1/*	$NetBSD: genfs_io.c,v 1.104 2024/04/05 13:05:40 riastradh Exp $	*/
2
3/*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33#include <sys/cdefs.h>
34__KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.104 2024/04/05 13:05:40 riastradh Exp $");
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/proc.h>
39#include <sys/kernel.h>
40#include <sys/mount.h>
41#include <sys/vnode.h>
42#include <sys/kmem.h>
43#include <sys/kauth.h>
44#include <sys/fstrans.h>
45#include <sys/buf.h>
46#include <sys/atomic.h>
47
48#include <miscfs/genfs/genfs.h>
49#include <miscfs/genfs/genfs_node.h>
50#include <miscfs/specfs/specdev.h>
51
52#include <uvm/uvm.h>
53#include <uvm/uvm_pager.h>
54#include <uvm/uvm_page_array.h>
55
56static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
57    off_t, enum uio_rw);
58static void genfs_dio_iodone(struct buf *);
59
60static int genfs_getpages_read(struct vnode *, struct vm_page **, int, off_t,
61    off_t, bool, bool, bool, bool);
62static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
63    void (*)(struct buf *));
64static void genfs_rel_pages(struct vm_page **, unsigned int);
65
66int genfs_maxdio = MAXPHYS;
67
68static void
69genfs_rel_pages(struct vm_page **pgs, unsigned int npages)
70{
71	unsigned int i;
72
73	for (i = 0; i < npages; i++) {
74		struct vm_page *pg = pgs[i];
75
76		if (pg == NULL || pg == PGO_DONTCARE)
77			continue;
78		KASSERT(uvm_page_owner_locked_p(pg, true));
79		if (pg->flags & PG_FAKE) {
80			pg->flags |= PG_RELEASED;
81		}
82	}
83	uvm_page_unbusy(pgs, npages);
84}
85
86/*
87 * generic VM getpages routine.
88 * Return PG_BUSY pages for the given range,
89 * reading from backing store if necessary.
90 */
91
92int
93genfs_getpages(void *v)
94{
95	struct vop_getpages_args /* {
96		struct vnode *a_vp;
97		voff_t a_offset;
98		struct vm_page **a_m;
99		int *a_count;
100		int a_centeridx;
101		vm_prot_t a_access_type;
102		int a_advice;
103		int a_flags;
104	} */ * const ap = v;
105
106	off_t diskeof, memeof;
107	int i, error, npages, iflag;
108	const int flags = ap->a_flags;
109	struct vnode * const vp = ap->a_vp;
110	struct uvm_object * const uobj = &vp->v_uobj;
111	const bool async = (flags & PGO_SYNCIO) == 0;
112	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
113	const bool overwrite = (flags & PGO_OVERWRITE) != 0;
114	const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
115	const bool need_wapbl = (vp->v_mount->mnt_wapbl &&
116			(flags & PGO_JOURNALLOCKED) == 0);
117	const bool glocked = (flags & PGO_GLOCKHELD) != 0;
118	bool holds_wapbl = false;
119	struct mount *trans_mount = NULL;
120	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
121
122	UVMHIST_LOG(ubchist, "vp %#jx off 0x%jx/%jx count %jd",
123	    (uintptr_t)vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
124
125	KASSERT(memwrite >= overwrite);
126	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
127	    vp->v_type == VLNK || vp->v_type == VBLK);
128
129	/*
130	 * the object must be locked.  it can only be a read lock when
131	 * processing a read fault with PGO_LOCKED.
132	 */
133
134	KASSERT(rw_lock_held(uobj->vmobjlock));
135	KASSERT(rw_write_held(uobj->vmobjlock) ||
136	   ((flags & PGO_LOCKED) != 0 && !memwrite));
137
138#ifdef DIAGNOSTIC
139	if ((flags & PGO_JOURNALLOCKED) && vp->v_mount->mnt_wapbl)
140                WAPBL_JLOCK_ASSERT(vp->v_mount);
141#endif
142
143	/*
144	 * check for reclaimed vnode.  v_interlock is not held here, but
145	 * VI_DEADCHECK is set with vmobjlock held.
146	 */
147
148	iflag = atomic_load_relaxed(&vp->v_iflag);
149	if (__predict_false((iflag & VI_DEADCHECK) != 0)) {
150		mutex_enter(vp->v_interlock);
151		error = vdead_check(vp, VDEAD_NOWAIT);
152		mutex_exit(vp->v_interlock);
153		if (error) {
154			if ((flags & PGO_LOCKED) == 0)
155				rw_exit(uobj->vmobjlock);
156			return error;
157		}
158	}
159
160startover:
161	error = 0;
162	const voff_t origvsize = vp->v_size;
163	const off_t origoffset = ap->a_offset;
164	const int orignpages = *ap->a_count;
165
166	GOP_SIZE(vp, origvsize, &diskeof, 0);
167	if (flags & PGO_PASTEOF) {
168		off_t newsize;
169#if defined(DIAGNOSTIC)
170		off_t writeeof;
171#endif /* defined(DIAGNOSTIC) */
172
173		newsize = MAX(origvsize,
174		    origoffset + (orignpages << PAGE_SHIFT));
175		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
176#if defined(DIAGNOSTIC)
177		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
178		if (newsize > round_page(writeeof)) {
179			panic("%s: past eof: %" PRId64 " vs. %" PRId64,
180			    __func__, newsize, round_page(writeeof));
181		}
182#endif /* defined(DIAGNOSTIC) */
183	} else {
184		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
185	}
186	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
187	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0);
188	KASSERT(origoffset >= 0);
189	KASSERT(orignpages > 0);
190
191	/*
192	 * Bounds-check the request.
193	 */
194
195	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
196		if ((flags & PGO_LOCKED) == 0) {
197			rw_exit(uobj->vmobjlock);
198		}
199		UVMHIST_LOG(ubchist, "off 0x%jx count %jd goes past EOF 0x%jx",
200		    origoffset, *ap->a_count, memeof,0);
201		error = EINVAL;
202		goto out_err;
203	}
204
205	/* uobj is locked */
206
207	if ((flags & PGO_NOTIMESTAMP) == 0 &&
208	    (vp->v_type != VBLK ||
209	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
210		int updflags = 0;
211
212		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
213			updflags = GOP_UPDATE_ACCESSED;
214		}
215		if (memwrite) {
216			updflags |= GOP_UPDATE_MODIFIED;
217		}
218		if (updflags != 0) {
219			GOP_MARKUPDATE(vp, updflags);
220		}
221	}
222
223	/*
224	 * For PGO_LOCKED requests, just return whatever's in memory.
225	 */
226
227	if (flags & PGO_LOCKED) {
228		int nfound;
229		struct vm_page *pg;
230
231		KASSERT(!glocked);
232		npages = *ap->a_count;
233#if defined(DEBUG)
234		for (i = 0; i < npages; i++) {
235			pg = ap->a_m[i];
236			KASSERT(pg == NULL || pg == PGO_DONTCARE);
237		}
238#endif /* defined(DEBUG) */
239 		nfound = uvn_findpages(uobj, origoffset, &npages,
240		    ap->a_m, NULL,
241		    UFP_NOWAIT | UFP_NOALLOC | UFP_NOBUSY |
242		    (memwrite ? UFP_NORDONLY : 0));
243		KASSERT(npages == *ap->a_count);
244		if (nfound == 0) {
245			error = EBUSY;
246			goto out_err;
247		}
248		/*
249		 * lock and unlock g_glock to ensure that no one is truncating
250		 * the file behind us.
251		 */
252		if (!genfs_node_rdtrylock(vp)) {
253			/*
254			 * restore the array.
