vfs_lockf.c revision 1.61
1/*	$NetBSD: vfs_lockf.c,v 1.61 2008/01/02 11:48:56 ad Exp $	*/
2
3/*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Scooter Morris at Genentech Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)ufs_lockf.c	8.4 (Berkeley) 10/26/94
35 */
36
37#include <sys/cdefs.h>
38__KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.61 2008/01/02 11:48:56 ad Exp $");
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/kernel.h>
43#include <sys/file.h>
44#include <sys/proc.h>
45#include <sys/vnode.h>
46#include <sys/pool.h>
47#include <sys/fcntl.h>
48#include <sys/lockf.h>
49#include <sys/kauth.h>
50
51/*
52 * The lockf structure is a kernel structure which contains the information
53 * associated with a byte range lock.  The lockf structures are linked into
54 * the vnode structure.  Locks are sorted by the starting byte of the lock for
55 * efficiency.
56 *
57 * lf_next is used for two purposes, depending on whether the lock is
58 * being held, or is in conflict with an existing lock.  If this lock
59 * is held, it indicates the next lock on the same vnode.
60 * For pending locks, if lock->lf_next is non-NULL, then lock->lf_block
61 * must be queued on the lf_blkhd TAILQ of lock->lf_next.
62 */
63
64TAILQ_HEAD(locklist, lockf);
65
66struct lockf {
67	short	lf_flags;	 /* Lock semantics: F_POSIX, F_FLOCK, F_WAIT */
68	short	lf_type;	 /* Lock type: F_RDLCK, F_WRLCK */
69	off_t	lf_start;	 /* The byte # of the start of the lock */
70	off_t	lf_end;		 /* The byte # of the end of the lock (-1=EOF)*/
71	void	*lf_id;		 /* process or file description holding lock */
72	struct	lockf **lf_head; /* Back pointer to the head of lockf list */
73	struct	lockf *lf_next;	 /* Next lock on this vnode, or blocking lock */
74	struct  locklist lf_blkhd; /* List of requests blocked on this lock */
75	TAILQ_ENTRY(lockf) lf_block;/* A request waiting for a lock */
76	uid_t	lf_uid;		 /* User ID responsible */
77	kcondvar_t lf_cv;	 /* Signalling */
78};
79
80/* Maximum length of sleep chains to traverse to try and detect deadlock. */
81#define MAXDEPTH 50
82
83static POOL_INIT(lockfpool, sizeof(struct lockf), 0, 0, 0, "lockfpl",
84    &pool_allocator_nointr, IPL_NONE);
85
86/*
87 * This variable controls the maximum number of processes that will
88 * be checked in doing deadlock detection.
89 */
90int maxlockdepth = MAXDEPTH;
91
92#ifdef LOCKF_DEBUG
93int	lockf_debug = 0;
94#endif
95
96#define SELF	0x1
97#define OTHERS	0x2
98
99/*
100 * XXX TODO
101 * Misc cleanups: "void *id" should be visible in the API as a
102 * "struct proc *".
103 * (This requires rototilling all VFS's which support advisory locking).
104 */
105
106/*
107 * If there's a lot of lock contention on a single vnode, locking
108 * schemes which allow for more paralleism would be needed.  Given how
109 * infrequently byte-range locks are actually used in typical BSD
110 * code, a more complex approach probably isn't worth it.
111 */
112
113/*
114 * We enforce a limit on locks by uid, so that a single user cannot
115 * run the kernel out of memory.  For now, the limit is pretty coarse.
116 * There is no limit on root.
117 *
118 * Splitting a lock will always succeed, regardless of current allocations.
119 * If you're slightly above the limit, we still have to permit an allocation
120 * so that the unlock can succeed.  If the unlocking causes too many splits,
121 * however, you're totally cutoff.
122 */
123int maxlocksperuid = 1024;
124
125#ifdef LOCKF_DEBUG
126/*
127 * Print out a lock.
