vfs_lockf.c revision 1.67
1/*	$NetBSD: vfs_lockf.c,v 1.67 2008/08/07 07:42:06 skrll Exp $	*/
2
3/*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Scooter Morris at Genentech Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)ufs_lockf.c	8.4 (Berkeley) 10/26/94
35 */
36
37#include <sys/cdefs.h>
38__KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.67 2008/08/07 07:42:06 skrll Exp $");
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/kernel.h>
43#include <sys/file.h>
44#include <sys/proc.h>
45#include <sys/vnode.h>
46#include <sys/pool.h>
47#include <sys/fcntl.h>
48#include <sys/lockf.h>
49#include <sys/atomic.h>
50#include <sys/kauth.h>
51
52/*
53 * The lockf structure is a kernel structure which contains the information
54 * associated with a byte range lock.  The lockf structures are linked into
55 * the vnode structure.  Locks are sorted by the starting byte of the lock for
56 * efficiency.
57 *
58 * lf_next is used for two purposes, depending on whether the lock is
59 * being held, or is in conflict with an existing lock.  If this lock
60 * is held, it indicates the next lock on the same vnode.
61 * For pending locks, if lock->lf_next is non-NULL, then lock->lf_block
62 * must be queued on the lf_blkhd TAILQ of lock->lf_next.
63 */
64
65TAILQ_HEAD(locklist, lockf);
66
67struct lockf {
68	kcondvar_t lf_cv;	 /* Signalling */
69	short	lf_flags;	 /* Lock semantics: F_POSIX, F_FLOCK, F_WAIT */
70	short	lf_type;	 /* Lock type: F_RDLCK, F_WRLCK */
71	off_t	lf_start;	 /* The byte # of the start of the lock */
72	off_t	lf_end;		 /* The byte # of the end of the lock (-1=EOF)*/
73	void	*lf_id;		 /* process or file description holding lock */
74	struct	lockf **lf_head; /* Back pointer to the head of lockf list */
75	struct	lockf *lf_next;	 /* Next lock on this vnode, or blocking lock */
76	struct  locklist lf_blkhd; /* List of requests blocked on this lock */
77	TAILQ_ENTRY(lockf) lf_block;/* A request waiting for a lock */
78	uid_t	lf_uid;		 /* User ID responsible */
79};
80
81/* Maximum length of sleep chains to traverse to try and detect deadlock. */
82#define MAXDEPTH 50
83
84static pool_cache_t lockf_cache;
85static kmutex_t *lockf_lock;
86static char lockstr[] = "lockf";
87
88/*
89 * This variable controls the maximum number of processes that will
90 * be checked in doing deadlock detection.
91 */
92int maxlockdepth = MAXDEPTH;
93
94#ifdef LOCKF_DEBUG
95int	lockf_debug = 0;
96#endif
97
98#define SELF	0x1
99#define OTHERS	0x2
100
101/*
102 * XXX TODO
103 * Misc cleanups: "void *id" should be visible in the API as a
104 * "struct proc *".
105 * (This requires rototilling all VFS's which support advisory locking).
106 */
107
108/*
109 * If there's a lot of lock contention on a single vnode, locking
110 * schemes which allow for more paralleism would be needed.  Given how
111 * infrequently byte-range locks are actually used in typical BSD
112 * code, a more complex approach probably isn't worth it.
113 */
114
115/*
116 * We enforce a limit on locks by uid, so that a single user cannot
117 * run the kernel out of memory.  For now, the limit is pretty coarse.
118 * There is no limit on root.
119 *
120 * Splitting a lock will always succeed, regardless of current allocations.
121 * If you're slightly above the limit, we still have to permit an allocation
122 * so that the unlock can succeed.  If the unlocking causes too many splits,
123 * however, you're totally cutoff.
124 */
125int maxlocksperuid = 1024;
126
127#ifdef LOCKF_DEBUG
128/*
129 * Print out a lock.