255			 */
256
257			for (i = 0; i < npages; i++) {
258				pg = ap->a_m[i];
259
260				if (pg != NULL && pg != PGO_DONTCARE) {
261					ap->a_m[i] = NULL;
262				}
263				KASSERT(ap->a_m[i] == NULL ||
264				    ap->a_m[i] == PGO_DONTCARE);
265			}
266		} else {
267			genfs_node_unlock(vp);
268		}
269		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
270		if (error == 0 && memwrite) {
271			for (i = 0; i < npages; i++) {
272				pg = ap->a_m[i];
273				if (pg == NULL || pg == PGO_DONTCARE) {
274					continue;
275				}
276				if (uvm_pagegetdirty(pg) ==
277				    UVM_PAGE_STATUS_CLEAN) {
278					uvm_pagemarkdirty(pg,
279					    UVM_PAGE_STATUS_UNKNOWN);
280				}
281			}
282		}
283		goto out_err;
284	}
285	rw_exit(uobj->vmobjlock);
286
287	/*
288	 * find the requested pages and make some simple checks.
289	 * leave space in the page array for a whole block.
290	 */
291
292	const int fs_bshift = (vp->v_type != VBLK) ?
293	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
294	const int fs_bsize = 1 << fs_bshift;
295#define	blk_mask	(fs_bsize - 1)
296#define	trunc_blk(x)	((x) & ~blk_mask)
297#define	round_blk(x)	(((x) + blk_mask) & ~blk_mask)
298
299	const int orignmempages = MIN(orignpages,
300	    round_page(memeof - origoffset) >> PAGE_SHIFT);
301	npages = orignmempages;
302	const off_t startoffset = trunc_blk(origoffset);
303	const off_t endoffset = MIN(
304	    round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
305	    round_page(memeof));
306	const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
307
308	const int pgs_size = sizeof(struct vm_page *) *
309	    ((endoffset - startoffset) >> PAGE_SHIFT);
310	struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
311
312	if (pgs_size > sizeof(pgs_onstack)) {
313		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
314		if (pgs == NULL) {
315			pgs = pgs_onstack;
316			error = ENOMEM;
317			goto out_err;
318		}
319	} else {
320		pgs = pgs_onstack;
321		(void)memset(pgs, 0, pgs_size);
322	}
323
324	UVMHIST_LOG(ubchist, "ridx %jd npages %jd startoff %#jx endoff %#jx",
325	    ridx, npages, startoffset, endoffset);
326
327	if (trans_mount == NULL) {
328		trans_mount = vp->v_mount;
329		fstrans_start(trans_mount);
330		/*
331		 * check if this vnode is still valid.
332		 */
333		mutex_enter(vp->v_interlock);
334		error = vdead_check(vp, 0);
335		mutex_exit(vp->v_interlock);
336		if (error)
337			goto out_err_free;
338		/*
339		 * XXX: This assumes that we come here only via
340		 * the mmio path
341		 */
342		if (blockalloc && need_wapbl) {
343			error = WAPBL_BEGIN(trans_mount);
344			if (error)
345				goto out_err_free;
346			holds_wapbl = true;
347		}
348	}
349
350	/*
351	 * hold g_glock to prevent a race with truncate.
352	 *
353	 * check if our idea of v_size is still valid.
354	 */
355
356	KASSERT(!glocked || genfs_node_wrlocked(vp));
357	if (!glocked) {
358		if (blockalloc) {
359			genfs_node_wrlock(vp);
360		} else {
361			genfs_node_rdlock(vp);
362		}
363	}
364	rw_enter(uobj->vmobjlock, RW_WRITER);
365	if (vp->v_size < origvsize) {
366		if (!glocked) {
367			genfs_node_unlock(vp);
368		}
369		if (pgs != pgs_onstack)
370			kmem_free(pgs, pgs_size);
371		goto startover;
372	}
373
374	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx], NULL,
375	    async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
376		if (!glocked) {
377			genfs_node_unlock(vp);
378		}
379		KASSERT(async != 0);
380		genfs_rel_pages(&pgs[ridx], orignmempages);
381		rw_exit(uobj->vmobjlock);
382		error = EBUSY;
383		goto out_err_free;
384	}
385
386	/*
387	 * if PGO_OVERWRITE is set, don't bother reading the pages.
388	 */
389
390	if (overwrite) {
391		if (!glocked) {
392			genfs_node_unlock(vp);
393		}
394		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
395
396		for (i = 0; i < npages; i++) {
397			struct vm_page *pg = pgs[ridx + i];
398
399			/*
400			 * it's caller's responsibility to allocate blocks
401			 * beforehand for the overwrite case.
402			 */
403
404			KASSERT((pg->flags & PG_RDONLY) == 0 || !blockalloc);
405			pg->flags &= ~PG_RDONLY;
406
407			/*
408			 * mark the page DIRTY.
409			 * otherwise another thread can do putpages and pull
410			 * our vnode from syncer's queue before our caller does
411			 * ubc_release.  note that putpages won't see CLEAN
412			 * pages even if they are BUSY.
413			 */
414
415			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
416		}
417		npages += ridx;
418		goto out;
419	}
420
421	/*
422	 * if the pages are already resident, just return them.
423	 */
424
425	for (i = 0; i < npages; i++) {
426		struct vm_page *pg = pgs[ridx + i];
427
428		if ((pg->flags & PG_FAKE) ||
429		    (blockalloc && (pg->flags & PG_RDONLY) != 0)) {
430			break;
431		}
432	}
433	if (i == npages) {
434		if (!glocked) {
435			genfs_node_unlock(vp);
436		}
437		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
438		npages += ridx;
439		goto out;
440	}
441
442	/*
443	 * the page wasn't resident and we're not overwriting,
444	 * so we're going to have to do some i/o.
445	 * find any additional pages needed to cover the expanded range.
446	 */
447
448	npages = (endoffset - startoffset) >> PAGE_SHIFT;
449	if (startoffset != origoffset || npages != orignmempages) {
450		int npgs;
451
452		/*
453		 * we need to avoid deadlocks caused by locking
454		 * additional pages at lower offsets than pages we
455		 * already have locked.  unlock them all and start over.
456		 */
457
458		genfs_rel_pages(&pgs[ridx], orignmempages);
459		memset(pgs, 0, pgs_size);
460
461		UVMHIST_LOG(ubchist, "reset npages start 0x%jx end 0x%jx",
462		    startoffset, endoffset, 0,0);
463		npgs = npages;
464		if (uvn_findpages(uobj, startoffset, &npgs, pgs, NULL,
465		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
466			if (!glocked) {
467				genfs_node_unlock(vp);
468			}
469			KASSERT(async != 0);
470			genfs_rel_pages(pgs, npages);
471			rw_exit(uobj->vmobjlock);
472			error = EBUSY;
473			goto out_err_free;
474		}
475	}
476
477	rw_exit(uobj->vmobjlock);
478	error = genfs_getpages_read(vp, pgs, npages, startoffset, diskeof,
479	    async, memwrite, blockalloc, glocked);
480	if (!glocked) {
481		genfs_node_unlock(vp);
482	}
483	if (error == 0 && async)
484		goto out_err_free;
485	rw_enter(uobj->vmobjlock, RW_WRITER);
486
487	/*
488	 * we're almost done!  release the pages...
489	 * for errors, we free the pages.
490	 * otherwise we activate them and mark them as valid and clean.
491	 * also, unbusy pages that were not actually requested.
492	 */
493
494	if (error) {
495		genfs_rel_pages(pgs, npages);
496		rw_exit(uobj->vmobjlock);
497		UVMHIST_LOG(ubchist, "returning error %jd", error,0,0,0);
498		goto out_err_free;
499	}
500
501out:
502	UVMHIST_LOG(ubchist, "succeeding, npages %jd", npages,0,0,0);
503	error = 0;
504	for (i = 0; i < npages; i++) {
505		struct vm_page *pg = pgs[i];
506		if (pg == NULL) {
507			continue;
508		}
509		UVMHIST_LOG(ubchist, "examining pg %#jx flags 0x%jx",
510		    (uintptr_t)pg, pg->flags, 0,0);
511		if (pg->flags & PG_FAKE && !overwrite) {
512			/*
513			 * we've read page's contents from the backing storage.
514			 *
515			 * for a read fault, we keep them CLEAN;  if we
516			 * encountered a hole while reading, the pages can
517			 * already been dirtied with zeros.