128 */
129static void
130lf_print(const char *tag, struct lockf *lock)
131{
132
133	printf("%s: lock %p for ", tag, lock);
134	if (lock->lf_flags & F_POSIX)
135		printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
136	else
137		printf("file %p", (struct file *)lock->lf_id);
138	printf(" %s, start %qx, end %qx",
139		lock->lf_type == F_RDLCK ? "shared" :
140		lock->lf_type == F_WRLCK ? "exclusive" :
141		lock->lf_type == F_UNLCK ? "unlock" :
142		"unknown", lock->lf_start, lock->lf_end);
143	if (TAILQ_FIRST(&lock->lf_blkhd))
144		printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
145	else
146		printf("\n");
147}
148
149static void
150lf_printlist(const char *tag, struct lockf *lock)
151{
152	struct lockf *lf, *blk;
153
154	printf("%s: Lock list:\n", tag);
155	for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
156		printf("\tlock %p for ", lf);
157		if (lf->lf_flags & F_POSIX)
158			printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
159		else
160			printf("file %p", (struct file *)lf->lf_id);
161		printf(", %s, start %qx, end %qx",
162			lf->lf_type == F_RDLCK ? "shared" :
163			lf->lf_type == F_WRLCK ? "exclusive" :
164			lf->lf_type == F_UNLCK ? "unlock" :
165			"unknown", lf->lf_start, lf->lf_end);
166		TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
167			if (blk->lf_flags & F_POSIX)
168				printf("proc %d",
169				    ((struct proc *)blk->lf_id)->p_pid);
170			else
171				printf("file %p", (struct file *)blk->lf_id);
172			printf(", %s, start %qx, end %qx",
173				blk->lf_type == F_RDLCK ? "shared" :
174				blk->lf_type == F_WRLCK ? "exclusive" :
175				blk->lf_type == F_UNLCK ? "unlock" :
176				"unknown", blk->lf_start, blk->lf_end);
177			if (TAILQ_FIRST(&blk->lf_blkhd))
178				 panic("lf_printlist: bad list");
179		}
180		printf("\n");
181	}
182}
183#endif /* LOCKF_DEBUG */
184
185/*
186 * 3 options for allowfail.
187 * 0 - always allocate.  1 - cutoff at limit.  2 - cutoff at double limit.
188 */
189static struct lockf *
190lf_alloc(uid_t uid, int allowfail)
191{
192	struct uidinfo *uip;
193	struct lockf *lock;
194
195	uip = uid_find(uid);
196	mutex_enter(&uip->ui_lock);
197	if (uid && allowfail && uip->ui_lockcnt >
198	    (allowfail == 1 ? maxlocksperuid : (maxlocksperuid * 2))) {
199		mutex_exit(&uip->ui_lock);
200		return NULL;
201	}
202	uip->ui_lockcnt++;
203	mutex_exit(&uip->ui_lock);
204	lock = pool_get(&lockfpool, PR_WAITOK);
205	lock->lf_uid = uid;
206	cv_init(&lock->lf_cv, "lockf");
207	return lock;
208}
209
210static void
211lf_free(struct lockf *lock)
212{
213	struct uidinfo *uip;
214
215	uip = uid_find(lock->lf_uid);
216	mutex_enter(&uip->ui_lock);
217	uip->ui_lockcnt--;
218	mutex_exit(&uip->ui_lock);
219	cv_destroy(&lock->lf_cv);
220	pool_put(&lockfpool, lock);
221}
222
223/*
224 * Walk the list of locks for an inode to
225 * find an overlapping lock (if any).
226 *
227 * NOTE: this returns only the FIRST overlapping lock.  There
228 *	 may be more than one.
