1/*	$NetBSD: vfs_lockf.c,v 1.81 2023/09/23 18:21:11 ad Exp $	*/
2
3/*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Scooter Morris at Genentech Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)ufs_lockf.c	8.4 (Berkeley) 10/26/94
35 */
36
37#include <sys/cdefs.h>
38__KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.81 2023/09/23 18:21:11 ad Exp $");
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/kernel.h>
43#include <sys/file.h>
44#include <sys/proc.h>
45#include <sys/vnode.h>
46#include <sys/kmem.h>
47#include <sys/fcntl.h>
48#include <sys/lockf.h>
49#include <sys/atomic.h>
50#include <sys/kauth.h>
51#include <sys/uidinfo.h>
52
53/*
54 * The lockf structure is a kernel structure which contains the information
55 * associated with a byte range lock.  The lockf structures are linked into
56 * the vnode structure.  Locks are sorted by the starting byte of the lock for
57 * efficiency.
58 *
59 * lf_next is used for two purposes, depending on whether the lock is
60 * being held, or is in conflict with an existing lock.  If this lock
61 * is held, it indicates the next lock on the same vnode.
62 * For pending locks, if lock->lf_next is non-NULL, then lock->lf_block
63 * must be queued on the lf_blkhd TAILQ of lock->lf_next.
64 */
65
66TAILQ_HEAD(locklist, lockf);
67
68struct lockf {
69	kcondvar_t lf_cv;	 /* Signalling */
70	short	lf_flags;	 /* Lock semantics: F_POSIX, F_FLOCK, F_WAIT */
71	short	lf_type;	 /* Lock type: F_RDLCK, F_WRLCK */
72	off_t	lf_start;	 /* The byte # of the start of the lock */
73	off_t	lf_end;		 /* The byte # of the end of the lock (-1=EOF)*/
74	void	*lf_id;		 /* process or file description holding lock */
75	struct	lockf **lf_head; /* Back pointer to the head of lockf list */
76	struct	lockf *lf_next;	 /* Next lock on this vnode, or blocking lock */
77	struct  locklist lf_blkhd; /* List of requests blocked on this lock */
78	TAILQ_ENTRY(lockf) lf_block;/* A request waiting for a lock */
79	struct	uidinfo *lf_uip; /* Cached pointer to uidinfo */
80};
81
82/* Maximum length of sleep chains to traverse to try and detect deadlock. */
83#define MAXDEPTH 50
84
85static kmutex_t lockf_lock __cacheline_aligned;
86static char lockstr[] = "lockf";
87
88/*
89 * This variable controls the maximum number of processes that will
90 * be checked in doing deadlock detection.
91 */
92int maxlockdepth = MAXDEPTH;
93
94#ifdef LOCKF_DEBUG
95int	lockf_debug = 0;
96#endif
97
98#define SELF	0x1
99#define OTHERS	0x2
100
101/*
102 * XXX TODO
103 * Misc cleanups: "void *id" should be visible in the API as a
104 * "struct proc *".
105 * (This requires rototilling all VFS's which support advisory locking).
106 */
107
108/*
109 * If there's a lot of lock contention on a single vnode, locking
110 * schemes which allow for more paralleism would be needed.  Given how
111 * infrequently byte-range locks are actually used in typical BSD
112 * code, a more complex approach probably isn't worth it.
113 */
114
115/*
116 * We enforce a limit on locks by uid, so that a single user cannot
117 * run the kernel out of memory.  For now, the limit is pretty coarse.
118 * There is no limit on root.
119 *
120 * Splitting a lock will always succeed, regardless of current allocations.
121 * If you're slightly above the limit, we still have to permit an allocation
122 * so that the unlock can succeed.  If the unlocking causes too many splits,
123 * however, you're totally cutoff.
124 */
125#define MAXLOCKSPERUID (2 * maxfiles)
126
127#ifdef LOCKF_DEBUG
128/*
129 * Print out a lock.