130 */
131static void
132lf_print(const char *tag, struct lockf *lock)
133{
134
135	printf("%s: lock %p for ", tag, lock);
136	if (lock->lf_flags & F_POSIX)
137		printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
138	else
139		printf("file %p", (struct file *)lock->lf_id);
140	printf(" %s, start %qx, end %qx",
141		lock->lf_type == F_RDLCK ? "shared" :
142		lock->lf_type == F_WRLCK ? "exclusive" :
143		lock->lf_type == F_UNLCK ? "unlock" :
144		"unknown", lock->lf_start, lock->lf_end);
145	if (TAILQ_FIRST(&lock->lf_blkhd))
146		printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
147	else
148		printf("\n");
149}
150
151static void
152lf_printlist(const char *tag, struct lockf *lock)
153{
154	struct lockf *lf, *blk;
155
156	printf("%s: Lock list:\n", tag);
157	for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
158		printf("\tlock %p for ", lf);
159		if (lf->lf_flags & F_POSIX)
160			printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
161		else
162			printf("file %p", (struct file *)lf->lf_id);
163		printf(", %s, start %qx, end %qx",
164			lf->lf_type == F_RDLCK ? "shared" :
165			lf->lf_type == F_WRLCK ? "exclusive" :
166			lf->lf_type == F_UNLCK ? "unlock" :
167			"unknown", lf->lf_start, lf->lf_end);
168		TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
169			if (blk->lf_flags & F_POSIX)
170				printf("; proc %d",
171				    ((struct proc *)blk->lf_id)->p_pid);
172			else
173				printf("; file %p", (struct file *)blk->lf_id);
174			printf(", %s, start %qx, end %qx",
175				blk->lf_type == F_RDLCK ? "shared" :
176				blk->lf_type == F_WRLCK ? "exclusive" :
177				blk->lf_type == F_UNLCK ? "unlock" :
178				"unknown", blk->lf_start, blk->lf_end);
179			if (TAILQ_FIRST(&blk->lf_blkhd))
180				 panic("lf_printlist: bad list");
181		}
182		printf("\n");
183	}
184}
185#endif /* LOCKF_DEBUG */
186
187/*
188 * 3 options for allowfail.
189 * 0 - always allocate.  1 - cutoff at limit.  2 - cutoff at double limit.
190 */
191static struct lockf *
192lf_alloc(uid_t uid, int allowfail)
193{
194	struct uidinfo *uip;
195	struct lockf *lock;
196	u_long lcnt;
197
198	uip = uid_find(uid);
199	lcnt = atomic_inc_ulong_nv(&uip->ui_lockcnt);
200	if (uid && allowfail && lcnt >
201	    (allowfail == 1 ? maxlocksperuid : (maxlocksperuid * 2))) {
202		atomic_dec_ulong(&uip->ui_lockcnt);
203		return NULL;
204	}
205
206	lock = pool_cache_get(lockf_cache, PR_WAITOK);
207	lock->lf_uid = uid;
208	return lock;
209}
210
211static void
212lf_free(struct lockf *lock)
213{
214	struct uidinfo *uip;
215
216	uip = uid_find(lock->lf_uid);
217	atomic_dec_ulong(&uip->ui_lockcnt);
218	pool_cache_put(lockf_cache, lock);
219}
220
221static int
222lf_ctor(void *arg, void *obj, int flag)
223{
224	struct lockf *lock;
225
226	lock = obj;
227	cv_init(&lock->lf_cv, lockstr);
228
229	return 0;
230}
231
232static void
233lf_dtor(void *arg, void *obj)
234{
235	struct lockf *lock;
236
237	lock = obj;
238	cv_destroy(&lock->lf_cv);
239}
240
241/*
242 * Walk the list of locks for an inode to
243 * find an overlapping lock (if any).
244 *
245 * NOTE: this returns only the FIRST overlapping lock.  There
246 *	 may be more than one.