229 */
230static int
231lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
232    struct lockf ***prev, struct lockf **overlap)
233{
234	off_t start, end;
235
236	*overlap = lf;
237	if (lf == NULL)
238		return 0;
239#ifdef LOCKF_DEBUG
240	if (lockf_debug & 2)
241		lf_print("lf_findoverlap: looking for overlap in", lock);
242#endif /* LOCKF_DEBUG */
243	start = lock->lf_start;
244	end = lock->lf_end;
245	while (lf != NULL) {
246		if (((type == SELF) && lf->lf_id != lock->lf_id) ||
247		    ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
248			*prev = &lf->lf_next;
249			*overlap = lf = lf->lf_next;
250			continue;
251		}
252#ifdef LOCKF_DEBUG
253		if (lockf_debug & 2)
254			lf_print("\tchecking", lf);
255#endif /* LOCKF_DEBUG */
256		/*
257		 * OK, check for overlap
258		 *
259		 * Six cases:
260		 *	0) no overlap
261		 *	1) overlap == lock
262		 *	2) overlap contains lock
263		 *	3) lock contains overlap
264		 *	4) overlap starts before lock
265		 *	5) overlap ends after lock
266		 */
267		if ((lf->lf_end != -1 && start > lf->lf_end) ||
268		    (end != -1 && lf->lf_start > end)) {
269			/* Case 0 */
270#ifdef LOCKF_DEBUG
271			if (lockf_debug & 2)
272				printf("no overlap\n");
273#endif /* LOCKF_DEBUG */
274			if ((type & SELF) && end != -1 && lf->lf_start > end)
275				return 0;
276			*prev = &lf->lf_next;
277			*overlap = lf = lf->lf_next;
278			continue;
279		}
280		if ((lf->lf_start == start) && (lf->lf_end == end)) {
281			/* Case 1 */
282#ifdef LOCKF_DEBUG
283			if (lockf_debug & 2)
284				printf("overlap == lock\n");
285#endif /* LOCKF_DEBUG */
286			return 1;
287		}
288		if ((lf->lf_start <= start) &&
289		    (end != -1) &&
290		    ((lf->lf_end >= end) || (lf->lf_end == -1))) {
291			/* Case 2 */
292#ifdef LOCKF_DEBUG
293			if (lockf_debug & 2)
294				printf("overlap contains lock\n");
295#endif /* LOCKF_DEBUG */
296			return 2;
297		}
298		if (start <= lf->lf_start &&
299		           (end == -1 ||
300			   (lf->lf_end != -1 && end >= lf->lf_end))) {
301			/* Case 3 */
302#ifdef LOCKF_DEBUG
303			if (lockf_debug & 2)
304				printf("lock contains overlap\n");
305#endif /* LOCKF_DEBUG */
306			return 3;
307		}
308		if ((lf->lf_start < start) &&
309			((lf->lf_end >= start) || (lf->lf_end == -1))) {
310			/* Case 4 */
311#ifdef LOCKF_DEBUG
312			if (lockf_debug & 2)
313				printf("overlap starts before lock\n");
314#endif /* LOCKF_DEBUG */
315			return 4;
316		}
317		if ((lf->lf_start > start) &&
318			(end != -1) &&
319			((lf->lf_end > end) || (lf->lf_end == -1))) {
320			/* Case 5 */
321#ifdef LOCKF_DEBUG
322			if (lockf_debug & 2)
323				printf("overlap ends after lock\n");
324#endif /* LOCKF_DEBUG */
325			return 5;
326		}
327		panic("lf_findoverlap: default");
328	}
329	return 0;
330}
331
332/*
333 * Split a lock and a contained region into
334 * two or three locks as necessary.
335 */
336static void
337lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
338{
339	struct lockf *splitlock;
340
341#ifdef LOCKF_DEBUG
342	if (lockf_debug & 2) {
343		lf_print("lf_split", lock1);
344		lf_print("splitting from", lock2);
345	}
346#endif /* LOCKF_DEBUG */
347	/*
348	 * Check to see if spliting into only two pieces.
349	 */
350	if (lock1->lf_start == lock2->lf_start) {
351		lock1->lf_start = lock2->lf_end + 1;
352		lock2->lf_next = lock1;
353		return;
354	}
355	if (lock1->lf_end == lock2->lf_end) {
356		lock1->lf_end = lock2->lf_start - 1;
357		lock2->lf_next = lock1->lf_next;
358		lock1->lf_next = lock2;
359		return;
360	}
361	/*
362	 * Make a new lock consisting of the last part of
363	 * the encompassing lock
364	 */
365	splitlock = *sparelock;
366	*sparelock = NULL;
367	memcpy(splitlock, lock1, sizeof(*splitlock));
368	splitlock->lf_start = lock2->lf_end + 1;
369	TAILQ_INIT(&splitlock->lf_blkhd);
370	lock1->lf_end = lock2->lf_start - 1;
371	/*
372	 * OK, now link it in
373	 */
374	splitlock->lf_next = lock1->lf_next;
375	lock2->lf_next = splitlock;
376	lock1->lf_next = lock2;
377}
378
379/*
380 * Wakeup a blocklist
381 */
382static void
383lf_wakelock(struct lockf *listhead)
384{
385	struct lockf *wakelock;
386
387	while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
388		KASSERT(wakelock->lf_next == listhead);
389		TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
390		wakelock->lf_next = NULL;
391#ifdef LOCKF_DEBUG
392		if (lockf_debug & 2)
393			lf_print("lf_wakelock: awakening", wakelock);
394#endif
395		cv_broadcast(&wakelock->lf_cv);
396	}
397}
398
399/*
400 * Remove a byte-range lock on an inode.