130 */
131static void
132lf_print(const char *tag, struct lockf *lock)
133{
134
135	printf("%s: lock %p for ", tag, lock);
136	if (lock->lf_flags & F_POSIX)
137		printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
138	else
139		printf("file %p", (struct file *)lock->lf_id);
140	printf(" %s, start %jd, end %jd",
141		lock->lf_type == F_RDLCK ? "shared" :
142		lock->lf_type == F_WRLCK ? "exclusive" :
143		lock->lf_type == F_UNLCK ? "unlock" :
144		"unknown", (intmax_t)lock->lf_start, (intmax_t)lock->lf_end);
145	if (TAILQ_FIRST(&lock->lf_blkhd))
146		printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
147	else
148		printf("\n");
149}
150
151static void
152lf_printlist(const char *tag, struct lockf *lock)
153{
154	struct lockf *lf, *blk;
155
156	printf("%s: Lock list:\n", tag);
157	for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
158		printf("\tlock %p for ", lf);
159		if (lf->lf_flags & F_POSIX)
160			printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
161		else
162			printf("file %p", (struct file *)lf->lf_id);
163		printf(", %s, start %jd, end %jd",
164			lf->lf_type == F_RDLCK ? "shared" :
165			lf->lf_type == F_WRLCK ? "exclusive" :
166			lf->lf_type == F_UNLCK ? "unlock" :
167			"unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
168		TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
169			if (blk->lf_flags & F_POSIX)
170				printf("; proc %d",
171				    ((struct proc *)blk->lf_id)->p_pid);
172			else
173				printf("; file %p", (struct file *)blk->lf_id);
174			printf(", %s, start %jd, end %jd",
175				blk->lf_type == F_RDLCK ? "shared" :
176				blk->lf_type == F_WRLCK ? "exclusive" :
177				blk->lf_type == F_UNLCK ? "unlock" :
178				"unknown", (intmax_t)blk->lf_start, (intmax_t)blk->lf_end);
179			if (TAILQ_FIRST(&blk->lf_blkhd))
180				 panic("lf_printlist: bad list");
181		}
182		printf("\n");
183	}
184}
185#endif /* LOCKF_DEBUG */
186
187/*
188 * 3 options for allowfail.
189 * 0 - always allocate.  1 - cutoff at limit.  2 - cutoff at double limit.
190 */
191static struct lockf *
192lf_alloc(int allowfail)
193{
194	struct uidinfo *uip;
195	struct lockf *lock;
196	u_long lcnt;
197	const uid_t uid = kauth_cred_geteuid(kauth_cred_get());
198
199	uip = uid_find(uid);
200	lcnt = atomic_inc_ulong_nv(&uip->ui_lockcnt);
201	if (uid && allowfail && lcnt >
202	    (allowfail == 1 ? MAXLOCKSPERUID : (MAXLOCKSPERUID * 2))) {
203		atomic_dec_ulong(&uip->ui_lockcnt);
204		return NULL;
205	}
206
207	lock = kmem_alloc(sizeof(*lock), KM_SLEEP);
208	lock->lf_uip = uip;
209	cv_init(&lock->lf_cv, lockstr);
210	return lock;
211}
212
213static void
214lf_free(struct lockf *lock)
215{
216
217	atomic_dec_ulong(&lock->lf_uip->ui_lockcnt);
218	cv_destroy(&lock->lf_cv);
219	kmem_free(lock, sizeof(*lock));
220}
221
222/*
223 * Walk the list of locks for an inode to
224 * find an overlapping lock (if any).
225 *
226 * NOTE: this returns only the FIRST overlapping lock.  There
227 *	 may be more than one.