518			 */
519			KASSERTMSG(blockalloc || uvm_pagegetdirty(pg) ==
520			    UVM_PAGE_STATUS_CLEAN, "page %p not clean", pg);
521			pg->flags &= ~PG_FAKE;
522		}
523		KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
524		if (i < ridx || i >= ridx + orignmempages || async) {
525			UVMHIST_LOG(ubchist, "unbusy pg %#jx offset 0x%jx",
526			    (uintptr_t)pg, pg->offset,0,0);
527			if (pg->flags & PG_FAKE) {
528				KASSERT(overwrite);
529				uvm_pagezero(pg);
530			}
531			if (pg->flags & PG_RELEASED) {
532				uvm_pagefree(pg);
533				continue;
534			}
535			uvm_pagelock(pg);
536			uvm_pageenqueue(pg);
537			uvm_pagewakeup(pg);
538			uvm_pageunlock(pg);
539			pg->flags &= ~(PG_BUSY|PG_FAKE);
540			UVM_PAGE_OWN(pg, NULL);
541		} else if (memwrite && !overwrite &&
542		    uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN) {
543			/*
544			 * for a write fault, start dirtiness tracking of
545			 * requested pages.
546			 */
547			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
548		}
549	}
550	rw_exit(uobj->vmobjlock);
551	if (ap->a_m != NULL) {
552		memcpy(ap->a_m, &pgs[ridx],
553		    orignmempages * sizeof(struct vm_page *));
554	}
555
556out_err_free:
557	if (pgs != NULL && pgs != pgs_onstack)
558		kmem_free(pgs, pgs_size);
559out_err:
560	if (trans_mount != NULL) {
561		if (holds_wapbl)
562			WAPBL_END(trans_mount);
563		fstrans_done(trans_mount);
564	}
565	return error;
566}
567
568/*
569 * genfs_getpages_read: Read the pages in with VOP_BMAP/VOP_STRATEGY.
570 *
571 * "glocked" (which is currently not actually used) tells us not whether
572 * the genfs_node is locked on entry (it always is) but whether it was
573 * locked on entry to genfs_getpages.
574 */
575static int
576genfs_getpages_read(struct vnode *vp, struct vm_page **pgs, int npages,
577    off_t startoffset, off_t diskeof,
578    bool async, bool memwrite, bool blockalloc, bool glocked)
579{
580	struct uvm_object * const uobj = &vp->v_uobj;
581	const int fs_bshift = (vp->v_type != VBLK) ?
582	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
583	const int dev_bshift = (vp->v_type != VBLK) ?
584	    vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
585	kauth_cred_t const cred = curlwp->l_cred;		/* XXXUBC curlwp */
586	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
587	vaddr_t kva;
588	struct buf *bp, *mbp;
589	bool sawhole = false;
590	int i;
591	int error = 0;
592
593	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
594
595	/*
596	 * read the desired page(s).
597	 */
598
599	totalbytes = npages << PAGE_SHIFT;
600	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
601	tailbytes = totalbytes - bytes;
602	skipbytes = 0;
603
604	kva = uvm_pagermapin(pgs, npages,
605	    UVMPAGER_MAPIN_READ | (async ? 0 : UVMPAGER_MAPIN_WAITOK));
606	if (kva == 0)
607		return EBUSY;
608
609	mbp = getiobuf(vp, true);
610	mbp->b_bufsize = totalbytes;
611	mbp->b_data = (void *)kva;
612	mbp->b_resid = mbp->b_bcount = bytes;
613	mbp->b_cflags |= BC_BUSY;
614	if (async) {
615		mbp->b_flags = B_READ | B_ASYNC;
616		mbp->b_iodone = uvm_aio_aiodone;
617	} else {
618		mbp->b_flags = B_READ;
619		mbp->b_iodone = NULL;
620	}
621	if (async)
622		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
623	else
624		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
625
626	/*
627	 * if EOF is in the middle of the range, zero the part past EOF.
628	 * skip over pages which are not PG_FAKE since in that case they have
629	 * valid data that we need to preserve.
630	 */
631
632	tailstart = bytes;
633	while (tailbytes > 0) {
634		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
635
636		KASSERT(len <= tailbytes);
637		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
638			memset((void *)(kva + tailstart), 0, len);
639			UVMHIST_LOG(ubchist, "tailbytes %#jx 0x%jx 0x%jx",
640			    (uintptr_t)kva, tailstart, len, 0);
641		}
642		tailstart += len;
643		tailbytes -= len;
644	}
645
646	/*
647	 * now loop over the pages, reading as needed.
648	 */
649
650	bp = NULL;
651	off_t offset;
652	for (offset = startoffset;
653	    bytes > 0;
654	    offset += iobytes, bytes -= iobytes) {
655		int run;
656		daddr_t lbn, blkno;
657		int pidx;
658		struct vnode *devvp;
659
660		/*
661		 * skip pages which don't need to be read.
662		 */
663
664		pidx = (offset - startoffset) >> PAGE_SHIFT;
665		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
666			size_t b;
667
668			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
669			if ((pgs[pidx]->flags & PG_RDONLY)) {
670				sawhole = true;
671			}
672			b = MIN(PAGE_SIZE, bytes);
673			offset += b;
674			bytes -= b;
675			skipbytes += b;
676			pidx++;
677			UVMHIST_LOG(ubchist, "skipping, new offset 0x%jx",
678			    offset, 0,0,0);
679			if (bytes == 0) {
680				goto loopdone;
681			}
682		}
683
684		/*
685		 * bmap the file to find out the blkno to read from and
686		 * how much we can read in one i/o.  if bmap returns an error,
687		 * skip the rest of the top-level i/o.
688		 */
689
690		lbn = offset >> fs_bshift;
691		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
692		if (error) {
693			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%jx -> %jd",
694			    lbn,error,0,0);
695			skipbytes += bytes;
696			bytes = 0;
697			goto loopdone;
698		}
699
700		/*
701		 * see how many pages can be read with this i/o.
702		 * reduce the i/o size if necessary to avoid
703		 * overwriting pages with valid data.
704		 */
705
706		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
707		    bytes);
708		if (offset + iobytes > round_page(offset)) {
709			int pcount;
710
711			pcount = 1;
712			while (pidx + pcount < npages &&
713			    pgs[pidx + pcount]->flags & PG_FAKE) {
714				pcount++;
715			}
716			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
717			    (offset - trunc_page(offset)));
718		}
719
720		/*
721		 * if this block isn't allocated, zero it instead of
722		 * reading it.  unless we are going to allocate blocks,
723		 * mark the pages we zeroed PG_RDONLY.
724		 */
725
726		if (blkno == (daddr_t)-1) {
727			int holepages = (round_page(offset + iobytes) -
728			    trunc_page(offset)) >> PAGE_SHIFT;
729			UVMHIST_LOG(ubchist, "lbn 0x%jx -> HOLE", lbn,0,0,0);
730
731			sawhole = true;
732			memset((char *)kva + (offset - startoffset), 0,
733			    iobytes);
734			skipbytes += iobytes;
735
736			if (!blockalloc) {
737				rw_enter(uobj->vmobjlock, RW_WRITER);
738				for (i = 0; i < holepages; i++) {
739					pgs[pidx + i]->flags |= PG_RDONLY;
740				}
741				rw_exit(uobj->vmobjlock);
742			}
743			continue;
744		}
745
746		/*
747		 * allocate a sub-buf for this piece of the i/o
748		 * (or just use mbp if there's only 1 piece),
749		 * and start it going.
750		 */
751
752		if (offset == startoffset && iobytes == bytes) {
753			bp = mbp;
754		} else {
755			UVMHIST_LOG(ubchist, "vp %#jx bp %#jx num now %jd",
756			    (uintptr_t)vp, (uintptr_t)bp, vp->v_numoutput, 0);
757			bp = getiobuf(vp, true);
758			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
759		}
760		bp->b_lblkno = 0;
761
762		/* adjust physical blkno for partial blocks */
763		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
764		    dev_bshift);
765
766		UVMHIST_LOG(ubchist,
767		    "bp %#jx offset 0x%x bcount 0x%x blkno 0x%x",
768		    (uintptr_t)bp, offset, bp->b_bcount, bp->b_blkno);
769
770		VOP_STRATEGY(devvp, bp);
771	}
772
773loopdone:
774	nestiobuf_done(mbp, skipbytes, error);
775	if (async) {
776		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
777		return 0;
778	}
779	if (bp != NULL) {
780		error = biowait(mbp);
781	}
782
783	/* Remove the mapping (make KVA available as soon as possible) */
784	uvm_pagermapout(kva, npages);
785
786	/*
787	 * if this we encountered a hole then we have to do a little more work.