401 *
402 * Generally, find the lock (or an overlap to that lock)
403 * and remove it (or shrink it), then wakeup anyone we can.
404 */
405static int
406lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
407{
408	struct lockf **head = unlock->lf_head;
409	struct lockf *lf = *head;
410	struct lockf *overlap, **prev;
411	int ovcase;
412
413	if (lf == NULL)
414		return 0;
415#ifdef LOCKF_DEBUG
416	if (unlock->lf_type != F_UNLCK)
417		panic("lf_clearlock: bad type");
418	if (lockf_debug & 1)
419		lf_print("lf_clearlock", unlock);
420#endif /* LOCKF_DEBUG */
421	prev = head;
422	while ((ovcase = lf_findoverlap(lf, unlock, SELF,
423	    &prev, &overlap)) != 0) {
424		/*
425		 * Wakeup the list of locks to be retried.
426		 */
427		lf_wakelock(overlap);
428
429		switch (ovcase) {
430
431		case 1: /* overlap == lock */
432			*prev = overlap->lf_next;
433			lf_free(overlap);
434			break;
435
436		case 2: /* overlap contains lock: split it */
437			if (overlap->lf_start == unlock->lf_start) {
438				overlap->lf_start = unlock->lf_end + 1;
439				break;
440			}
441			lf_split(overlap, unlock, sparelock);
442			overlap->lf_next = unlock->lf_next;
443			break;
444
445		case 3: /* lock contains overlap */
446			*prev = overlap->lf_next;
447			lf = overlap->lf_next;
448			lf_free(overlap);
449			continue;
450
451		case 4: /* overlap starts before lock */
452			overlap->lf_end = unlock->lf_start - 1;
453			prev = &overlap->lf_next;
454			lf = overlap->lf_next;
455			continue;
456
457		case 5: /* overlap ends after lock */
458			overlap->lf_start = unlock->lf_end + 1;
459			break;
460		}
461		break;
462	}
463#ifdef LOCKF_DEBUG
464	if (lockf_debug & 1)
465		lf_printlist("lf_clearlock", unlock);
466#endif /* LOCKF_DEBUG */
467	return 0;
468}
469
470/*
471 * Walk the list of locks for an inode and
472 * return the first blocking lock.
473 */
474static struct lockf *
475lf_getblock(struct lockf *lock)
476{
477	struct lockf **prev, *overlap, *lf = *(lock->lf_head);
478
479	prev = lock->lf_head;
480	while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
481		/*
482		 * We've found an overlap, see if it blocks us
483		 */
484		if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
485			return overlap;
486		/*
487		 * Nope, point to the next one on the list and
488		 * see if it blocks us
489		 */
490		lf = overlap->lf_next;
491	}
492	return NULL;
493}
494
495/*
496 * Set a byte-range lock.
497 */
498static int
499lf_setlock(struct lockf *lock, struct lockf **sparelock,
500    kmutex_t *interlock)
501{
502	struct lockf *block;
503	struct lockf **head = lock->lf_head;
504	struct lockf **prev, *overlap, *ltmp;
505	static char lockstr[] = "lockf";
506	int ovcase, needtolink, error;
507
508#ifdef LOCKF_DEBUG
509	if (lockf_debug & 1)
510		lf_print("lf_setlock", lock);
511#endif /* LOCKF_DEBUG */
512
513	/*
514	 * XXX Here we used to set the sleep priority so that writers
515	 * took priority.  That's of dubious use, and is not possible
516	 * with condition variables.  Need to find a better way to ensure
517	 * fairness.
518	 */
519
520	/*
521	 * Scan lock list for this file looking for locks that would block us.
