vfs_lockf.c revision 1.57
1/*	$NetBSD: vfs_lockf.c,v 1.57 2007/02/09 21:55:32 ad Exp $	*/
2
3/*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Scooter Morris at Genentech Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)ufs_lockf.c	8.4 (Berkeley) 10/26/94
35 */
36
37#include <sys/cdefs.h>
38__KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.57 2007/02/09 21:55:32 ad Exp $");
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/kernel.h>
43#include <sys/file.h>
44#include <sys/proc.h>
45#include <sys/vnode.h>
46#include <sys/pool.h>
47#include <sys/fcntl.h>
48#include <sys/lockf.h>
49#include <sys/kauth.h>
50
51/*
52 * The lockf structure is a kernel structure which contains the information
53 * associated with a byte range lock.  The lockf structures are linked into
54 * the inode structure. Locks are sorted by the starting byte of the lock for
55 * efficiency.
56 *
57 * lf_next is used for two purposes, depending on whether the lock is
58 * being held, or is in conflict with an existing lock.  If this lock
59 * is held, it indicates the next lock on the same vnode.
60 * For pending locks, if lock->lf_next is non-NULL, then lock->lf_block
61 * must be queued on the lf_blkhd TAILQ of lock->lf_next.
62 */
63
64TAILQ_HEAD(locklist, lockf);
65
66struct lockf {
67	short	lf_flags;	 /* Lock semantics: F_POSIX, F_FLOCK, F_WAIT */
68	short	lf_type;	 /* Lock type: F_RDLCK, F_WRLCK */
69	off_t	lf_start;	 /* The byte # of the start of the lock */
70	off_t	lf_end;		 /* The byte # of the end of the lock (-1=EOF)*/
71	void	*lf_id;		 /* process or file description holding lock */
72	struct	lockf **lf_head; /* Back pointer to the head of lockf list */
73	struct	lockf *lf_next;	 /* Next lock on this vnode, or blocking lock */
74	struct  locklist lf_blkhd; /* List of requests blocked on this lock */
75	TAILQ_ENTRY(lockf) lf_block;/* A request waiting for a lock */
76	uid_t	lf_uid;		 /* User ID responsible */
77};
78
79/* Maximum length of sleep chains to traverse to try and detect deadlock. */
80#define MAXDEPTH 50
81
82static POOL_INIT(lockfpool, sizeof(struct lockf), 0, 0, 0, "lockfpl",
83    &pool_allocator_nointr);
84
85/*
86 * This variable controls the maximum number of processes that will
87 * be checked in doing deadlock detection.
88 */
89int maxlockdepth = MAXDEPTH;
90
91#ifdef LOCKF_DEBUG
92int	lockf_debug = 0;
93#endif
94
95#define SELF	0x1
96#define OTHERS	0x2
97
98/*
99 * XXX TODO
100 * Misc cleanups: "caddr_t id" should be visible in the API as a
101 * "struct proc *".
102 * (This requires rototilling all VFS's which support advisory locking).
103 */
104
105/*
106 * If there's a lot of lock contention on a single vnode, locking
107 * schemes which allow for more paralleism would be needed.  Given how
108 * infrequently byte-range locks are actually used in typical BSD
109 * code, a more complex approach probably isn't worth it.
110 */
111
112/*
113 * We enforce a limit on locks by uid, so that a single user cannot
114 * run the kernel out of memory.  For now, the limit is pretty coarse.
115 * There is no limit on root.
116 *
117 * Splitting a lock will always succeed, regardless of current allocations.
118 * If you're slightly above the limit, we still have to permit an allocation
119 * so that the unlock can succeed.  If the unlocking causes too many splits,
120 * however, you're totally cutoff.
121 */
122int maxlocksperuid = 1024;
123
124#ifdef LOCKF_DEBUG
125/*
126 * Print out a lock.