788	 * for read faults, we marked the page PG_RDONLY so that future
789	 * write accesses to the page will fault again.
790	 * for write faults, we must make sure that the backing store for
791	 * the page is completely allocated while the pages are locked.
792	 */
793
794	if (!error && sawhole && blockalloc) {
795		error = GOP_ALLOC(vp, startoffset,
796		    npages << PAGE_SHIFT, 0, cred);
797		UVMHIST_LOG(ubchist, "gop_alloc off 0x%jx/0x%jx -> %jd",
798		    startoffset, npages << PAGE_SHIFT, error,0);
799		if (!error) {
800			rw_enter(uobj->vmobjlock, RW_WRITER);
801			for (i = 0; i < npages; i++) {
802				struct vm_page *pg = pgs[i];
803
804				if (pg == NULL) {
805					continue;
806				}
807				pg->flags &= ~PG_RDONLY;
808				uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
809				UVMHIST_LOG(ubchist, "mark dirty pg %#jx",
810				    (uintptr_t)pg, 0, 0, 0);
811			}
812			rw_exit(uobj->vmobjlock);
813		}
814	}
815
816	putiobuf(mbp);
817	return error;
818}
819
820/*
821 * generic VM putpages routine.
822 * Write the given range of pages to backing store.
823 *
824 * => "offhi == 0" means flush all pages at or after "offlo".
825 * => object should be locked by caller.  we return with the
826 *      object unlocked.
827 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
828 *	thus, a caller might want to unlock higher level resources
829 *	(e.g. vm_map) before calling flush.
830 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
831 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
832 *
833 * note on "cleaning" object and PG_BUSY pages:
834 *	this routine is holding the lock on the object.   the only time
835 *	that it can run into a PG_BUSY page that it does not own is if
836 *	some other process has started I/O on the page (e.g. either
837 *	a pagein, or a pageout).  if the PG_BUSY page is being paged
838 *	in, then it can not be dirty (!UVM_PAGE_STATUS_CLEAN) because no
839 *	one has	had a chance to modify it yet.  if the PG_BUSY page is
840 *	being paged out then it means that someone else has already started
841 *	cleaning the page for us (how nice!).  in this case, if we
842 *	have syncio specified, then after we make our pass through the
843 *	object we need to wait for the other PG_BUSY pages to clear
844 *	off (i.e. we need to do an iosync).   also note that once a
845 *	page is PG_BUSY it must stay in its object until it is un-busyed.
846 */
847
848int
849genfs_putpages(void *v)
850{
851	struct vop_putpages_args /* {
852		struct vnode *a_vp;
853		voff_t a_offlo;
854		voff_t a_offhi;
855		int a_flags;
856	} */ * const ap = v;
857
858	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
859	    ap->a_flags, NULL);
860}
861
862int
863genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
864    int origflags, struct vm_page **busypg)
865{
866	struct uvm_object * const uobj = &vp->v_uobj;
867	krwlock_t * const slock = uobj->vmobjlock;
868	off_t nextoff;
869	int i, error, npages, nback;
870	int freeflag;
871	/*
872	 * This array is larger than it should so that it's size is constant.
873	 * The right size is MAXPAGES.
874	 */
875	struct vm_page *pgs[MAXPHYS / MIN_PAGE_SIZE];
876#define MAXPAGES (MAXPHYS / PAGE_SIZE)
877	struct vm_page *pg, *tpg;
878	struct uvm_page_array a;
879	bool wasclean, needs_clean;
880	bool async = (origflags & PGO_SYNCIO) == 0;
881	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
882	struct mount *trans_mp;
883	int flags;
884	bool modified;		/* if we write out any pages */
885	bool holds_wapbl;
886	bool cleanall;		/* try to pull off from the syncer's list */
887	bool onworklst;
888	bool nodirty;
889	const bool dirtyonly = (origflags & (PGO_DEACTIVATE|PGO_FREE)) == 0;
890
891	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
892
893	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
894	KASSERT((startoff & PAGE_MASK) == 0);
895	KASSERT((endoff & PAGE_MASK) == 0);
896	KASSERT(startoff < endoff || endoff == 0);
897	KASSERT(rw_write_held(slock));
898
899	UVMHIST_LOG(ubchist, "vp %#jx pages %jd off 0x%jx len 0x%jx",
900	    (uintptr_t)vp, uobj->uo_npages, startoff, endoff - startoff);
901
902#ifdef DIAGNOSTIC
903	if ((origflags & PGO_JOURNALLOCKED) && vp->v_mount->mnt_wapbl)
904                WAPBL_JLOCK_ASSERT(vp->v_mount);
905#endif
906
907	trans_mp = NULL;
908	holds_wapbl = false;
909
910retry:
911	modified = false;
912	flags = origflags;
913
914	/*
915	 * shortcut if we have no pages to process.
916	 */
917
918	nodirty = uvm_obj_clean_p(uobj);
919#ifdef DIAGNOSTIC
920	mutex_enter(vp->v_interlock);
921	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 || nodirty);
922	mutex_exit(vp->v_interlock);
923#endif
924	if (uobj->uo_npages == 0 || (dirtyonly && nodirty)) {
925		mutex_enter(vp->v_interlock);
926		if (vp->v_iflag & VI_ONWORKLST && LIST_EMPTY(&vp->v_dirtyblkhd)) {
927			vn_syncer_remove_from_worklist(vp);
928		}
929		mutex_exit(vp->v_interlock);
930		if (trans_mp) {
931			if (holds_wapbl)
932				WAPBL_END(trans_mp);
933			fstrans_done(trans_mp);
934		}
935		rw_exit(slock);
936		return (0);
937	}
938
939	/*
940	 * the vnode has pages, set up to process the request.
941	 */
942
943	if (trans_mp == NULL && (flags & PGO_CLEANIT) != 0) {
944		if (pagedaemon) {
945			/* Pagedaemon must not sleep here. */
946			trans_mp = vp->v_mount;
947			error = fstrans_start_nowait(trans_mp);
948			if (error) {
949				rw_exit(slock);
950				return error;
951			}
952		} else {
953			/*
954			 * Cannot use vdeadcheck() here as this operation
955			 * usually gets used from VOP_RECLAIM().  Test for
956			 * change of v_mount instead and retry on change.
957			 */
958			rw_exit(slock);
959			trans_mp = vp->v_mount;
960			fstrans_start(trans_mp);
961			if (vp->v_mount != trans_mp) {
962				fstrans_done(trans_mp);
963				trans_mp = NULL;
964			} else {
965				holds_wapbl = (trans_mp->mnt_wapbl &&
966				    (origflags & PGO_JOURNALLOCKED) == 0);
967				if (holds_wapbl) {
968					error = WAPBL_BEGIN(trans_mp);
969					if (error) {
970						fstrans_done(trans_mp);
971						return error;
972					}
973				}
974			}
975			rw_enter(slock, RW_WRITER);
976			goto retry;
977		}
978	}
979
980	error = 0;
981	wasclean = uvm_obj_nowriteback_p(uobj);
982	nextoff = startoff;
983	if (endoff == 0 || flags & PGO_ALLPAGES) {
984		endoff = trunc_page(LLONG_MAX);
985	}
986
987	/*
988	 * if this vnode is known not to have dirty pages,
989	 * don't bother to clean it out.
990	 */
991
992	if (nodirty) {
993		/* We handled the dirtyonly && nodirty case above.  */
994		KASSERT(!dirtyonly);
995		flags &= ~PGO_CLEANIT;
996	}
997
998	/*
999	 * start the loop to scan pages.