228 */
229static int
230lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
231    struct lockf ***prev, struct lockf **overlap)
232{
233	off_t start, end;
234
235	*overlap = lf;
236	if (lf == NULL)
237		return 0;
238#ifdef LOCKF_DEBUG
239	if (lockf_debug & 2)
240		lf_print("lf_findoverlap: looking for overlap in", lock);
241#endif /* LOCKF_DEBUG */
242	start = lock->lf_start;
243	end = lock->lf_end;
244	while (lf != NULL) {
245		if (((type == SELF) && lf->lf_id != lock->lf_id) ||
246		    ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
247			*prev = &lf->lf_next;
248			*overlap = lf = lf->lf_next;
249			continue;
250		}
251#ifdef LOCKF_DEBUG
252		if (lockf_debug & 2)
253			lf_print("\tchecking", lf);
254#endif /* LOCKF_DEBUG */
255		/*
256		 * OK, check for overlap
257		 *
258		 * Six cases:
259		 *	0) no overlap
260		 *	1) overlap == lock
261		 *	2) overlap contains lock
262		 *	3) lock contains overlap
263		 *	4) overlap starts before lock
264		 *	5) overlap ends after lock
265		 */
266		if ((lf->lf_end != -1 && start > lf->lf_end) ||
267		    (end != -1 && lf->lf_start > end)) {
268			/* Case 0 */
269#ifdef LOCKF_DEBUG
270			if (lockf_debug & 2)
271				printf("no overlap\n");
272#endif /* LOCKF_DEBUG */
273			if ((type & SELF) && end != -1 && lf->lf_start > end)
274				return 0;
275			*prev = &lf->lf_next;
276			*overlap = lf = lf->lf_next;
277			continue;
278		}
279		if ((lf->lf_start == start) && (lf->lf_end == end)) {
280			/* Case 1 */
281#ifdef LOCKF_DEBUG
282			if (lockf_debug & 2)
283				printf("overlap == lock\n");
284#endif /* LOCKF_DEBUG */
285			return 1;
286		}
287		if ((lf->lf_start <= start) &&
288		    (end != -1) &&
289		    ((lf->lf_end >= end) || (lf->lf_end == -1))) {
290			/* Case 2 */
291#ifdef LOCKF_DEBUG
292			if (lockf_debug & 2)
293				printf("overlap contains lock\n");
294#endif /* LOCKF_DEBUG */
295			return 2;
296		}
297		if (start <= lf->lf_start &&
298		           (end == -1 ||
299			   (lf->lf_end != -1 && end >= lf->lf_end))) {
300			/* Case 3 */
301#ifdef LOCKF_DEBUG
302			if (lockf_debug & 2)
303				printf("lock contains overlap\n");
304#endif /* LOCKF_DEBUG */
305			return 3;
306		}
307		if ((lf->lf_start < start) &&
308			((lf->lf_end >= start) || (lf->lf_end == -1))) {
309			/* Case 4 */
310#ifdef LOCKF_DEBUG
311			if (lockf_debug & 2)
312				printf("overlap starts before lock\n");
313#endif /* LOCKF_DEBUG */
314			return 4;
315		}
316		if ((lf->lf_start > start) &&
317			(end != -1) &&
318			((lf->lf_end > end) || (lf->lf_end == -1))) {
319			/* Case 5 */
320#ifdef LOCKF_DEBUG
321			if (lockf_debug & 2)
322				printf("overlap ends after lock\n");
323#endif /* LOCKF_DEBUG */
324			return 5;
325		}
326		panic("lf_findoverlap: default");
327	}
328	return 0;
329}
330
331/*
332 * Split a lock and a contained region into
333 * two or three locks as necessary.
334 */
335static void
336lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
337{
338	struct lockf *splitlock;
339
340#ifdef LOCKF_DEBUG
341	if (lockf_debug & 2) {
342		lf_print("lf_split", lock1);
343		lf_print("splitting from", lock2);
344	}
345#endif /* LOCKF_DEBUG */
346	/*
347	 * Check to see if splitting into only two pieces.
348	 */
349	if (lock1->lf_start == lock2->lf_start) {
350		lock1->lf_start = lock2->lf_end + 1;
351		lock2->lf_next = lock1;
352		return;
353	}
354	if (lock1->lf_end == lock2->lf_end) {
355		lock1->lf_end = lock2->lf_start - 1;
356		lock2->lf_next = lock1->lf_next;
357		lock1->lf_next = lock2;
358		return;
359	}
360	/*
361	 * Make a new lock consisting of the last part of
362	 * the encompassing lock
363	 */
364	splitlock = *sparelock;
365	*sparelock = NULL;
366	cv_destroy(&splitlock->lf_cv);
367	memcpy(splitlock, lock1, sizeof(*splitlock));
368	cv_init(&splitlock->lf_cv, lockstr);
369
370	splitlock->lf_start = lock2->lf_end + 1;
371	TAILQ_INIT(&splitlock->lf_blkhd);
372	lock1->lf_end = lock2->lf_start - 1;
373	/*
374	 * OK, now link it in
375	 */
376	splitlock->lf_next = lock1->lf_next;
377	lock2->lf_next = splitlock;
378	lock1->lf_next = lock2;
379}
380
381/*
382 * Wakeup a blocklist
383 */
384static void
385lf_wakelock(struct lockf *listhead)
386{
387	struct lockf *wakelock;
388
389	while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
390		KASSERT(wakelock->lf_next == listhead);
391		TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
392		wakelock->lf_next = NULL;
393#ifdef LOCKF_DEBUG
394		if (lockf_debug & 2)
395			lf_print("lf_wakelock: awakening", wakelock);
396#endif
397		cv_broadcast(&wakelock->lf_cv);
398	}
399}
400
401/*
402 * Remove a byte-range lock on an inode.