522	 */
523	while ((block = lf_getblock(lock)) != NULL) {
524		/*
525		 * Free the structure and return if nonblocking.
526		 */
527		if ((lock->lf_flags & F_WAIT) == 0) {
528			lf_free(lock);
529			return EAGAIN;
530		}
531		/*
532		 * We are blocked. Since flock style locks cover
533		 * the whole file, there is no chance for deadlock.
534		 * For byte-range locks we must check for deadlock.
535		 *
536		 * Deadlock detection is done by looking through the
537		 * wait channels to see if there are any cycles that
538		 * involve us. MAXDEPTH is set just to make sure we
539		 * do not go off into neverneverland.
540		 */
541		if ((lock->lf_flags & F_POSIX) &&
542		    (block->lf_flags & F_POSIX)) {
543			struct lwp *wlwp;
544			volatile const struct lockf *waitblock;
545			int i = 0;
546			struct proc *p;
547
548			p = (struct proc *)block->lf_id;
549			KASSERT(p != NULL);
550			while (i++ < maxlockdepth) {
551				mutex_enter(&p->p_smutex);
552				if (p->p_nlwps > 1) {
553					mutex_exit(&p->p_smutex);
554					break;
555				}
556				wlwp = LIST_FIRST(&p->p_lwps);
557				lwp_lock(wlwp);
558				if (wlwp->l_wmesg != lockstr) {
559					lwp_unlock(wlwp);
560					mutex_exit(&p->p_smutex);
561					break;
562				}
563				waitblock = wlwp->l_wchan;
564				lwp_unlock(wlwp);
565				mutex_exit(&p->p_smutex);
566				if (waitblock == NULL) {
567					/*
568					 * this lwp just got up but
569					 * not returned from ltsleep yet.
570					 */
571					break;
572				}
573				/* Get the owner of the blocking lock */
574				waitblock = waitblock->lf_next;
575				if ((waitblock->lf_flags & F_POSIX) == 0)
576					break;
577				p = (struct proc *)waitblock->lf_id;
578				if (p == curproc) {
579					lf_free(lock);
580					return EDEADLK;
581				}
582			}
583			/*
584			 * If we're still following a dependency chain
585			 * after maxlockdepth iterations, assume we're in
586			 * a cycle to be safe.
587			 */
588			if (i >= maxlockdepth) {
589				lf_free(lock);
590				return EDEADLK;
591			}
592		}
593		/*
594		 * For flock type locks, we must first remove
595		 * any shared locks that we hold before we sleep
596		 * waiting for an exclusive lock.
597		 */
598		if ((lock->lf_flags & F_FLOCK) &&
599		    lock->lf_type == F_WRLCK) {
600			lock->lf_type = F_UNLCK;
601			(void) lf_clearlock(lock, NULL);
602			lock->lf_type = F_WRLCK;
603		}
604		/*
605		 * Add our lock to the blocked list and sleep until we're free.
606		 * Remember who blocked us (for deadlock detection).
607		 */
608		lock->lf_next = block;
609		TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
610#ifdef LOCKF_DEBUG
611		if (lockf_debug & 1) {
612			lf_print("lf_setlock: blocking on", block);
613			lf_printlist("lf_setlock", block);
614		}
615#endif /* LOCKF_DEBUG */
616		error = cv_wait_sig(&lock->lf_cv, interlock);
617
618		/*
619		 * We may have been awakened by a signal (in
620		 * which case we must remove ourselves from the
621		 * blocked list) and/or by another process
622		 * releasing a lock (in which case we have already
623		 * been removed from the blocked list and our
624		 * lf_next field set to NULL).
625		 */
626		if (lock->lf_next != NULL) {
627			TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
628			lock->lf_next = NULL;
629		}
630		if (error) {
631			lf_free(lock);
632			return error;
633		}
634	}
635	/*
636	 * No blocks!!  Add the lock.  Note that we will
637	 * downgrade or upgrade any overlapping locks this
638	 * process already owns.
639	 *
640	 * Skip over locks owned by other processes.
641	 * Handle any locks that overlap and are owned by ourselves.