1000	 */
1001
1002	cleanall = true;
1003	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1004	uvm_page_array_init(&a, uobj, dirtyonly ? (UVM_PAGE_ARRAY_FILL_DIRTY |
1005	    (!async ? UVM_PAGE_ARRAY_FILL_WRITEBACK : 0)) : 0);
1006	for (;;) {
1007		bool pgprotected;
1008
1009		/*
1010		 * if !dirtyonly, iterate over all resident pages in the range.
1011		 *
1012		 * if dirtyonly, only possibly dirty pages are interesting.
1013		 * however, if we are asked to sync for integrity, we should
1014		 * wait on pages being written back by other threads as well.
1015		 */
1016
1017		pg = uvm_page_array_fill_and_peek(&a, nextoff, 0);
1018		if (pg == NULL) {
1019			break;
1020		}
1021
1022		KASSERT(pg->uobject == uobj);
1023		KASSERT((pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1024		    (pg->flags & (PG_BUSY)) != 0);
1025		KASSERT(pg->offset >= startoff);
1026		KASSERT(pg->offset >= nextoff);
1027		KASSERT(!dirtyonly ||
1028		    uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN ||
1029		    uvm_obj_page_writeback_p(pg));
1030
1031		if (pg->offset >= endoff) {
1032			break;
1033		}
1034
1035		/*
1036		 * a preempt point.
1037		 */
1038
1039		if (preempt_needed()) {
1040			nextoff = pg->offset; /* visit this page again */
1041			rw_exit(slock);
1042			preempt();
1043			/*
1044			 * as we dropped the object lock, our cached pages can
1045			 * be stale.
1046			 */
1047			uvm_page_array_clear(&a);
1048			rw_enter(slock, RW_WRITER);
1049			continue;
1050		}
1051
1052		/*
1053		 * if the current page is busy, wait for it to become unbusy.
1054		 */
1055
1056		if ((pg->flags & PG_BUSY) != 0) {
1057			UVMHIST_LOG(ubchist, "busy %#jx", (uintptr_t)pg,
1058			   0, 0, 0);
1059			if ((pg->flags & (PG_RELEASED|PG_PAGEOUT)) != 0
1060			    && (flags & PGO_BUSYFAIL) != 0) {
1061				UVMHIST_LOG(ubchist, "busyfail %#jx",
1062				    (uintptr_t)pg, 0, 0, 0);
1063				error = EDEADLK;
1064				if (busypg != NULL)
1065					*busypg = pg;
1066				break;
1067			}
1068			if (pagedaemon) {
1069				/*
1070				 * someone has taken the page while we
1071				 * dropped the lock for fstrans_start.
1072				 */
1073				break;
1074			}
1075			/*
1076			 * don't bother to wait on other's activities
1077			 * unless we are asked to sync for integrity.
1078			 */
1079			if (!async && (flags & PGO_RECLAIM) == 0) {
1080				wasclean = false;
1081				nextoff = pg->offset + PAGE_SIZE;
1082				uvm_page_array_advance(&a);
1083				continue;
1084			}
1085			nextoff = pg->offset; /* visit this page again */
1086			uvm_pagewait(pg, slock, "genput");
1087			/*
1088			 * as we dropped the object lock, our cached pages can
1089			 * be stale.
1090			 */
1091			uvm_page_array_clear(&a);
1092			rw_enter(slock, RW_WRITER);
1093			continue;
1094		}
1095
1096		nextoff = pg->offset + PAGE_SIZE;
1097		uvm_page_array_advance(&a);
1098
1099		/*
1100		 * if we're freeing, remove all mappings of the page now.
1101		 * if we're cleaning, check if the page is needs to be cleaned.
1102		 */
1103
1104		pgprotected = false;
1105		if (flags & PGO_FREE) {
1106			pmap_page_protect(pg, VM_PROT_NONE);
1107			pgprotected = true;
1108		} else if (flags & PGO_CLEANIT) {
1109
1110			/*
1111			 * if we still have some hope to pull this vnode off
1112			 * from the syncer queue, write-protect the page.
1113			 */
1114
1115			if (cleanall && wasclean) {
1116
1117				/*
1118				 * uobj pages get wired only by uvm_fault
1119				 * where uobj is locked.
1120				 */
1121
1122				if (pg->wire_count == 0) {
1123					pmap_page_protect(pg,
1124					    VM_PROT_READ|VM_PROT_EXECUTE);
1125					pgprotected = true;
1126				} else {
1127					cleanall = false;
1128				}
1129			}
1130		}
1131
1132		if (flags & PGO_CLEANIT) {
1133			needs_clean = uvm_pagecheckdirty(pg, pgprotected);
1134		} else {
1135			needs_clean = false;
1136		}
1137
1138		/*
1139		 * if we're cleaning, build a cluster.
1140		 * the cluster will consist of pages which are currently dirty.
1141		 * if not cleaning, just operate on the one page.
1142		 */
1143
1144		if (needs_clean) {
1145			wasclean = false;
1146			memset(pgs, 0, sizeof(pgs));
1147			pg->flags |= PG_BUSY;
1148			UVM_PAGE_OWN(pg, "genfs_putpages");
1149
1150			/*
1151			 * let the fs constrain the offset range of the cluster.
1152			 * we additionally constrain the range here such that
1153			 * it fits in the "pgs" pages array.
1154			 */
1155
1156			off_t fslo, fshi, genlo, lo, off = pg->offset;
1157			GOP_PUTRANGE(vp, off, &fslo, &fshi);
1158			KASSERT(fslo == trunc_page(fslo));
1159			KASSERT(fslo <= off);
1160			KASSERT(fshi == trunc_page(fshi));
1161			KASSERT(fshi == 0 || off < fshi);
1162
1163			if (off > MAXPHYS / 2)
1164				genlo = trunc_page(off - (MAXPHYS / 2));
1165			else
1166				genlo = 0;
1167			lo = MAX(fslo, genlo);
1168
1169			/*
1170			 * first look backward.
1171			 */
1172
1173			npages = (off - lo) >> PAGE_SHIFT;
1174			nback = npages;
1175			uvn_findpages(uobj, off - PAGE_SIZE, &nback,
1176			    &pgs[0], NULL,
1177			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1178			if (nback) {
1179				memmove(&pgs[0], &pgs[npages - nback],
1180				    nback * sizeof(pgs[0]));
1181				if (npages - nback < nback)
1182					memset(&pgs[nback], 0,
1183					    (npages - nback) * sizeof(pgs[0]));
1184				else
1185					memset(&pgs[npages - nback], 0,
1186					    nback * sizeof(pgs[0]));
1187			}
1188
1189			/*
1190			 * then plug in our page of interest.
1191			 */
1192
1193			pgs[nback] = pg;
1194
1195			/*
1196			 * then look forward to fill in the remaining space in
1197			 * the array of pages.
1198			 *
1199			 * pass our cached array of pages so that hopefully
1200			 * uvn_findpages can find some good pages in it.
1201			 * the array a was filled above with the one of
1202			 * following sets of flags:
1203			 *	0
1204			 *	UVM_PAGE_ARRAY_FILL_DIRTY
1205			 *	UVM_PAGE_ARRAY_FILL_DIRTY|WRITEBACK
1206			 *
1207			 * XXX this is fragile but it'll work: the array
1208			 * was earlier filled sparsely, but UFP_DIRTYONLY
1209			 * implies dense.  see corresponding comment in
1210			 * uvn_findpages().
1211			 */
1212
1213			npages = MAXPAGES - nback - 1;
1214			if (fshi)
1215				npages = MIN(npages,
1216					     (fshi - off - 1) >> PAGE_SHIFT);
1217			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1218			    &pgs[nback + 1], &a,
1219			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1220			npages += nback + 1;
1221		} else {
1222			pgs[0] = pg;
1223			npages = 1;
1224			nback = 0;
1225		}
1226
1227		/*
1228		 * apply FREE or DEACTIVATE options if requested.