127 */
128static void
129lf_print(const char *tag, struct lockf *lock)
130{
131
132	printf("%s: lock %p for ", tag, lock);
133	if (lock->lf_flags & F_POSIX)
134		printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
135	else
136		printf("file %p", (struct file *)lock->lf_id);
137	printf(" %s, start %qx, end %qx",
138		lock->lf_type == F_RDLCK ? "shared" :
139		lock->lf_type == F_WRLCK ? "exclusive" :
140		lock->lf_type == F_UNLCK ? "unlock" :
141		"unknown", lock->lf_start, lock->lf_end);
142	if (TAILQ_FIRST(&lock->lf_blkhd))
143		printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
144	else
145		printf("\n");
146}
147
148static void
149lf_printlist(const char *tag, struct lockf *lock)
150{
151	struct lockf *lf, *blk;
152
153	printf("%s: Lock list:\n", tag);
154	for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
155		printf("\tlock %p for ", lf);
156		if (lf->lf_flags & F_POSIX)
157			printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
158		else
159			printf("file %p", (struct file *)lf->lf_id);
160		printf(", %s, start %qx, end %qx",
161			lf->lf_type == F_RDLCK ? "shared" :
162			lf->lf_type == F_WRLCK ? "exclusive" :
163			lf->lf_type == F_UNLCK ? "unlock" :
164			"unknown", lf->lf_start, lf->lf_end);
165		TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
166			if (blk->lf_flags & F_POSIX)
167				printf("proc %d",
168				    ((struct proc *)blk->lf_id)->p_pid);
169			else
170				printf("file %p", (struct file *)blk->lf_id);
171			printf(", %s, start %qx, end %qx",
172				blk->lf_type == F_RDLCK ? "shared" :
173				blk->lf_type == F_WRLCK ? "exclusive" :
174				blk->lf_type == F_UNLCK ? "unlock" :
175				"unknown", blk->lf_start, blk->lf_end);
176			if (TAILQ_FIRST(&blk->lf_blkhd))
177				 panic("lf_printlist: bad list");
178		}
179		printf("\n");
180	}
181}
182#endif /* LOCKF_DEBUG */
183
184/*
185 * 3 options for allowfail.
186 * 0 - always allocate.  1 - cutoff at limit.  2 - cutoff at double limit.
187 */
188static struct lockf *
189lf_alloc(uid_t uid, int allowfail)
190{
191	struct uidinfo *uip;
192	struct lockf *lock;
193	int s;
194
195	uip = uid_find(uid);
196	UILOCK(uip, s);
197	if (uid && allowfail && uip->ui_lockcnt >
198	    (allowfail == 1 ? maxlocksperuid : (maxlocksperuid * 2))) {
199		UIUNLOCK(uip, s);
200		return NULL;
201	}
202	uip->ui_lockcnt++;
203	UIUNLOCK(uip, s);
204	lock = pool_get(&lockfpool, PR_WAITOK);
205	lock->lf_uid = uid;
206	return lock;
207}
208
209static void
210lf_free(struct lockf *lock)
211{
212	struct uidinfo *uip;
213	int s;
214
215	uip = uid_find(lock->lf_uid);
216	UILOCK(uip, s);
217	uip->ui_lockcnt--;
218	UIUNLOCK(uip, s);
219	pool_put(&lockfpool, lock);
220}
221
222/*
223 * Walk the list of locks for an inode to
224 * find an overlapping lock (if any).
225 *
226 * NOTE: this returns only the FIRST overlapping lock.  There
227 *	 may be more than one.