642	 */
643	prev = head;
644	block = *head;
645	needtolink = 1;
646	for (;;) {
647		ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
648		if (ovcase)
649			block = overlap->lf_next;
650		/*
651		 * Six cases:
652		 *	0) no overlap
653		 *	1) overlap == lock
654		 *	2) overlap contains lock
655		 *	3) lock contains overlap
656		 *	4) overlap starts before lock
657		 *	5) overlap ends after lock
658		 */
659		switch (ovcase) {
660		case 0: /* no overlap */
661			if (needtolink) {
662				*prev = lock;
663				lock->lf_next = overlap;
664			}
665			break;
666
667		case 1: /* overlap == lock */
668			/*
669			 * If downgrading lock, others may be
670			 * able to acquire it.
671			 */
672			if (lock->lf_type == F_RDLCK &&
673			    overlap->lf_type == F_WRLCK)
674				lf_wakelock(overlap);
675			overlap->lf_type = lock->lf_type;
676			lf_free(lock);
677			lock = overlap; /* for debug output below */
678			break;
679
680		case 2: /* overlap contains lock */
681			/*
682			 * Check for common starting point and different types.
683			 */
684			if (overlap->lf_type == lock->lf_type) {
685				lf_free(lock);
686				lock = overlap; /* for debug output below */
687				break;
688			}
689			if (overlap->lf_start == lock->lf_start) {
690				*prev = lock;
691				lock->lf_next = overlap;
692				overlap->lf_start = lock->lf_end + 1;
693			} else
694				lf_split(overlap, lock, sparelock);
695			lf_wakelock(overlap);
696			break;
697
698		case 3: /* lock contains overlap */
699			/*
700			 * If downgrading lock, others may be able to
701			 * acquire it, otherwise take the list.
702			 */
703			if (lock->lf_type == F_RDLCK &&
704			    overlap->lf_type == F_WRLCK) {
705				lf_wakelock(overlap);
706			} else {
707				while ((ltmp = TAILQ_FIRST(&overlap->lf_blkhd))) {
708					KASSERT(ltmp->lf_next == overlap);
709					TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
710					    lf_block);
711					ltmp->lf_next = lock;
712					TAILQ_INSERT_TAIL(&lock->lf_blkhd,
713					    ltmp, lf_block);
714				}
715			}
716			/*
717			 * Add the new lock if necessary and delete the overlap.
718			 */
719			if (needtolink) {
720				*prev = lock;
721				lock->lf_next = overlap->lf_next;
722				prev = &lock->lf_next;
723				needtolink = 0;
724			} else
725				*prev = overlap->lf_next;
726			lf_free(overlap);
727			continue;
728
729		case 4: /* overlap starts before lock */
730			/*
731			 * Add lock after overlap on the list.
732			 */
733			lock->lf_next = overlap->lf_next;
734			overlap->lf_next = lock;
735			overlap->lf_end = lock->lf_start - 1;
736			prev = &lock->lf_next;
737			lf_wakelock(overlap);
738			needtolink = 0;
739			continue;
740
741		case 5: /* overlap ends after lock */
742			/*
743			 * Add the new lock before overlap.
744			 */
745			if (needtolink) {
746				*prev = lock;
747				lock->lf_next = overlap;
748			}
749			overlap->lf_start = lock->lf_end + 1;
750			lf_wakelock(overlap);
751			break;
752		}
753		break;
754	}
755#ifdef LOCKF_DEBUG
756	if (lockf_debug & 1) {
757		lf_print("lf_setlock: got the lock", lock);
758		lf_printlist("lf_setlock", lock);
759	}
760#endif /* LOCKF_DEBUG */
761	return 0;
762}
763
764/*
765 * Check whether there is a blocking lock,
766 * and if so return its process identifier.
767 */
768static int
769lf_getlock(struct lockf *lock, struct flock *fl)
770{
771	struct lockf *block;
772
773#ifdef LOCKF_DEBUG
774	if (lockf_debug & 1)
775		lf_print("lf_getlock", lock);
776#endif /* LOCKF_DEBUG */
777
778	if ((block = lf_getblock(lock)) != NULL) {
779		fl->l_type = block->lf_type;
780		fl->l_whence = SEEK_SET;
781		fl->l_start = block->lf_start;
782		if (block->lf_end == -1)
783			fl->l_len = 0;
784		else
785			fl->l_len = block->lf_end - block->lf_start + 1;
786		if (block->lf_flags & F_POSIX)
787			fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
788		else
789			fl->l_pid = -1;
790	} else {
791		fl->l_type = F_UNLCK;
792	}
793	return 0;
794}
795
796/*
797 * Do an advisory lock operation.
