run;
1770		}
1771	}
1772
1773	/*
1774	 * Flush any cached pages for parts of the file that we're about to
1775	 * access.  If we're writing, invalidate pages as well.
1776	 */
1777
1778	spoff = trunc_page(off);
1779	epoff = round_page(off + len);
1780	mutex_enter(vp->v_interlock);
1781	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1782	if (error) {
1783		return error;
1784	}
1785
1786	/*
1787	 * Wire the user pages and remap them into kernel memory.
1788	 */
1789
1790	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1791	error = uvm_vslock(vs, (void *)uva, len, prot);
1792	if (error) {
1793		return error;
1794	}
1795
1796	map = &vs->vm_map;
1797	upm = vm_map_pmap(map);
1798	kpm = vm_map_pmap(kernel_map);
1799	puva = trunc_page(uva);
1800	kva = uvm_km_alloc(kernel_map, klen, atop(puva) & uvmexp.colormask,
1801	    UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
1802	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1803		rv = pmap_extract(upm, puva + poff, &pa);
1804		KASSERT(rv);
1805		pmap_kenter_pa(kva + poff, pa, prot, PMAP_WIRED);
1806	}
1807	pmap_update(kpm);
1808
1809	/*
1810	 * Do the I/O.
1811	 */
1812
1813	koff = uva - trunc_page(uva);
1814	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1815			    genfs_dio_iodone);
1816
1817	/*
1818	 * Tear down the kernel mapping.
1819	 */
1820
1821	pmap_kremove(kva, klen);
1822	pmap_update(kpm);
1823	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1824
1825	/*
1826	 * Unwire the user pages.
1827	 */
1828
1829	uvm_vsunlock(vs, (void *)uva, len);
1830	return error;
1831}
1832