228 */
229static int
230lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
231    struct lockf ***prev, struct lockf **overlap)
232{
233	off_t start, end;
234
235	*overlap = lf;
236	if (lf == NULL)
237		return 0;
238#ifdef LOCKF_DEBUG
239	if (lockf_debug & 2)
240		lf_print("lf_findoverlap: looking for overlap in", lock);
241#endif /* LOCKF_DEBUG */
242	start = lock->lf_start;
243	end = lock->lf_end;
244	while (lf != NULL) {
245		if (((type == SELF) && lf->lf_id != lock->lf_id) ||
246		    ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
247			*prev = &lf->lf_next;
248			*overlap = lf = lf->lf_next;
249			continue;
250		}
251#ifdef LOCKF_DEBUG
252		if (lockf_debug & 2)
253			lf_print("\tchecking", lf);
254#endif /* LOCKF_DEBUG */
255		/*
256		 * OK, check for overlap
257		 *
258		 * Six cases:
259		 *	0) no overlap
260		 *	1) overlap == lock
261		 *	2) overlap contains lock
262		 *	3) lock contains overlap
263		 *	4) overlap starts before lock
264		 *	5) overlap ends after lock
265		 */
266		if ((lf->lf_end != -1 && start > lf->lf_end) ||
267		    (end != -1 && lf->lf_start > end)) {
268			/* Case 0 */
269#ifdef LOCKF_DEBUG
270			if (lockf_debug & 2)
271				printf("no overlap\n");
272#endif /* LOCKF_DEBUG */
273			if ((type & SELF) && end != -1 && lf->lf_start > end)
274				return 0;
275			*prev = &lf->lf_next;
276			*overlap = lf = lf->lf_next;
277			continue;
278		}
279		if ((lf->lf_start == start) && (lf->lf_end == end)) {
280			/* Case 1 */
281#ifdef LOCKF_DEBUG
282			if (lockf_debug & 2)
283				printf("overlap == lock\n");
284#endif /* LOCKF_DEBUG */
285			return 1;
286		}
287		if ((lf->lf_start <= start) &&
288		    (end != -1) &&
289		    ((lf->lf_end >= end) || (lf->lf_end == -1))) {
290			/* Case 2 */
291#ifdef LOCKF_DEBUG
292			if (lockf_debug & 2)
293				printf("overlap contains lock\n");
294#endif /* LOCKF_DEBUG */
295			return 2;
296		}
297		if (start <= lf->lf_start &&
298		           (end == -1 ||
299			   (lf->lf_end != -1 && end >= lf->lf_end))) {
300			/* Case 3 */
301#ifdef LOCKF_DEBUG
302			if (lockf_debug & 2)
303				printf("lock contains overlap\n");
304#endif /* LOCKF_DEBUG */
305			return 3;
306		}
307		if ((lf->lf_start < start) &&
308			((lf->lf_end >= start) || (lf->lf_end == -1))) {
309			/* Case 4 */
310#ifdef LOCKF_DEBUG
311			if (lockf_debug & 2)
312				printf("overlap starts before lock\n");
313#endif /* LOCKF_DEBUG */
314			return 4;
315		}
316		if ((lf->lf_start > start) &&
317			(end != -1) &&
318			((lf->lf_end > end) || (lf->lf_end == -1))) {
319			/* Case 5 */
320#ifdef LOCKF_DEBUG
321			if (lockf_debug & 2)
322				printf("overlap ends after lock\n");
323#endif /* LOCKF_DEBUG */
324			return 5;
325		}
326		panic("lf_findoverlap: default");
327	}
328	return 0;
329}
330
331/*
332 * Split a lock and a contained region into
333 * two or three locks as necessary.
334 */
335static void
336lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
337{
338	struct lockf *splitlock;
339
340#ifdef LOCKF_DEBUG
341	if (lockf_debug & 2) {
342		lf_print("lf_split", lock1);
343		lf_print("splitting from", lock2);
344	}
345#endif /* LOCKF_DEBUG */
346	/*
347	 * Check to see if spliting into only two pieces.
348	 */
349	if (lock1->lf_start == lock2->lf_start) {
350		lock1->lf_start = lock2->lf_end + 1;
351		lock2->lf_next = lock1;
352		return;
353	}
354	if (lock1->lf_end == lock2->lf_end) {
355		lock1->lf_end = lock2->lf_start - 1;
356		lock2->lf_next = lock1->lf_next;
357		lock1->lf_next = lock2;
358		return;
359	}
360	/*
361	 * Make a new lock consisting of the last part of
362	 * the encompassing lock
363	 */
364	splitlock = *sparelock;
365	*sparelock = NULL;
366	memcpy(splitlock, lock1, sizeof(*splitlock));
367	splitlock->lf_start = lock2->lf_end + 1;
368	TAILQ_INIT(&splitlock->lf_blkhd);
369	lock1->lf_end = lock2->lf_start - 1;
370	/*
371	 * OK, now link it in
372	 */
373	splitlock->lf_next = lock1->lf_next;
374	lock2->lf_next = splitlock;
375	lock1->lf_next = lock2;
376}
377
378/*
379 * Wakeup a blocklist
380 */
381static void
382lf_wakelock(struct lockf *listhead)
383{
384	struct lockf *wakelock;
385
386	while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
387		KASSERT(wakelock->lf_next == listhead);
388		TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
389		wakelock->lf_next = NULL;
390#ifdef LOCKF_DEBUG
391		if (lockf_debug & 2)
392			lf_print("lf_wakelock: awakening", wakelock);
393#endif
394		wakeup(wakelock);
395	}
396}
397
398/*
399 * Remove a byte-range lock on an inode.