247 */
248static int
249lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
250    struct lockf ***prev, struct lockf **overlap)
251{
252	off_t start, end;
253
254	*overlap = lf;
255	if (lf == NULL)
256		return 0;
257#ifdef LOCKF_DEBUG
258	if (lockf_debug & 2)
259		lf_print("lf_findoverlap: looking for overlap in", lock);
260#endif /* LOCKF_DEBUG */
261	start = lock->lf_start;
262	end = lock->lf_end;
263	while (lf != NULL) {
264		if (((type == SELF) && lf->lf_id != lock->lf_id) ||
265		    ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
266			*prev = &lf->lf_next;
267			*overlap = lf = lf->lf_next;
268			continue;
269		}
270#ifdef LOCKF_DEBUG
271		if (lockf_debug & 2)
272			lf_print("\tchecking", lf);
273#endif /* LOCKF_DEBUG */
274		/*
275		 * OK, check for overlap
276		 *
277		 * Six cases:
278		 *	0) no overlap
279		 *	1) overlap == lock
280		 *	2) overlap contains lock
281		 *	3) lock contains overlap
282		 *	4) overlap starts before lock
283		 *	5) overlap ends after lock
284		 */
285		if ((lf->lf_end != -1 && start > lf->lf_end) ||
286		    (end != -1 && lf->lf_start > end)) {
287			/* Case 0 */
288#ifdef LOCKF_DEBUG
289			if (lockf_debug & 2)
290				printf("no overlap\n");
291#endif /* LOCKF_DEBUG */
292			if ((type & SELF) && end != -1 && lf->lf_start > end)
293				return 0;
294			*prev = &lf->lf_next;
295			*overlap = lf = lf->lf_next;
296			continue;
297		}
298		if ((lf->lf_start == start) && (lf->lf_end == end)) {
299			/* Case 1 */
300#ifdef LOCKF_DEBUG
301			if (lockf_debug & 2)
302				printf("overlap == lock\n");
303#endif /* LOCKF_DEBUG */
304			return 1;
305		}
306		if ((lf->lf_start <= start) &&
307		    (end != -1) &&
308		    ((lf->lf_end >= end) || (lf->lf_end == -1))) {
309			/* Case 2 */
310#ifdef LOCKF_DEBUG
311			if (lockf_debug & 2)
312				printf("overlap contains lock\n");
313#endif /* LOCKF_DEBUG */
314			return 2;
315		}
316		if (start <= lf->lf_start &&
317		           (end == -1 ||
318			   (lf->lf_end != -1 && end >= lf->lf_end))) {
319			/* Case 3 */
320#ifdef LOCKF_DEBUG
321			if (lockf_debug & 2)
322				printf("lock contains overlap\n");
323#endif /* LOCKF_DEBUG */
324			return 3;
325		}
326		if ((lf->lf_start < start) &&
327			((lf->lf_end >= start) || (lf->lf_end == -1))) {
328			/* Case 4 */
329#ifdef LOCKF_DEBUG
330			if (lockf_debug & 2)
331				printf("overlap starts before lock\n");
332#endif /* LOCKF_DEBUG */
333			return 4;
334		}
335		if ((lf->lf_start > start) &&
336			(end != -1) &&
337			((lf->lf_end > end) || (lf->lf_end == -1))) {
338			/* Case 5 */
339#ifdef LOCKF_DEBUG
340			if (lockf_debug & 2)
341				printf("overlap ends after lock\n");
342#endif /* LOCKF_DEBUG */
343			return 5;
344		}
345		panic("lf_findoverlap: default");
346	}
347	return 0;
348}
349
350/*
351 * Split a lock and a contained region into
352 * two or three locks as necessary.
353 */
354static void
355lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
356{
357	struct lockf *splitlock;
358
359#ifdef LOCKF_DEBUG
360	if (lockf_debug & 2) {
361		lf_print("lf_split", lock1);
362		lf_print("splitting from", lock2);
363	}
364#endif /* LOCKF_DEBUG */
365	/*
366	 * Check to see if spliting into only two pieces.
367	 */
368	if (lock1->lf_start == lock2->lf_start) {
369		lock1->lf_start = lock2->lf_end + 1;
370		lock2->lf_next = lock1;
371		return;
372	}
373	if (lock1->lf_end == lock2->lf_end) {
374		lock1->lf_end = lock2->lf_start - 1;
375		lock2->lf_next = lock1->lf_next;
376		lock1->lf_next = lock2;
377		return;
378	}
379	/*
380	 * Make a new lock consisting of the last part of
381	 * the encompassing lock
382	 */
383	splitlock = *sparelock;
384	*sparelock = NULL;
385	memcpy(splitlock, lock1, sizeof(*splitlock));
386	cv_init(&splitlock->lf_cv, lockstr);
387
388	splitlock->lf_start = lock2->lf_end + 1;
389	TAILQ_INIT(&splitlock->lf_blkhd);
390	lock1->lf_end = lock2->lf_start - 1;
391	/*
392	 * OK, now link it in
393	 */
394	splitlock->lf_next = lock1->lf_next;
395	lock2->lf_next = splitlock;
396	lock1->lf_next = lock2;
397}
398
399/*
400 * Wakeup a blocklist
401 */
402static void
403lf_wakelock(struct lockf *listhead)
404{
405	struct lockf *wakelock;
406
407	while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
408		KASSERT(wakelock->lf_next == listhead);
409		TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
410		wakelock->lf_next = NULL;
411#ifdef LOCKF_DEBUG
412		if (lockf_debug & 2)
413			lf_print("lf_wakelock: awakening", wakelock);
414#endif
415		cv_broadcast(&wakelock->lf_cv);
416	}
417}
418
419/*
420 * Remove a byte-range lock on an inode.