403 *
404 * Generally, find the lock (or an overlap to that lock)
405 * and remove it (or shrink it), then wakeup anyone we can.
406 */
407static int
408lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
409{
410	struct lockf **head = unlock->lf_head;
411	struct lockf *lf = *head;
412	struct lockf *overlap, **prev;
413	int ovcase;
414
415	if (lf == NULL)
416		return 0;
417#ifdef LOCKF_DEBUG
418	if (unlock->lf_type != F_UNLCK)
419		panic("lf_clearlock: bad type");
420	if (lockf_debug & 1)
421		lf_print("lf_clearlock", unlock);
422#endif /* LOCKF_DEBUG */
423	prev = head;
424	while ((ovcase = lf_findoverlap(lf, unlock, SELF,
425	    &prev, &overlap)) != 0) {
426		/*
427		 * Wakeup the list of locks to be retried.
428		 */
429		lf_wakelock(overlap);
430
431		switch (ovcase) {
432
433		case 1: /* overlap == lock */
434			*prev = overlap->lf_next;
435			lf_free(overlap);
436			break;
437
438		case 2: /* overlap contains lock: split it */
439			if (overlap->lf_start == unlock->lf_start) {
440				overlap->lf_start = unlock->lf_end + 1;
441				break;
442			}
443			lf_split(overlap, unlock, sparelock);
444			overlap->lf_next = unlock->lf_next;
445			break;
446
447		case 3: /* lock contains overlap */
448			*prev = overlap->lf_next;
449			lf = overlap->lf_next;
450			lf_free(overlap);
451			continue;
452
453		case 4: /* overlap starts before lock */
454			overlap->lf_end = unlock->lf_start - 1;
455			prev = &overlap->lf_next;
456			lf = overlap->lf_next;
457			continue;
458
459		case 5: /* overlap ends after lock */
460			overlap->lf_start = unlock->lf_end + 1;
461			break;
462		}
463		break;
464	}
465#ifdef LOCKF_DEBUG
466	if (lockf_debug & 1)
467		lf_printlist("lf_clearlock", unlock);
468#endif /* LOCKF_DEBUG */
469	return 0;
470}
471
472/*
473 * Walk the list of locks for an inode and
474 * return the first blocking lock.
475 */
476static struct lockf *
477lf_getblock(struct lockf *lock)
478{
479	struct lockf **prev, *overlap, *lf = *(lock->lf_head);
480
481	prev = lock->lf_head;
482	while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
483		/*
484		 * We've found an overlap, see if it blocks us
485		 */
486		if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
487			return overlap;
488		/*
489		 * Nope, point to the next one on the list and
490		 * see if it blocks us
491		 */
492		lf = overlap->lf_next;
493	}
494	return NULL;
495}
496
497/*
498 * Set a byte-range lock.
499 */
500static int
501lf_setlock(struct lockf *lock, struct lockf **sparelock,
502    kmutex_t *interlock)
503{
504	struct lockf *block;
505	struct lockf **head = lock->lf_head;
506	struct lockf **prev, *overlap, *ltmp;
507	int ovcase, needtolink, error;
508
509#ifdef LOCKF_DEBUG
510	if (lockf_debug & 1)
511		lf_print("lf_setlock", lock);
512#endif /* LOCKF_DEBUG */
513
514	/*
515	 * Scan lock list for this file looking for locks that would block us.
516	 */
517	while ((block = lf_getblock(lock)) != NULL) {
518		/*
519		 * Free the structure and return if nonblocking.
520		 */
521		if ((lock->lf_flags & F_WAIT) == 0) {
522			lf_free(lock);
523			return EAGAIN;
524		}
525		/*
526		 * We are blocked. Since flock style locks cover
527		 * the whole file, there is no chance for deadlock.
528		 * For byte-range locks we must check for deadlock.