400 *
401 * Generally, find the lock (or an overlap to that lock)
402 * and remove it (or shrink it), then wakeup anyone we can.
403 */
404static int
405lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
406{
407	struct lockf **head = unlock->lf_head;
408	struct lockf *lf = *head;
409	struct lockf *overlap, **prev;
410	int ovcase;
411
412	if (lf == NULL)
413		return 0;
414#ifdef LOCKF_DEBUG
415	if (unlock->lf_type != F_UNLCK)
416		panic("lf_clearlock: bad type");
417	if (lockf_debug & 1)
418		lf_print("lf_clearlock", unlock);
419#endif /* LOCKF_DEBUG */
420	prev = head;
421	while ((ovcase = lf_findoverlap(lf, unlock, SELF,
422					&prev, &overlap)) != 0) {
423		/*
424		 * Wakeup the list of locks to be retried.
425		 */
426		lf_wakelock(overlap);
427
428		switch (ovcase) {
429
430		case 1: /* overlap == lock */
431			*prev = overlap->lf_next;
432			lf_free(overlap);
433			break;
434
435		case 2: /* overlap contains lock: split it */
436			if (overlap->lf_start == unlock->lf_start) {
437				overlap->lf_start = unlock->lf_end + 1;
438				break;
439			}
440			lf_split(overlap, unlock, sparelock);
441			overlap->lf_next = unlock->lf_next;
442			break;
443
444		case 3: /* lock contains overlap */
445			*prev = overlap->lf_next;
446			lf = overlap->lf_next;
447			lf_free(overlap);
448			continue;
449
450		case 4: /* overlap starts before lock */
451			overlap->lf_end = unlock->lf_start - 1;
452			prev = &overlap->lf_next;
453			lf = overlap->lf_next;
454			continue;
455
456		case 5: /* overlap ends after lock */
457			overlap->lf_start = unlock->lf_end + 1;
458			break;
459		}
460		break;
461	}
462#ifdef LOCKF_DEBUG
463	if (lockf_debug & 1)
464		lf_printlist("lf_clearlock", unlock);
465#endif /* LOCKF_DEBUG */
466	return 0;
467}
468
469/*
470 * Walk the list of locks for an inode and
471 * return the first blocking lock.
472 */
473static struct lockf *
474lf_getblock(struct lockf *lock)
475{
476	struct lockf **prev, *overlap, *lf = *(lock->lf_head);
477
478	prev = lock->lf_head;
479	while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
480		/*
481		 * We've found an overlap, see if it blocks us
482		 */
483		if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
484			return overlap;
485		/*
486		 * Nope, point to the next one on the list and
487		 * see if it blocks us
488		 */
489		lf = overlap->lf_next;
490	}
491	return NULL;
492}
493
494/*
495 * Set a byte-range lock.
496 */
497static int
498lf_setlock(struct lockf *lock, struct lockf **sparelock,
499    struct simplelock *interlock)
500{
501	struct lockf *block;
502	struct lockf **head = lock->lf_head;
503	struct lockf **prev, *overlap, *ltmp;
504	static char lockstr[] = "lockf";
505	int ovcase, priority, needtolink, error;
506
507#ifdef LOCKF_DEBUG
508	if (lockf_debug & 1)
509		lf_print("lf_setlock", lock);
510#endif /* LOCKF_DEBUG */
511
512	/*
513	 * Set the priority
514	 */
515	priority = PLOCK;
516	if (lock->lf_type == F_WRLCK)
517		priority += 4;
518	priority |= PCATCH;
519	/*
520	 * Scan lock list for this file looking for locks that would block us.
521	 */
522	while ((block = lf_getblock(lock)) != NULL) {
523		/*
524		 * Free the structure and return if nonblocking.