421 *
422 * Generally, find the lock (or an overlap to that lock)
423 * and remove it (or shrink it), then wakeup anyone we can.
424 */
425static int
426lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
427{
428	struct lockf **head = unlock->lf_head;
429	struct lockf *lf = *head;
430	struct lockf *overlap, **prev;
431	int ovcase;
432
433	if (lf == NULL)
434		return 0;
435#ifdef LOCKF_DEBUG
436	if (unlock->lf_type != F_UNLCK)
437		panic("lf_clearlock: bad type");
438	if (lockf_debug & 1)
439		lf_print("lf_clearlock", unlock);
440#endif /* LOCKF_DEBUG */
441	prev = head;
442	while ((ovcase = lf_findoverlap(lf, unlock, SELF,
443	    &prev, &overlap)) != 0) {
444		/*
445		 * Wakeup the list of locks to be retried.
446		 */
447		lf_wakelock(overlap);
448
449		switch (ovcase) {
450
451		case 1: /* overlap == lock */
452			*prev = overlap->lf_next;
453			lf_free(overlap);
454			break;
455
456		case 2: /* overlap contains lock: split it */
457			if (overlap->lf_start == unlock->lf_start) {
458				overlap->lf_start = unlock->lf_end + 1;
459				break;
460			}
461			lf_split(overlap, unlock, sparelock);
462			overlap->lf_next = unlock->lf_next;
463			break;
464
465		case 3: /* lock contains overlap */
466			*prev = overlap->lf_next;
467			lf = overlap->lf_next;
468			lf_free(overlap);
469			continue;
470
471		case 4: /* overlap starts before lock */
472			overlap->lf_end = unlock->lf_start - 1;
473			prev = &overlap->lf_next;
474			lf = overlap->lf_next;
475			continue;
476
477		case 5: /* overlap ends after lock */
478			overlap->lf_start = unlock->lf_end + 1;
479			break;
480		}
481		break;
482	}
483#ifdef LOCKF_DEBUG
484	if (lockf_debug & 1)
485		lf_printlist("lf_clearlock", unlock);
486#endif /* LOCKF_DEBUG */
487	return 0;
488}
489
490/*
491 * Walk the list of locks for an inode and
492 * return the first blocking lock.
493 */
494static struct lockf *
495lf_getblock(struct lockf *lock)
496{
497	struct lockf **prev, *overlap, *lf = *(lock->lf_head);
498
499	prev = lock->lf_head;
500	while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
501		/*
502		 * We've found an overlap, see if it blocks us
503		 */
504		if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
505			return overlap;
506		/*
507		 * Nope, point to the next one on the list and
508		 * see if it blocks us
509		 */
510		lf = overlap->lf_next;
511	}
512	return NULL;
513}
514
515/*
516 * Set a byte-range lock.
517 */
518static int
519lf_setlock(struct lockf *lock, struct lockf **sparelock,
520    kmutex_t *interlock)
521{
522	struct lockf *block;
523	struct lockf **head = lock->lf_head;
524	struct lockf **prev, *overlap, *ltmp;
525	int ovcase, needtolink, error;
526
527#ifdef LOCKF_DEBUG
528	if (lockf_debug & 1)
529		lf_print("lf_setlock", lock);
530#endif /* LOCKF_DEBUG */
531
532	/*
533	 * Scan lock list for this file looking for locks that would block us.
534	 */
535	while ((block = lf_getblock(lock)) != NULL) {
536		/*
537		 * Free the structure and return if nonblocking.