529		 *
530		 * Deadlock detection is done by looking through the
531		 * wait channels to see if there are any cycles that
532		 * involve us. MAXDEPTH is set just to make sure we
533		 * do not go off into neverneverland.
534		 */
535		if ((lock->lf_flags & F_POSIX) &&
536		    (block->lf_flags & F_POSIX)) {
537			struct lwp *wlwp;
538			volatile const struct lockf *waitblock;
539			int i = 0;
540			struct proc *p;
541
542			p = (struct proc *)block->lf_id;
543			KASSERT(p != NULL);
544			while (i++ < maxlockdepth) {
545				mutex_enter(p->p_lock);
546				if (p->p_nlwps > 1) {
547					mutex_exit(p->p_lock);
548					break;
549				}
550				wlwp = LIST_FIRST(&p->p_lwps);
551				lwp_lock(wlwp);
552				if (wlwp->l_wchan == NULL ||
553				    wlwp->l_wmesg != lockstr) {
554					lwp_unlock(wlwp);
555					mutex_exit(p->p_lock);
556					break;
557				}
558				waitblock = wlwp->l_wchan;
559				lwp_unlock(wlwp);
560				mutex_exit(p->p_lock);
561				/* Get the owner of the blocking lock */
562				waitblock = waitblock->lf_next;
563				if ((waitblock->lf_flags & F_POSIX) == 0)
564					break;
565				p = (struct proc *)waitblock->lf_id;
566				if (p == curproc) {
567					lf_free(lock);
568					return EDEADLK;
569				}
570			}
571			/*
572			 * If we're still following a dependency chain
573			 * after maxlockdepth iterations, assume we're in
574			 * a cycle to be safe.
575			 */
576			if (i >= maxlockdepth) {
577				lf_free(lock);
578				return EDEADLK;
579			}
580		}
581		/*
582		 * For flock type locks, we must first remove
583		 * any shared locks that we hold before we sleep
584		 * waiting for an exclusive lock.
585		 */
586		if ((lock->lf_flags & F_FLOCK) &&
587		    lock->lf_type == F_WRLCK) {
588			lock->lf_type = F_UNLCK;
589			(void) lf_clearlock(lock, NULL);
590			lock->lf_type = F_WRLCK;
591		}
592		/*
593		 * Add our lock to the blocked list and sleep until we're free.
594		 * Remember who blocked us (for deadlock detection).
595		 */
596		lock->lf_next = block;
597		TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
598#ifdef LOCKF_DEBUG
599		if (lockf_debug & 1) {
600			lf_print("lf_setlock: blocking on", block);
601			lf_printlist("lf_setlock", block);
602		}
603#endif /* LOCKF_DEBUG */
604		error = cv_wait_sig(&lock->lf_cv, interlock);
605
606		/*
607		 * We may have been awoken by a signal (in
608		 * which case we must remove ourselves from the
609		 * blocked list) and/or by another process
610		 * releasing a lock (in which case we have already
611		 * been removed from the blocked list and our
612		 * lf_next field set to NULL).
613		 */
614		if (lock->lf_next != NULL) {
615			TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
616			lock->lf_next = NULL;
617		}
618		if (error) {
619			lf_free(lock);
620			return error;
621		}
622	}
623	/*
624	 * No blocks!!  Add the lock.  Note that we will
625	 * downgrade or upgrade any overlapping locks this
626	 * process already owns.
627	 *
628	 * Skip over locks owned by other processes.
629	 * Handle any locks that overlap and are owned by ourselves.
630	 */
631	prev = head;
632	block = *head;
633	needtolink = 1;
634	for (;;) {
635		ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
636		if (ovcase)
637			block = overlap->lf_next;
638		/*
639		 * Six cases:
640		 *	0) no overlap
641		 *	1) overlap == lock
642		 *	2) overlap contains lock
643		 *	3) lock contains overlap
644		 *	4) overlap starts before lock
645		 *	5) overlap ends after lock
646		 */
647		switch (ovcase) {
648		case 0: /* no overlap */
649			if (needtolink) {
650				*prev = lock;
651				lock->lf_next = overlap;
652			}
653			break;
654
655		case 1: /* overlap == lock */
656			/*
657			 * If downgrading lock, others may be
658			 * able to acquire it.