525		 */
526		if ((lock->lf_flags & F_WAIT) == 0) {
527			lf_free(lock);
528			return EAGAIN;
529		}
530		/*
531		 * We are blocked. Since flock style locks cover
532		 * the whole file, there is no chance for deadlock.
533		 * For byte-range locks we must check for deadlock.
534		 *
535		 * Deadlock detection is done by looking through the
536		 * wait channels to see if there are any cycles that
537		 * involve us. MAXDEPTH is set just to make sure we
538		 * do not go off into neverneverland.
539		 */
540		if ((lock->lf_flags & F_POSIX) &&
541		    (block->lf_flags & F_POSIX)) {
542			struct lwp *wlwp;
543			volatile const struct lockf *waitblock;
544			int i = 0;
545			struct proc *p;
546
547			p = (struct proc *)block->lf_id;
548			KASSERT(p != NULL);
549			while (i++ < maxlockdepth) {
550				mutex_enter(&p->p_smutex);
551				if (p->p_nlwps > 1) {
552					mutex_exit(&p->p_smutex);
553					break;
554				}
555				wlwp = LIST_FIRST(&p->p_lwps);
556				lwp_lock(wlwp);
557				if (wlwp->l_wmesg != lockstr) {
558					lwp_unlock(wlwp);
559					mutex_exit(&p->p_smutex);
560					break;
561				}
562				waitblock = wlwp->l_wchan;
563				lwp_unlock(wlwp);
564				mutex_exit(&p->p_smutex);
565				if (waitblock == NULL) {
566					/*
567					 * this lwp just got up but
568					 * not returned from ltsleep yet.
569					 */
570					break;
571				}
572				/* Get the owner of the blocking lock */
573				waitblock = waitblock->lf_next;
574				if ((waitblock->lf_flags & F_POSIX) == 0)
575					break;
576				p = (struct proc *)waitblock->lf_id;
577				if (p == curproc) {
578					lf_free(lock);
579					return EDEADLK;
580				}
581			}
582			/*
583			 * If we're still following a dependency chain
584			 * after maxlockdepth iterations, assume we're in
585			 * a cycle to be safe.
586			 */
587			if (i >= maxlockdepth) {
588				lf_free(lock);
589				return EDEADLK;
590			}
591		}
592		/*
593		 * For flock type locks, we must first remove
594		 * any shared locks that we hold before we sleep
595		 * waiting for an exclusive lock.
596		 */
597		if ((lock->lf_flags & F_FLOCK) &&
598		    lock->lf_type == F_WRLCK) {
599			lock->lf_type = F_UNLCK;
600			(void) lf_clearlock(lock, NULL);
601			lock->lf_type = F_WRLCK;
602		}
603		/*
604		 * Add our lock to the blocked list and sleep until we're free.
605		 * Remember who blocked us (for deadlock detection).
606		 */
607		lock->lf_next = block;
608		TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
609#ifdef LOCKF_DEBUG
610		if (lockf_debug & 1) {
611			lf_print("lf_setlock: blocking on", block);
612			lf_printlist("lf_setlock", block);
613		}
614#endif /* LOCKF_DEBUG */
615		error = ltsleep(lock, priority, lockstr, 0, interlock);
616
617		/*
618		 * We may have been awakened by a signal (in
619		 * which case we must remove ourselves from the
620		 * blocked list) and/or by another process
621		 * releasing a lock (in which case we have already
622		 * been removed from the blocked list and our
623		 * lf_next field set to NULL).
624		 */
625		if (lock->lf_next != NULL) {
626			TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
627			lock->lf_next = NULL;
628		}
629		if (error) {
630			lf_free(lock);
631			return error;
632		}
633	}
634	/*
635	 * No blocks!!  Add the lock.  Note that we will
636	 * downgrade or upgrade any overlapping locks this
637	 * process already owns.
638	 *
639	 * Skip over locks owned by other processes.
640	 * Handle any locks that overlap and are owned by ourselves.