538		 */
539		if ((lock->lf_flags & F_WAIT) == 0) {
540			lf_free(lock);
541			return EAGAIN;
542		}
543		/*
544		 * We are blocked. Since flock style locks cover
545		 * the whole file, there is no chance for deadlock.
546		 * For byte-range locks we must check for deadlock.
547		 *
548		 * Deadlock detection is done by looking through the
549		 * wait channels to see if there are any cycles that
550		 * involve us. MAXDEPTH is set just to make sure we
551		 * do not go off into neverneverland.
552		 */
553		if ((lock->lf_flags & F_POSIX) &&
554		    (block->lf_flags & F_POSIX)) {
555			struct lwp *wlwp;
556			volatile const struct lockf *waitblock;
557			int i = 0;
558			struct proc *p;
559
560			p = (struct proc *)block->lf_id;
561			KASSERT(p != NULL);
562			while (i++ < maxlockdepth) {
563				mutex_enter(p->p_lock);
564				if (p->p_nlwps > 1) {
565					mutex_exit(p->p_lock);
566					break;
567				}
568				wlwp = LIST_FIRST(&p->p_lwps);
569				lwp_lock(wlwp);
570				if (wlwp->l_wchan == NULL ||
571				    wlwp->l_wmesg != lockstr) {
572					lwp_unlock(wlwp);
573					mutex_exit(p->p_lock);
574					break;
575				}
576				waitblock = wlwp->l_wchan;
577				lwp_unlock(wlwp);
578				mutex_exit(p->p_lock);
579				if (waitblock == NULL) {
580					/*
581					 * this lwp just got up but
582					 * not returned from ltsleep yet.
583					 */
584					break;
585				}
586				/* Get the owner of the blocking lock */
587				waitblock = waitblock->lf_next;
588				if ((waitblock->lf_flags & F_POSIX) == 0)
589					break;
590				p = (struct proc *)waitblock->lf_id;
591				if (p == curproc) {
592					lf_free(lock);
593					return EDEADLK;
594				}
595			}
596			/*
597			 * If we're still following a dependency chain
598			 * after maxlockdepth iterations, assume we're in
599			 * a cycle to be safe.
600			 */
601			if (i >= maxlockdepth) {
602				lf_free(lock);
603				return EDEADLK;
604			}
605		}
606		/*
607		 * For flock type locks, we must first remove
608		 * any shared locks that we hold before we sleep
609		 * waiting for an exclusive lock.
610		 */
611		if ((lock->lf_flags & F_FLOCK) &&
612		    lock->lf_type == F_WRLCK) {
613			lock->lf_type = F_UNLCK;
614			(void) lf_clearlock(lock, NULL);
615			lock->lf_type = F_WRLCK;
616		}
617		/*
618		 * Add our lock to the blocked list and sleep until we're free.
619		 * Remember who blocked us (for deadlock detection).
620		 */
621		lock->lf_next = block;
622		TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
623#ifdef LOCKF_DEBUG
624		if (lockf_debug & 1) {
625			lf_print("lf_setlock: blocking on", block);
626			lf_printlist("lf_setlock", block);
627		}
628#endif /* LOCKF_DEBUG */
629		error = cv_wait_sig(&lock->lf_cv, interlock);
630
631		/*
632		 * We may have been awoken by a signal (in
633		 * which case we must remove ourselves from the
634		 * blocked list) and/or by another process
635		 * releasing a lock (in which case we have already
636		 * been removed from the blocked list and our
637		 * lf_next field set to NULL).
638		 */
639		if (lock->lf_next != NULL) {
640			TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
641			lock->lf_next = NULL;
642		}
643		if (error) {
644			lf_free(lock);
645			return error;
646		}
647	}
648	/*
649	 * No blocks!!  Add the lock.  Note that we will
650	 * downgrade or upgrade any overlapping locks this
651	 * process already owns.
652	 *
653	 * Skip over locks owned by other processes.
654	 * Handle any locks that overlap and are owned by ourselves.