1229		 */
1230
1231		for (i = 0; i < npages; i++) {
1232			tpg = pgs[i];
1233			KASSERT(tpg->uobject == uobj);
1234			KASSERT(i == 0 ||
1235			    pgs[i-1]->offset + PAGE_SIZE == tpg->offset);
1236			KASSERT(!needs_clean || uvm_pagegetdirty(pgs[i]) !=
1237			    UVM_PAGE_STATUS_DIRTY);
1238			if (needs_clean) {
1239				/*
1240				 * mark pages as WRITEBACK so that concurrent
1241				 * fsync can find and wait for our activities.
1242				 */
1243				uvm_obj_page_set_writeback(pgs[i]);
1244			}
1245			if (tpg->offset < startoff || tpg->offset >= endoff)
1246				continue;
1247			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1248				uvm_pagelock(tpg);
1249				uvm_pagedeactivate(tpg);
1250				uvm_pageunlock(tpg);
1251			} else if (flags & PGO_FREE) {
1252				pmap_page_protect(tpg, VM_PROT_NONE);
1253				if (tpg->flags & PG_BUSY) {
1254					tpg->flags |= freeflag;
1255					if (pagedaemon) {
1256						uvm_pageout_start(1);
1257						uvm_pagelock(tpg);
1258						uvm_pagedequeue(tpg);
1259						uvm_pageunlock(tpg);
1260					}
1261				} else {
1262
1263					/*
1264					 * ``page is not busy''
1265					 * implies that npages is 1
1266					 * and needs_clean is false.
1267					 */
1268
1269					KASSERT(npages == 1);
1270					KASSERT(!needs_clean);
1271					KASSERT(pg == tpg);
1272					KASSERT(nextoff ==
1273					    tpg->offset + PAGE_SIZE);
1274					uvm_pagefree(tpg);
1275					if (pagedaemon)
1276						uvmexp.pdfreed++;
1277				}
1278			}
1279		}
1280		if (needs_clean) {
1281			modified = true;
1282			KASSERT(nextoff == pg->offset + PAGE_SIZE);
1283			KASSERT(nback < npages);
1284			nextoff = pg->offset + ((npages - nback) << PAGE_SHIFT);
1285			KASSERT(pgs[nback] == pg);
1286			KASSERT(nextoff == pgs[npages - 1]->offset + PAGE_SIZE);
1287
1288			/*
1289			 * start the i/o.
1290			 */
1291			rw_exit(slock);
1292			error = GOP_WRITE(vp, pgs, npages, flags);
1293			/*
1294			 * as we dropped the object lock, our cached pages can
1295			 * be stale.
1296			 */
1297			uvm_page_array_clear(&a);
1298			rw_enter(slock, RW_WRITER);
1299			if (error) {
1300				break;
1301			}
1302		}
1303	}
1304	uvm_page_array_fini(&a);
1305
1306	/*
1307	 * update ctime/mtime if the modification we started writing out might
1308	 * be from mmap'ed write.
1309	 *
1310	 * this is necessary when an application keeps a file mmaped and
1311	 * repeatedly modifies it via the window.  note that, because we
1312	 * don't always write-protect pages when cleaning, such modifications
1313	 * might not involve any page faults.
1314	 */
1315
1316	mutex_enter(vp->v_interlock);
1317	if (modified && (vp->v_iflag & VI_WRMAP) != 0 &&
1318	    (vp->v_type != VBLK ||
1319	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1320		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1321	}
1322
1323	/*
1324	 * if we no longer have any possibly dirty pages, take us off the
1325	 * syncer list.
1326	 */
1327
1328	if ((vp->v_iflag & VI_ONWORKLST) != 0 && uvm_obj_clean_p(uobj) &&
1329	    LIST_EMPTY(&vp->v_dirtyblkhd)) {
1330		vn_syncer_remove_from_worklist(vp);
1331	}
1332
1333	/* Wait for output to complete. */
1334	rw_exit(slock);
1335	if (!wasclean && !async && vp->v_numoutput != 0) {
1336		while (vp->v_numoutput != 0)
1337			cv_wait(&vp->v_cv, vp->v_interlock);
1338	}
1339	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1340	mutex_exit(vp->v_interlock);
1341
1342	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1343		/*
1344		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1345		 * retrying is not a big deal because, in many cases,
1346		 * uobj->uo_npages is already 0 here.
1347		 */
1348		rw_enter(slock, RW_WRITER);
1349		goto retry;
1350	}
1351
1352	if (trans_mp) {
1353		if (holds_wapbl)
1354			WAPBL_END(trans_mp);
1355		fstrans_done(trans_mp);
1356	}
1357
1358	return (error);
1359}
1360
1361/*
1362 * Default putrange method for file systems that do not care
1363 * how many pages are given to one GOP_WRITE() call.
1364 */
1365void
1366genfs_gop_putrange(struct vnode *vp, off_t off, off_t *lop, off_t *hip)
1367{
1368
1369	*lop = 0;
1370	*hip = 0;
1371}
1372
1373int
1374genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1375{
1376	off_t off;
1377	vaddr_t kva;
1378	size_t len;
1379	int error;
1380	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1381
1382	UVMHIST_LOG(ubchist, "vp %#jx pgs %#jx npages %jd flags 0x%jx",
1383	    (uintptr_t)vp, (uintptr_t)pgs, npages, flags);
1384
1385	off = pgs[0]->offset;
1386	kva = uvm_pagermapin(pgs, npages,
1387	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1388	len = npages << PAGE_SHIFT;
1389
1390	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1391			    uvm_aio_aiodone);
1392
1393	return error;
1394}
1395
1396/*
1397 * genfs_gop_write_rwmap:
1398 *
1399 * a variant of genfs_gop_write.  it's used by UDF for its directory buffers.
1400 * this maps pages with PROT_WRITE so that VOP_STRATEGY can modifies
1401 * the contents before writing it out to the underlying storage.
1402 */
1403
1404int
1405genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages,
1406    int flags)
1407{
1408	off_t off;
1409	vaddr_t kva;
1410	size_t len;
1411	int error;
1412	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1413
1414	UVMHIST_LOG(ubchist, "vp %#jx pgs %#jx npages %jd flags 0x%jx",
1415	    (uintptr_t)vp, (uintptr_t)pgs, npages, flags);
1416
1417	off = pgs[0]->offset;
1418	kva = uvm_pagermapin(pgs, npages,
1419	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1420	len = npages << PAGE_SHIFT;
1421
1422	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1423			    uvm_aio_aiodone);
1424
1425	return error;
1426}
1427
1428/*
1429 * Backend routine for doing I/O to vnode pages.  Pages are already locked
1430 * and mapped into kernel memory.  Here we just look up the underlying
1431 * device block addresses and call the strategy routine.
1432 */
1433
1434static int
1435genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1436    enum uio_rw rw, void (*iodone)(struct buf *))
1437{
1438	int s, error;
1439	int fs_bshift, dev_bshift;
1440	off_t eof, offset, startoffset;
1441	size_t bytes, iobytes, skipbytes;
1442	struct buf *mbp, *bp;
1443	const bool async = (flags & PGO_SYNCIO) == 0;
1444	const bool lazy = (flags & PGO_LAZY) == 0;
1445	const bool iowrite = rw == UIO_WRITE;
1446	const int brw = iowrite ? B_WRITE : B_READ;
1447	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1448
1449	UVMHIST_LOG(ubchist, "vp %#jx kva %#jx len 0x%jx flags 0x%jx",
1450	    (uintptr_t)vp, (uintptr_t)kva, len, flags);
1451
1452	KASSERT(vp->v_size != VSIZENOTSET);
1453	KASSERT(vp->v_writesize != VSIZENOTSET);
1454	KASSERTMSG(vp->v_size <= vp->v_writesize, "vp=%p"
1455	    " v_size=0x%llx v_writesize=0x%llx", vp,
1456	    (unsigned long long)vp->v_size,
1457	    (unsigned long long)vp->v_writesize);
1458	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1459	if (vp->v_type != VBLK) {
1460		fs_bshift = vp->v_mount->mnt_fs_bshift;
1461		dev_bshift = vp->v_mount->mnt_dev_bshift;
1462	} else {
1463		fs_bshift = DEV_BSHIFT;
1464		dev_bshift = DEV_BSHIFT;
1465	}
1466	error = 0;
1467	startoffset = off;
1468	bytes = MIN(len, eof - startoffset);
1469	skipbytes = 0;
1470	KASSERT(bytes != 0);
1471
1472	if (iowrite) {
1473		/*
1474		 * why += 2?