641	 */
642	prev = head;
643	block = *head;
644	needtolink = 1;
645	for (;;) {
646		ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
647		if (ovcase)
648			block = overlap->lf_next;
649		/*
650		 * Six cases:
651		 *	0) no overlap
652		 *	1) overlap == lock
653		 *	2) overlap contains lock
654		 *	3) lock contains overlap
655		 *	4) overlap starts before lock
656		 *	5) overlap ends after lock
657		 */
658		switch (ovcase) {
659		case 0: /* no overlap */
660			if (needtolink) {
661				*prev = lock;
662				lock->lf_next = overlap;
663			}
664			break;
665
666		case 1: /* overlap == lock */
667			/*
668			 * If downgrading lock, others may be
669			 * able to acquire it.
670			 */
671			if (lock->lf_type == F_RDLCK &&
672			    overlap->lf_type == F_WRLCK)
673				lf_wakelock(overlap);
674			overlap->lf_type = lock->lf_type;
675			lf_free(lock);
676			lock = overlap; /* for debug output below */
677			break;
678
679		case 2: /* overlap contains lock */
680			/*
681			 * Check for common starting point and different types.
682			 */
683			if (overlap->lf_type == lock->lf_type) {
684				lf_free(lock);
685				lock = overlap; /* for debug output below */
686				break;
687			}
688			if (overlap->lf_start == lock->lf_start) {
689				*prev = lock;
690				lock->lf_next = overlap;
691				overlap->lf_start = lock->lf_end + 1;
692			} else
693				lf_split(overlap, lock, sparelock);
694			lf_wakelock(overlap);
695			break;
696
697		case 3: /* lock contains overlap */
698			/*
699			 * If downgrading lock, others may be able to
700			 * acquire it, otherwise take the list.
701			 */
702			if (lock->lf_type == F_RDLCK &&
703			    overlap->lf_type == F_WRLCK) {
704				lf_wakelock(overlap);
705			} else {
706				while ((ltmp = TAILQ_FIRST(&overlap->lf_blkhd))) {
707					KASSERT(ltmp->lf_next == overlap);
708					TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
709					    lf_block);
710					ltmp->lf_next = lock;
711					TAILQ_INSERT_TAIL(&lock->lf_blkhd,
712					    ltmp, lf_block);
713				}
714			}
715			/*
716			 * Add the new lock if necessary and delete the overlap.
717			 */
718			if (needtolink) {
719				*prev = lock;
720				lock->lf_next = overlap->lf_next;
721				prev = &lock->lf_next;
722				needtolink = 0;
723			} else
724				*prev = overlap->lf_next;
725			lf_free(overlap);
726			continue;
727
728		case 4: /* overlap starts before lock */
729			/*
730			 * Add lock after overlap on the list.
731			 */
732			lock->lf_next = overlap->lf_next;
733			overlap->lf_next = lock;
734			overlap->lf_end = lock->lf_start - 1;
735			prev = &lock->lf_next;
736			lf_wakelock(overlap);
737			needtolink = 0;
738			continue;
739
740		case 5: /* overlap ends after lock */
741			/*
742			 * Add the new lock before overlap.
743			 */
744			if (needtolink) {
745				*prev = lock;
746				lock->lf_next = overlap;
747			}
748			overlap->lf_start = lock->lf_end + 1;
749			lf_wakelock(overlap);
750			break;
751		}
752		break;
753	}
754#ifdef LOCKF_DEBUG
755	if (lockf_debug & 1) {
756		lf_print("lf_setlock: got the lock", lock);
757		lf_printlist("lf_setlock", lock);
758	}
759#endif /* LOCKF_DEBUG */
760	return 0;
761}
762
763/*
764 * Check whether there is a blocking lock,
765 * and if so return its process identifier.
766 */
767static int
768lf_getlock(struct lockf *lock, struct flock *fl)
769{
770	struct lockf *block;
771
772#ifdef LOCKF_DEBUG
773	if (lockf_debug & 1)
774		lf_print("lf_getlock", lock);
775#endif /* LOCKF_DEBUG */
776
777	if ((block = lf_getblock(lock)) != NULL) {
778		fl->l_type = block->lf_type;
779		fl->l_whence = SEEK_SET;
780		fl->l_start = block->lf_start;
781		if (block->lf_end == -1)
782			fl->l_len = 0;
783		else
784			fl->l_len = block->lf_end - block->lf_start + 1;
785		if (block->lf_flags & F_POSIX)
786			fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
787		else
788			fl->l_pid = -1;
789	} else {
790		fl->l_type = F_UNLCK;
791	}
792	return 0;
793}
794
795/*
796 * Do an advisory lock operation.