655	 */
656	prev = head;
657	block = *head;
658	needtolink = 1;
659	for (;;) {
660		ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
661		if (ovcase)
662			block = overlap->lf_next;
663		/*
664		 * Six cases:
665		 *	0) no overlap
666		 *	1) overlap == lock
667		 *	2) overlap contains lock
668		 *	3) lock contains overlap
669		 *	4) overlap starts before lock
670		 *	5) overlap ends after lock
671		 */
672		switch (ovcase) {
673		case 0: /* no overlap */
674			if (needtolink) {
675				*prev = lock;
676				lock->lf_next = overlap;
677			}
678			break;
679
680		case 1: /* overlap == lock */
681			/*
682			 * If downgrading lock, others may be
683			 * able to acquire it.
684			 */
685			if (lock->lf_type == F_RDLCK &&
686			    overlap->lf_type == F_WRLCK)
687				lf_wakelock(overlap);
688			overlap->lf_type = lock->lf_type;
689			lf_free(lock);
690			lock = overlap; /* for debug output below */
691			break;
692
693		case 2: /* overlap contains lock */
694			/*
695			 * Check for common starting point and different types.
696			 */
697			if (overlap->lf_type == lock->lf_type) {
698				lf_free(lock);
699				lock = overlap; /* for debug output below */
700				break;
701			}
702			if (overlap->lf_start == lock->lf_start) {
703				*prev = lock;
704				lock->lf_next = overlap;
705				overlap->lf_start = lock->lf_end + 1;
706			} else
707				lf_split(overlap, lock, sparelock);
708			lf_wakelock(overlap);
709			break;
710
711		case 3: /* lock contains overlap */
712			/*
713			 * If downgrading lock, others may be able to
714			 * acquire it, otherwise take the list.
715			 */
716			if (lock->lf_type == F_RDLCK &&
717			    overlap->lf_type == F_WRLCK) {
718				lf_wakelock(overlap);
719			} else {
720				while ((ltmp = TAILQ_FIRST(&overlap->lf_blkhd))) {
721					KASSERT(ltmp->lf_next == overlap);
722					TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
723					    lf_block);
724					ltmp->lf_next = lock;
725					TAILQ_INSERT_TAIL(&lock->lf_blkhd,
726					    ltmp, lf_block);
727				}
728			}
729			/*
730			 * Add the new lock if necessary and delete the overlap.
731			 */
732			if (needtolink) {
733				*prev = lock;
734				lock->lf_next = overlap->lf_next;
735				prev = &lock->lf_next;
736				needtolink = 0;
737			} else
738				*prev = overlap->lf_next;
739			lf_free(overlap);
740			continue;
741
742		case 4: /* overlap starts before lock */
743			/*
744			 * Add lock after overlap on the list.
745			 */
746			lock->lf_next = overlap->lf_next;
747			overlap->lf_next = lock;
748			overlap->lf_end = lock->lf_start - 1;
749			prev = &lock->lf_next;
750			lf_wakelock(overlap);
751			needtolink = 0;
752			continue;
753
754		case 5: /* overlap ends after lock */
755			/*
756			 * Add the new lock before overlap.
757			 */
758			if (needtolink) {
759				*prev = lock;
760				lock->lf_next = overlap;
761			}
762			overlap->lf_start = lock->lf_end + 1;
763			lf_wakelock(overlap);
764			break;
765		}
766		break;
767	}
768#ifdef LOCKF_DEBUG
769	if (lockf_debug & 1) {
770		lf_print("lf_setlock: got the lock", lock);
771		lf_printlist("lf_setlock", lock);
772	}
773#endif /* LOCKF_DEBUG */
774	return 0;
775}
776
777/*
778 * Check whether there is a blocking lock,
779 * and if so return its process identifier.
780 */
781static int
782lf_getlock(struct lockf *lock, struct flock *fl)
783{
784	struct lockf *block;
785
786#ifdef LOCKF_DEBUG
787	if (lockf_debug & 1)
788		lf_print("lf_getlock", lock);
789#endif /* LOCKF_DEBUG */
790
791	if ((block = lf_getblock(lock)) != NULL) {
792		fl->l_type = block->lf_type;
793		fl->l_whence = SEEK_SET;
794		fl->l_start = block->lf_start;
795		if (block->lf_end == -1)
796			fl->l_len = 0;
797		else
798			fl->l_len = block->lf_end - block->lf_start + 1;
799		if (block->lf_flags & F_POSIX)
800			fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
801		else
802			fl->l_pid = -1;
803	} else {
804		fl->l_type = F_UNLCK;
805	}
806	return 0;
807}
808
809/*
810 * Do an advisory lock operation.