1475		 * 1 for biodone, 1 for uvm_aio_aiodone.
1476		 */
1477		mutex_enter(vp->v_interlock);
1478		vp->v_numoutput += 2;
1479		mutex_exit(vp->v_interlock);
1480	}
1481	mbp = getiobuf(vp, true);
1482	UVMHIST_LOG(ubchist, "vp %#jx mbp %#jx num now %jd bytes 0x%jx",
1483	    (uintptr_t)vp, (uintptr_t)mbp, vp->v_numoutput, bytes);
1484	mbp->b_bufsize = len;
1485	mbp->b_data = (void *)kva;
1486	mbp->b_resid = mbp->b_bcount = bytes;
1487	mbp->b_cflags |= BC_BUSY | BC_AGE;
1488	if (async) {
1489		mbp->b_flags = brw | B_ASYNC;
1490		mbp->b_iodone = iodone;
1491	} else {
1492		mbp->b_flags = brw;
1493		mbp->b_iodone = NULL;
1494	}
1495	if (curlwp == uvm.pagedaemon_lwp)
1496		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1497	else if (async || lazy)
1498		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1499	else
1500		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1501
1502	bp = NULL;
1503	for (offset = startoffset;
1504	    bytes > 0;
1505	    offset += iobytes, bytes -= iobytes) {
1506		int run;
1507		daddr_t lbn, blkno;
1508		struct vnode *devvp;
1509
1510		/*
1511		 * bmap the file to find out the blkno to read from and
1512		 * how much we can read in one i/o.  if bmap returns an error,
1513		 * skip the rest of the top-level i/o.
1514		 */
1515
1516		lbn = offset >> fs_bshift;
1517		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1518		if (error) {
1519			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%jx -> %jd",
1520			    lbn, error, 0, 0);
1521			skipbytes += bytes;
1522			bytes = 0;
1523			goto loopdone;
1524		}
1525
1526		/*
1527		 * see how many pages can be read with this i/o.
1528		 * reduce the i/o size if necessary to avoid
1529		 * overwriting pages with valid data.
1530		 */
1531
1532		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1533		    bytes);
1534
1535		/*
1536		 * if this block isn't allocated, zero it instead of
1537		 * reading it.  unless we are going to allocate blocks,
1538		 * mark the pages we zeroed PG_RDONLY.
1539		 */
1540
1541		if (blkno == (daddr_t)-1) {
1542			if (!iowrite) {
1543				memset((char *)kva + (offset - startoffset), 0,
1544				    iobytes);
1545			}
1546			skipbytes += iobytes;
1547			continue;
1548		}
1549
1550		/*
1551		 * allocate a sub-buf for this piece of the i/o
1552		 * (or just use mbp if there's only 1 piece),
1553		 * and start it going.
1554		 */
1555
1556		if (offset == startoffset && iobytes == bytes) {
1557			bp = mbp;
1558		} else {
1559			UVMHIST_LOG(ubchist, "vp %#jx bp %#jx num now %jd",
1560			    (uintptr_t)vp, (uintptr_t)bp, vp->v_numoutput, 0);
1561			bp = getiobuf(vp, true);
1562			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1563		}
1564		bp->b_lblkno = 0;
1565
1566		/* adjust physical blkno for partial blocks */
1567		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1568		    dev_bshift);
1569
1570		UVMHIST_LOG(ubchist,
1571		    "bp %#jx offset 0x%jx bcount 0x%jx blkno 0x%jx",
1572		    (uintptr_t)bp, offset, bp->b_bcount, bp->b_blkno);
1573
1574		VOP_STRATEGY(devvp, bp);
1575	}
1576
1577loopdone:
1578	if (skipbytes) {
1579		UVMHIST_LOG(ubchist, "skipbytes %jd", skipbytes, 0,0,0);
1580	}
1581	nestiobuf_done(mbp, skipbytes, error);
1582	if (async) {
1583		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1584		return (0);
1585	}
1586	UVMHIST_LOG(ubchist, "waiting for mbp %#jx", (uintptr_t)mbp, 0, 0, 0);
1587	error = biowait(mbp);
1588	s = splbio();
1589	(*iodone)(mbp);
1590	splx(s);
1591	UVMHIST_LOG(ubchist, "returning, error %jd", error, 0, 0, 0);
1592	return (error);
1593}
1594
1595int
1596genfs_compat_getpages(void *v)
1597{
1598	struct vop_getpages_args /* {
1599		struct vnode *a_vp;
1600		voff_t a_offset;
1601		struct vm_page **a_m;
1602		int *a_count;
1603		int a_centeridx;
1604		vm_prot_t a_access_type;
1605		int a_advice;
1606		int a_flags;
1607	} */ *ap = v;
1608
1609	off_t origoffset;
1610	struct vnode *vp = ap->a_vp;
1611	struct uvm_object *uobj = &vp->v_uobj;
1612	struct vm_page *pg, **pgs;
1613	vaddr_t kva;
1614	int i, error, orignpages, npages;
1615	struct iovec iov;
1616	struct uio uio;
1617	kauth_cred_t cred = curlwp->l_cred;
1618	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1619
1620	error = 0;
1621	origoffset = ap->a_offset;
1622	orignpages = *ap->a_count;
1623	pgs = ap->a_m;
1624
1625	if (ap->a_flags & PGO_LOCKED) {
1626		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m, NULL,
1627		    UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1628
1629		error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1630		return error;
1631	}
1632	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1633		rw_exit(uobj->vmobjlock);
1634		return EINVAL;
1635	}
1636	if ((ap->a_flags & PGO_SYNCIO) == 0) {
1637		rw_exit(uobj->vmobjlock);
1638		return 0;
1639	}
1640	npages = orignpages;
1641	uvn_findpages(uobj, origoffset, &npages, pgs, NULL, UFP_ALL);
1642	rw_exit(uobj->vmobjlock);
1643	kva = uvm_pagermapin(pgs, npages,
1644	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1645	for (i = 0; i < npages; i++) {
1646		pg = pgs[i];
1647		if ((pg->flags & PG_FAKE) == 0) {
1648			continue;
1649		}
1650		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1651		iov.iov_len = PAGE_SIZE;
1652		uio.uio_iov = &iov;
1653		uio.uio_iovcnt = 1;
1654		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1655		uio.uio_rw = UIO_READ;
1656		uio.uio_resid = PAGE_SIZE;
1657		UIO_SETUP_SYSSPACE(&uio);
1658		/* XXX vn_lock */
1659		error = VOP_READ(vp, &uio, 0, cred);
1660		if (error) {
1661			break;
1662		}
1663		if (uio.uio_resid) {
1664			memset(iov.iov_base, 0, uio.uio_resid);
1665		}
1666	}
1667	uvm_pagermapout(kva, npages);
1668	rw_enter(uobj->vmobjlock, RW_WRITER);
1669	for (i = 0; i < npages; i++) {
1670		pg = pgs[i];
1671		if (error && (pg->flags & PG_FAKE) != 0) {
1672			pg->flags |= PG_RELEASED;
1673		} else {
1674			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
1675			uvm_pagelock(pg);
1676			uvm_pageactivate(pg);
1677			uvm_pageunlock(pg);
1678		}
1679	}
1680	if (error) {
1681		uvm_page_unbusy(pgs, npages);
1682	}
1683	rw_exit(uobj->vmobjlock);
1684	return error;
1685}
1686
1687int
1688genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1689    int flags)
1690{
1691	off_t offset;
1692	struct iovec iov;
1693	struct uio uio;
1694	kauth_cred_t cred = curlwp->l_cred;
1695	struct buf *bp;
1696	vaddr_t kva;
1697	int error;
1698
1699	offset = pgs[0]->offset;
1700	kva = uvm_pagermapin(pgs, npages,
1701	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1702
1703	iov.iov_base = (void *)kva;
1704	iov.iov_len = npages << PAGE_SHIFT;
1705	uio.uio_iov = &iov;
1706	uio.uio_iovcnt = 1;
1707	uio.uio_offset = offset;
1708	uio.uio_rw = UIO_WRITE;
1709	uio.uio_resid = npages << PAGE_SHIFT;
1710	UIO_SETUP_SYSSPACE(&uio);
1711	/* XXX vn_lock */
1712	error = VOP_WRITE(vp, &uio, 0, cred);
1713
1714	mutex_enter(vp->v_interlock);
1715	vp->v_numoutput++;
1716	mutex_exit(vp->v_interlock);
1717
1718	bp = getiobuf(vp, true);
1719	bp->b_cflags |= BC_BUSY | BC_AGE;
1720	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1721	bp->b_data = (char *)kva;
1722	bp->b_bcount = npages << PAGE_SHIFT;
1723	bp->b_bufsize = npages << PAGE_SHIFT;
1724	bp->b_resid = 0;
1725	bp->b_error = error;
1726	uvm_aio_aiodone(bp);
1727	return (error);
1728}
1729
1730/*
1731 * Process a uio using direct I/O.  If we reach a part of the request
1732 * which cannot be processed in this fashion for some reason, just return.