797 */
798int
799lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
800{
801	struct lwp *l = curlwp;
802	struct flock *fl = ap->a_fl;
803	struct lockf *lock = NULL;
804	struct lockf *sparelock;
805	struct simplelock *interlock = &ap->a_vp->v_interlock;
806	off_t start, end;
807	int error = 0;
808
809	/*
810	 * Convert the flock structure into a start and end.
811	 */
812	switch (fl->l_whence) {
813	case SEEK_SET:
814	case SEEK_CUR:
815		/*
816		 * Caller is responsible for adding any necessary offset
817		 * when SEEK_CUR is used.
818		 */
819		start = fl->l_start;
820		break;
821
822	case SEEK_END:
823		start = size + fl->l_start;
824		break;
825
826	default:
827		return EINVAL;
828	}
829	if (start < 0)
830		return EINVAL;
831
832	/*
833	 * Allocate locks before acquiring the simple lock.  We need two
834	 * locks in the worst case.
835	 */
836	switch (ap->a_op) {
837	case F_SETLK:
838	case F_UNLCK:
839		/*
840		 * XXX For F_UNLCK case, we can re-use the lock.
841		 */
842		if ((ap->a_flags & F_FLOCK) == 0) {
843			/*
844			 * Byte-range lock might need one more lock.
845			 */
846			sparelock = lf_alloc(kauth_cred_geteuid(l->l_cred), 0);
847			if (sparelock == NULL) {
848				error = ENOMEM;
849				goto quit;
850			}
851			break;
852		}
853		/* FALLTHROUGH */
854
855	case F_GETLK:
856		sparelock = NULL;
857		break;
858
859	default:
860		return EINVAL;
861	}
862
863	lock = lf_alloc(kauth_cred_geteuid(l->l_cred),
864	    ap->a_op != F_UNLCK ? 1 : 2);
865	if (lock == NULL) {
866		error = ENOMEM;
867		goto quit;
868	}
869
870	simple_lock(interlock);
871
872	/*
873	 * Avoid the common case of unlocking when inode has no locks.
874	 */
875	if (*head == (struct lockf *)0) {
876		if (ap->a_op != F_SETLK) {
877			fl->l_type = F_UNLCK;
878			error = 0;
879			goto quit_unlock;
880		}
881	}
882
883	if (fl->l_len == 0)
884		end = -1;
885	else
886		end = start + fl->l_len - 1;
887	/*
888	 * Create the lockf structure.
889	 */
890	lock->lf_start = start;
891	lock->lf_end = end;
892	/* XXX NJWLWP
893	 * I don't want to make the entire VFS universe use LWPs, because
894	 * they don't need them, for the most part. This is an exception,
895	 * and a kluge.
896	 */
897
898	lock->lf_head = head;
899	lock->lf_type = fl->l_type;
900	lock->lf_next = (struct lockf *)0;
901	TAILQ_INIT(&lock->lf_blkhd);
902	lock->lf_flags = ap->a_flags;
903	if (lock->lf_flags & F_POSIX) {
904		KASSERT(curproc == (struct proc *)ap->a_id);
905	}
906	lock->lf_id = (struct proc *)ap->a_id;
907
908	/*
909	 * Do the requested operation.
910	 */
911	switch (ap->a_op) {
912
913	case F_SETLK:
914		error = lf_setlock(lock, &sparelock, interlock);
915		lock = NULL; /* lf_setlock freed it */
916		break;
917
918	case F_UNLCK:
919		error = lf_clearlock(lock, &sparelock);
920		break;
921
922	case F_GETLK:
923		error = lf_getlock(lock, fl);
924		break;
925
926	default:
927		break;
928		/* NOTREACHED */
929	}
930
931quit_unlock:
932	simple_unlock(interlock);
933quit:
934	if (lock)
935		lf_free(lock);
936	if (sparelock)
937		lf_free(sparelock);
938
939	return error;
940}
941