798 */
799int
800lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
801{
802	struct lwp *l = curlwp;
803	struct flock *fl = ap->a_fl;
804	struct lockf *lock = NULL;
805	struct lockf *sparelock;
806	kmutex_t *interlock = &ap->a_vp->v_interlock;
807	off_t start, end;
808	int error = 0;
809
810	/*
811	 * Convert the flock structure into a start and end.
812	 */
813	switch (fl->l_whence) {
814	case SEEK_SET:
815	case SEEK_CUR:
816		/*
817		 * Caller is responsible for adding any necessary offset
818		 * when SEEK_CUR is used.
819		 */
820		start = fl->l_start;
821		break;
822
823	case SEEK_END:
824		start = size + fl->l_start;
825		break;
826
827	default:
828		return EINVAL;
829	}
830	if (start < 0)
831		return EINVAL;
832
833	/*
834	 * Allocate locks before acquiring the interlock.  We need two
835	 * locks in the worst case.
836	 */
837	switch (ap->a_op) {
838	case F_SETLK:
839	case F_UNLCK:
840		/*
841		 * XXX For F_UNLCK case, we can re-use the lock.
842		 */
843		if ((ap->a_flags & F_FLOCK) == 0) {
844			/*
845			 * Byte-range lock might need one more lock.
846			 */
847			sparelock = lf_alloc(kauth_cred_geteuid(l->l_cred), 0);
848			if (sparelock == NULL) {
849				error = ENOMEM;
850				goto quit;
851			}
852			break;
853		}
854		/* FALLTHROUGH */
855
856	case F_GETLK:
857		sparelock = NULL;
858		break;
859
860	default:
861		return EINVAL;
862	}
863
864	lock = lf_alloc(kauth_cred_geteuid(l->l_cred),
865	    ap->a_op != F_UNLCK ? 1 : 2);
866	if (lock == NULL) {
867		error = ENOMEM;
868		goto quit;
869	}
870
871	mutex_enter(interlock);
872
873	/*
874	 * Avoid the common case of unlocking when inode has no locks.
875	 */
876	if (*head == (struct lockf *)0) {
877		if (ap->a_op != F_SETLK) {
878			fl->l_type = F_UNLCK;
879			error = 0;
880			goto quit_unlock;
881		}
882	}
883
884	if (fl->l_len == 0)
885		end = -1;
886	else
887		end = start + fl->l_len - 1;
888	/*
889	 * Create the lockf structure.
890	 */
891	lock->lf_start = start;
892	lock->lf_end = end;
893	/* XXX NJWLWP
894	 * I don't want to make the entire VFS universe use LWPs, because
895	 * they don't need them, for the most part. This is an exception,
896	 * and a kluge.
897	 */
898
899	lock->lf_head = head;
900	lock->lf_type = fl->l_type;
901	lock->lf_next = (struct lockf *)0;
902	TAILQ_INIT(&lock->lf_blkhd);
903	lock->lf_flags = ap->a_flags;
904	if (lock->lf_flags & F_POSIX) {
905		KASSERT(curproc == (struct proc *)ap->a_id);
906	}
907	lock->lf_id = (struct proc *)ap->a_id;
908
909	/*
910	 * Do the requested operation.
911	 */
912	switch (ap->a_op) {
913
914	case F_SETLK:
915		error = lf_setlock(lock, &sparelock, interlock);
916		lock = NULL; /* lf_setlock freed it */
917		break;
918
919	case F_UNLCK:
920		error = lf_clearlock(lock, &sparelock);
921		break;
922
923	case F_GETLK:
924		error = lf_getlock(lock, fl);
925		break;
926
927	default:
928		break;
929		/* NOTREACHED */
930	}
931
932quit_unlock:
933	mutex_exit(interlock);
934quit:
935	if (lock)
936		lf_free(lock);
937	if (sparelock)
938		lf_free(sparelock);
939
940	return error;
941}
942