1733 * The caller must handle some additional part of the request using
1734 * buffered I/O before trying direct I/O again.
1735 */
1736
1737void
1738genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1739{
1740	struct vmspace *vs;
1741	struct iovec *iov;
1742	vaddr_t va;
1743	size_t len;
1744	const int mask = DEV_BSIZE - 1;
1745	int error;
1746	bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1747	    (ioflag & IO_JOURNALLOCKED) == 0);
1748
1749#ifdef DIAGNOSTIC
1750	if ((ioflag & IO_JOURNALLOCKED) && vp->v_mount->mnt_wapbl)
1751                WAPBL_JLOCK_ASSERT(vp->v_mount);
1752#endif
1753
1754	/*
1755	 * We only support direct I/O to user space for now.
1756	 */
1757
1758	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1759		return;
1760	}
1761
1762	/*
1763	 * If the vnode is mapped, we would need to get the getpages lock
1764	 * to stabilize the bmap, but then we would get into trouble while
1765	 * locking the pages if the pages belong to this same vnode (or a
1766	 * multi-vnode cascade to the same effect).  Just fall back to
1767	 * buffered I/O if the vnode is mapped to avoid this mess.
1768	 */
1769
1770	if (vp->v_vflag & VV_MAPPED) {
1771		return;
1772	}
1773
1774	if (need_wapbl) {
1775		error = WAPBL_BEGIN(vp->v_mount);
1776		if (error)
1777			return;
1778	}
1779
1780	/*
1781	 * Do as much of the uio as possible with direct I/O.
1782	 */
1783
1784	vs = uio->uio_vmspace;
1785	while (uio->uio_resid) {
1786		iov = uio->uio_iov;
1787		if (iov->iov_len == 0) {
1788			uio->uio_iov++;
1789			uio->uio_iovcnt--;
1790			continue;
1791		}
1792		va = (vaddr_t)iov->iov_base;
1793		len = MIN(iov->iov_len, genfs_maxdio);
1794		len &= ~mask;
1795
1796		/*
1797		 * If the next chunk is smaller than DEV_BSIZE or extends past
1798		 * the current EOF, then fall back to buffered I/O.
1799		 */
1800
1801		if (len == 0 || uio->uio_offset + len > vp->v_size) {
1802			break;
1803		}
1804
1805		/*
1806		 * Check alignment.  The file offset must be at least
1807		 * sector-aligned.  The exact constraint on memory alignment
1808		 * is very hardware-dependent, but requiring sector-aligned
1809		 * addresses there too is safe.
1810		 */
1811
1812		if (uio->uio_offset & mask || va & mask) {
1813			break;
1814		}
1815		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1816					  uio->uio_rw);
1817		if (error) {
1818			break;
1819		}
1820		iov->iov_base = (char *)iov->iov_base + len;
1821		iov->iov_len -= len;
1822		uio->uio_offset += len;
1823		uio->uio_resid -= len;
1824	}
1825
1826	if (need_wapbl)
1827		WAPBL_END(vp->v_mount);
1828}
1829
1830/*
1831 * Iodone routine for direct I/O.  We don't do much here since the request is
1832 * always synchronous, so the caller will do most of the work after biowait().
1833 */
1834
1835static void
1836genfs_dio_iodone(struct buf *bp)
1837{
1838
1839	KASSERT((bp->b_flags & B_ASYNC) == 0);
1840	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1841		mutex_enter(bp->b_objlock);
1842		vwakeup(bp);
1843		mutex_exit(bp->b_objlock);
1844	}
1845	putiobuf(bp);
1846}
1847
1848/*
1849 * Process one chunk of a direct I/O request.
1850 */
1851
1852static int
1853genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1854    off_t off, enum uio_rw rw)
1855{
1856	struct vm_map *map;
1857	struct pmap *upm, *kpm __unused;
1858	size_t klen = round_page(uva + len) - trunc_page(uva);
1859	off_t spoff, epoff;
1860	vaddr_t kva, puva;
1861	paddr_t pa;
1862	vm_prot_t prot;
1863	int error, rv __diagused, poff, koff;
1864	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
1865		(rw == UIO_WRITE ? PGO_FREE : 0);
1866
1867	/*
1868	 * For writes, verify that this range of the file already has fully
1869	 * allocated backing store.  If there are any holes, just punt and
1870	 * make the caller take the buffered write path.
1871	 */
1872
1873	if (rw == UIO_WRITE) {
1874		daddr_t lbn, elbn, blkno;
1875		int bsize, bshift, run;
1876
1877		bshift = vp->v_mount->mnt_fs_bshift;
1878		bsize = 1 << bshift;
1879		lbn = off >> bshift;
1880		elbn = (off + len + bsize - 1) >> bshift;
1881		while (lbn < elbn) {
1882			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1883			if (error) {
1884				return error;
1885			}
1886			if (blkno == (daddr_t)-1) {
1887				return ENOSPC;
1888			}
1889			lbn += 1 + run;
1890		}
1891	}
1892
1893	/*
1894	 * Flush any cached pages for parts of the file that we're about to
1895	 * access.  If we're writing, invalidate pages as well.
1896	 */
1897
1898	spoff = trunc_page(off);
1899	epoff = round_page(off + len);
1900	rw_enter(vp->v_uobj.vmobjlock, RW_WRITER);
1901	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1902	if (error) {
1903		return error;
1904	}
1905
1906	/*
1907	 * Wire the user pages and remap them into kernel memory.
1908	 */
1909
1910	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1911	error = uvm_vslock(vs, (void *)uva, len, prot);
1912	if (error) {
1913		return error;
1914	}
1915
1916	map = &vs->vm_map;
1917	upm = vm_map_pmap(map);
1918	kpm = vm_map_pmap(kernel_map);
1919	puva = trunc_page(uva);
1920	kva = uvm_km_alloc(kernel_map, klen, atop(puva) & uvmexp.colormask,
1921	    UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
1922	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1923		rv = pmap_extract(upm, puva + poff, &pa);
1924		KASSERT(rv);
1925		pmap_kenter_pa(kva + poff, pa, prot, PMAP_WIRED);
1926	}
1927	pmap_update(kpm);
1928
1929	/*
1930	 * Do the I/O.
1931	 */
1932
1933	koff = uva - trunc_page(uva);
1934	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1935			    genfs_dio_iodone);
1936
1937	/*
1938	 * Tear down the kernel mapping.
1939	 */
1940
1941	pmap_kremove(kva, klen);
1942	pmap_update(kpm);
1943	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1944
1945	/*
1946	 * Unwire the user pages.
1947	 */
1948
1949	uvm_vsunlock(vs, (void *)uva, len);
1950	return error;
1951}
1952