811 */
812int
813lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
814{
815	struct lwp *l = curlwp;
816	struct flock *fl = ap->a_fl;
817	struct lockf *lock = NULL;
818	struct lockf *sparelock;
819	kmutex_t *interlock = lockf_lock;
820	off_t start, end;
821	int error = 0;
822
823	/*
824	 * Convert the flock structure into a start and end.
825	 */
826	switch (fl->l_whence) {
827	case SEEK_SET:
828	case SEEK_CUR:
829		/*
830		 * Caller is responsible for adding any necessary offset
831		 * when SEEK_CUR is used.
832		 */
833		start = fl->l_start;
834		break;
835
836	case SEEK_END:
837		start = size + fl->l_start;
838		break;
839
840	default:
841		return EINVAL;
842	}
843	if (start < 0)
844		return EINVAL;
845
846	/*
847	 * Allocate locks before acquiring the interlock.  We need two
848	 * locks in the worst case.
849	 */
850	switch (ap->a_op) {
851	case F_SETLK:
852	case F_UNLCK:
853		/*
854		 * XXX For F_UNLCK case, we can re-use the lock.
855		 */
856		if ((ap->a_flags & F_FLOCK) == 0) {
857			/*
858			 * Byte-range lock might need one more lock.
859			 */
860			sparelock = lf_alloc(kauth_cred_geteuid(l->l_cred), 0);
861			if (sparelock == NULL) {
862				error = ENOMEM;
863				goto quit;
864			}
865			break;
866		}
867		/* FALLTHROUGH */
868
869	case F_GETLK:
870		sparelock = NULL;
871		break;
872
873	default:
874		return EINVAL;
875	}
876
877	lock = lf_alloc(kauth_cred_geteuid(l->l_cred),
878	    ap->a_op != F_UNLCK ? 1 : 2);
879	if (lock == NULL) {
880		error = ENOMEM;
881		goto quit;
882	}
883
884	mutex_enter(interlock);
885
886	/*
887	 * Avoid the common case of unlocking when inode has no locks.
888	 */
889	if (*head == (struct lockf *)0) {
890		if (ap->a_op != F_SETLK) {
891			fl->l_type = F_UNLCK;
892			error = 0;
893			goto quit_unlock;
894		}
895	}
896
897	if (fl->l_len == 0)
898		end = -1;
899	else
900		end = start + fl->l_len - 1;
901	/*
902	 * Create the lockf structure.
903	 */
904	lock->lf_start = start;
905	lock->lf_end = end;
906	lock->lf_head = head;
907	lock->lf_type = fl->l_type;
908	lock->lf_next = (struct lockf *)0;
909	TAILQ_INIT(&lock->lf_blkhd);
910	lock->lf_flags = ap->a_flags;
911	if (lock->lf_flags & F_POSIX) {
912		KASSERT(curproc == (struct proc *)ap->a_id);
913	}
914	lock->lf_id = (struct proc *)ap->a_id;
915
916	/*
917	 * Do the requested operation.
918	 */
919	switch (ap->a_op) {
920
921	case F_SETLK:
922		error = lf_setlock(lock, &sparelock, interlock);
923		lock = NULL; /* lf_setlock freed it */
924		break;
925
926	case F_UNLCK:
927		error = lf_clearlock(lock, &sparelock);
928		break;
929
930	case F_GETLK:
931		error = lf_getlock(lock, fl);
932		break;
933
934	default:
935		break;
936		/* NOTREACHED */
937	}
938
939quit_unlock:
940	mutex_exit(interlock);
941quit:
942	if (lock)
943		lf_free(lock);
944	if (sparelock)
945		lf_free(sparelock);
946
947	return error;
948}
949
950/*
951 * Initialize subsystem.   XXX We use a global lock.  This could be the
952 * vnode interlock, but the deadlock detection code may need to inspect
953 * locks belonging to other files.
954 */
955void
956lf_init(void)
957{
958
959	lockf_cache = pool_cache_init(sizeof(struct lockf), 0, 0, 0, "lockf",
960 	    NULL, IPL_NONE, lf_ctor, lf_dtor, NULL);
961        lockf_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
962}
963