659			 */
660			if (lock->lf_type == F_RDLCK &&
661			    overlap->lf_type == F_WRLCK)
662				lf_wakelock(overlap);
663			overlap->lf_type = lock->lf_type;
664			lf_free(lock);
665			lock = overlap; /* for debug output below */
666			break;
667
668		case 2: /* overlap contains lock */
669			/*
670			 * Check for common starting point and different types.
671			 */
672			if (overlap->lf_type == lock->lf_type) {
673				lf_free(lock);
674				lock = overlap; /* for debug output below */
675				break;
676			}
677			if (overlap->lf_start == lock->lf_start) {
678				*prev = lock;
679				lock->lf_next = overlap;
680				overlap->lf_start = lock->lf_end + 1;
681			} else
682				lf_split(overlap, lock, sparelock);
683			lf_wakelock(overlap);
684			break;
685
686		case 3: /* lock contains overlap */
687			/*
688			 * If downgrading lock, others may be able to
689			 * acquire it, otherwise take the list.
690			 */
691			if (lock->lf_type == F_RDLCK &&
692			    overlap->lf_type == F_WRLCK) {
693				lf_wakelock(overlap);
694			} else {
695				while ((ltmp = TAILQ_FIRST(&overlap->lf_blkhd))) {
696					KASSERT(ltmp->lf_next == overlap);
697					TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
698					    lf_block);
699					ltmp->lf_next = lock;
700					TAILQ_INSERT_TAIL(&lock->lf_blkhd,
701					    ltmp, lf_block);
702				}
703			}
704			/*
705			 * Add the new lock if necessary and delete the overlap.
706			 */
707			if (needtolink) {
708				*prev = lock;
709				lock->lf_next = overlap->lf_next;
710				prev = &lock->lf_next;
711				needtolink = 0;
712			} else
713				*prev = overlap->lf_next;
714			lf_free(overlap);
715			continue;
716
717		case 4: /* overlap starts before lock */
718			/*
719			 * Add lock after overlap on the list.
720			 */
721			lock->lf_next = overlap->lf_next;
722			overlap->lf_next = lock;
723			overlap->lf_end = lock->lf_start - 1;
724			prev = &lock->lf_next;
725			lf_wakelock(overlap);
726			needtolink = 0;
727			continue;
728
729		case 5: /* overlap ends after lock */
730			/*
731			 * Add the new lock before overlap.
732			 */
733			if (needtolink) {
734				*prev = lock;
735				lock->lf_next = overlap;
736			}
737			overlap->lf_start = lock->lf_end + 1;
738			lf_wakelock(overlap);
739			break;
740		}
741		break;
742	}
743#ifdef LOCKF_DEBUG
744	if (lockf_debug & 1) {
745		lf_print("lf_setlock: got the lock", lock);
746		lf_printlist("lf_setlock", lock);
747	}
748#endif /* LOCKF_DEBUG */
749	return 0;
750}
751
752/*
753 * Check whether there is a blocking lock,
754 * and if so return its process identifier.
755 */
756static int
757lf_getlock(struct lockf *lock, struct flock *fl)
758{
759	struct lockf *block;
760
761#ifdef LOCKF_DEBUG
762	if (lockf_debug & 1)
763		lf_print("lf_getlock", lock);
764#endif /* LOCKF_DEBUG */
765
766	if ((block = lf_getblock(lock)) != NULL) {
767		fl->l_type = block->lf_type;
768		fl->l_whence = SEEK_SET;
769		fl->l_start = block->lf_start;
770		if (block->lf_end == -1)
771			fl->l_len = 0;
772		else
773			fl->l_len = block->lf_end - block->lf_start + 1;
774		if (block->lf_flags & F_POSIX)
775			fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
776		else
777			fl->l_pid = -1;
778	} else {
779		fl->l_type = F_UNLCK;
780	}
781	return 0;
782}
783
784/*
785 * Do an advisory lock operation.
786 */
787int
788lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
789{
790	struct flock *fl = ap->a_fl;
791	struct lockf *lock = NULL;
792	struct lockf *sparelock;
793	kmutex_t *interlock = &lockf_lock;
794	off_t start, end;
795	int error = 0;
796
797	KASSERTMSG(size >= 0, "size=%jd", (intmax_t)size);
798
799	/*
800	 * Convert the flock structure into a start and end.
801	 */
802	switch (fl->l_whence) {
803	case SEEK_SET:
804	case SEEK_CUR:
805		/*
806		 * Caller is responsible for adding any necessary offset
807		 * when SEEK_CUR is used.
808		 */
809		start = fl->l_start;
810		break;
811
812	case SEEK_END:
813		if (fl->l_start > __type_max(off_t) - size)
814			return EINVAL;
815		start = size + fl->l_start;
816		break;
817
818	default:
819		return EINVAL;
820	}
821
822	if (fl->l_len == 0)
823		end = -1;
824	else {
825		if (fl->l_len >= 0) {
826			if (start >= 0 &&
827			    fl->l_len - 1 > __type_max(off_t) - start)
828				return EINVAL;
829			end = start + (fl->l_len - 1);
830		} else {
831			/* lockf() allows -ve lengths */
832			if (start < 0)
833				return EINVAL;
834			end = start - 1;
835			start += fl->l_len;
836		}
837	}
838	if (start < 0)
839		return EINVAL;
840
841	/*
842	 * Allocate locks before acquiring the interlock.  We need two
843	 * locks in the worst case.
844	 */
845	switch (ap->a_op) {
846	case F_SETLK:
847	case F_UNLCK:
848		/*
849		 * XXX For F_UNLCK case, we can re-use the lock.
850		 */
851		if ((ap->a_flags & F_FLOCK) == 0) {
852			/*
853			 * Byte-range lock might need one more lock.
854			 */
855			sparelock = lf_alloc(0);
856			if (sparelock == NULL) {
857				error = ENOMEM;
858				goto quit;
859			}
860			break;
861		}
862		/* FALLTHROUGH */
863
864	case F_GETLK:
865		sparelock = NULL;
866		break;
867
868	default:
869		return EINVAL;
870	}
871
872	switch (ap->a_op) {
873	case F_SETLK:
874		lock = lf_alloc(1);
875		break;
876	case F_UNLCK:
877		if (start == 0 || end == -1) {
878			/* never split */
879			lock = lf_alloc(0);
880		} else {
881			/* might split */
882			lock = lf_alloc(2);
883		}
884		break;
885	case F_GETLK:
886		lock = lf_alloc(0);
887		break;
888	}
889	if (lock == NULL) {
890		error = ENOMEM;
891		goto quit;
892	}
893
894	mutex_enter(interlock);
895
896	/*
897	 * Avoid the common case of unlocking when inode has no locks.
898	 */
899	if (*head == (struct lockf *)0) {
900		if (ap->a_op != F_SETLK) {
901			fl->l_type = F_UNLCK;
902			error = 0;
903			goto quit_unlock;
904		}
905	}
906
907	/*
908	 * Create the lockf structure.
909	 */
910	lock->lf_start = start;
911	lock->lf_end = end;
912	lock->lf_head = head;
913	lock->lf_type = fl->l_type;
914	lock->lf_next = (struct lockf *)0;
915	TAILQ_INIT(&lock->lf_blkhd);
916	lock->lf_flags = ap->a_flags;
917	if (lock->lf_flags & F_POSIX) {
918		KASSERT(curproc == (struct proc *)ap->a_id);
919	}
920	lock->lf_id = ap->a_id;
921
922	/*
923	 * Do the requested operation.
924	 */
925	switch (ap->a_op) {
926
927	case F_SETLK:
928		error = lf_setlock(lock, &sparelock, interlock);
929		lock = NULL; /* lf_setlock freed it */
930		break;
931
932	case F_UNLCK:
933		error = lf_clearlock(lock, &sparelock);
934		break;
935
936	case F_GETLK:
937		error = lf_getlock(lock, fl);
938		break;
939
940	default:
941		break;
942		/* NOTREACHED */
943	}
944
945quit_unlock:
946	mutex_exit(interlock);
947quit:
948	if (lock)
949		lf_free(lock);
950	if (sparelock)
951		lf_free(sparelock);
952
953	return error;
954}
955
956/*
957 * Initialize subsystem.   XXX We use a global lock.  This could be the
958 * vnode interlock, but the deadlock detection code may need to inspect
959 * locks belonging to other files.
960 */
961void
962lf_init(void)
963{
964
965	mutex_init(&lockf_lock, MUTEX_DEFAULT, IPL_NONE);
966}
967