vfs_lockf.c revision 1.54
1/*	$NetBSD: vfs_lockf.c,v 1.54 2006/05/20 12:20:55 yamt Exp $	*/
2
3/*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Scooter Morris at Genentech Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)ufs_lockf.c	8.4 (Berkeley) 10/26/94
35 */
36
37#include <sys/cdefs.h>
38__KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.54 2006/05/20 12:20:55 yamt Exp $");
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/kernel.h>
43#include <sys/file.h>
44#include <sys/proc.h>
45#include <sys/vnode.h>
46#include <sys/pool.h>
47#include <sys/fcntl.h>
48#include <sys/lockf.h>
49#include <sys/kauth.h>
50
51/*
52 * The lockf structure is a kernel structure which contains the information
53 * associated with a byte range lock.  The lockf structures are linked into
54 * the inode structure. Locks are sorted by the starting byte of the lock for
55 * efficiency.
56 *
57 * lf_next is used for two purposes, depending on whether the lock is
58 * being held, or is in conflict with an existing lock.  If this lock
59 * is held, it indicates the next lock on the same vnode.
60 * For pending locks, if lock->lf_next is non-NULL, then lock->lf_block
61 * must be queued on the lf_blkhd TAILQ of lock->lf_next.
62 */
63
64TAILQ_HEAD(locklist, lockf);
65
66struct lockf {
67	short	lf_flags;	 /* Lock semantics: F_POSIX, F_FLOCK, F_WAIT */
68	short	lf_type;	 /* Lock type: F_RDLCK, F_WRLCK */
69	off_t	lf_start;	 /* The byte # of the start of the lock */
70	off_t	lf_end;		 /* The byte # of the end of the lock (-1=EOF)*/
71	void	*lf_id;		 /* process or file description holding lock */
72	struct	lockf **lf_head; /* Back pointer to the head of lockf list */
73	struct	lockf *lf_next;	 /* Next lock on this vnode, or blocking lock */
74	struct  locklist lf_blkhd; /* List of requests blocked on this lock */
75	TAILQ_ENTRY(lockf) lf_block;/* A request waiting for a lock */
76	uid_t	lf_uid;		 /* User ID responsible */
77};
78
79/* Maximum length of sleep chains to traverse to try and detect deadlock. */
80#define MAXDEPTH 50
81
82static POOL_INIT(lockfpool, sizeof(struct lockf), 0, 0, 0, "lockfpl",
83    &pool_allocator_nointr);
84
85/*
86 * This variable controls the maximum number of processes that will
87 * be checked in doing deadlock detection.
88 */
89int maxlockdepth = MAXDEPTH;
90
91#ifdef LOCKF_DEBUG
92int	lockf_debug = 0;
93#endif
94
95#define SELF	0x1
96#define OTHERS	0x2
97
98/*
99 * XXX TODO
100 * Misc cleanups: "caddr_t id" should be visible in the API as a
101 * "struct proc *".
102 * (This requires rototilling all VFS's which support advisory locking).
103 */
104
105/*
106 * If there's a lot of lock contention on a single vnode, locking
107 * schemes which allow for more paralleism would be needed.  Given how
108 * infrequently byte-range locks are actually used in typical BSD
109 * code, a more complex approach probably isn't worth it.
110 */
111
112/*
113 * We enforce a limit on locks by uid, so that a single user cannot
114 * run the kernel out of memory.  For now, the limit is pretty coarse.
115 * There is no limit on root.
116 *
117 * Splitting a lock will always succeed, regardless of current allocations.
118 * If you're slightly above the limit, we still have to permit an allocation
119 * so that the unlock can succeed.  If the unlocking causes too many splits,
120 * however, you're totally cutoff.
121 */
122int maxlocksperuid = 1024;
123
124#ifdef LOCKF_DEBUG
125/*
126 * Print out a lock.
127 */
128static void
129lf_print(char *tag, struct lockf *lock)
130{
131
132	printf("%s: lock %p for ", tag, lock);
133	if (lock->lf_flags & F_POSIX)
134		printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
135	else
136		printf("file %p", (struct file *)lock->lf_id);
137	printf(" %s, start %qx, end %qx",
138		lock->lf_type == F_RDLCK ? "shared" :
139		lock->lf_type == F_WRLCK ? "exclusive" :
140		lock->lf_type == F_UNLCK ? "unlock" :
141		"unknown", lock->lf_start, lock->lf_end);
142	if (TAILQ_FIRST(&lock->lf_blkhd))
143		printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
144	else
145		printf("\n");
146}
147
148static void
149lf_printlist(char *tag, struct lockf *lock)
150{
151	struct lockf *lf, *blk;
152
153	printf("%s: Lock list:\n", tag);
154	for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
155		printf("\tlock %p for ", lf);
156		if (lf->lf_flags & F_POSIX)
157			printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
158		else
159			printf("file %p", (struct file *)lf->lf_id);
160		printf(", %s, start %qx, end %qx",
161			lf->lf_type == F_RDLCK ? "shared" :
162			lf->lf_type == F_WRLCK ? "exclusive" :
163			lf->lf_type == F_UNLCK ? "unlock" :
164			"unknown", lf->lf_start, lf->lf_end);
165		TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
166			if (blk->lf_flags & F_POSIX)
167				printf("proc %d",
168				    ((struct proc *)blk->lf_id)->p_pid);
169			else
170				printf("file %p", (struct file *)blk->lf_id);
171			printf(", %s, start %qx, end %qx",
172				blk->lf_type == F_RDLCK ? "shared" :
173				blk->lf_type == F_WRLCK ? "exclusive" :
174				blk->lf_type == F_UNLCK ? "unlock" :
175				"unknown", blk->lf_start, blk->lf_end);
176			if (TAILQ_FIRST(&blk->lf_blkhd))
177				 panic("lf_printlist: bad list");
178		}
179		printf("\n");
180	}
181}
182#endif /* LOCKF_DEBUG */
183
184/*
185 * 3 options for allowfail.
186 * 0 - always allocate.  1 - cutoff at limit.  2 - cutoff at double limit.
187 */
188static struct lockf *
189lf_alloc(uid_t uid, int allowfail)
190{
191	struct uidinfo *uip;
192	struct lockf *lock;
193	int s;
194
195	uip = uid_find(uid);
196	UILOCK(uip, s);
197	if (uid && allowfail && uip->ui_lockcnt >
198	    (allowfail == 1 ? maxlocksperuid : (maxlocksperuid * 2))) {
199		UIUNLOCK(uip, s);
200		return NULL;
201	}
202	uip->ui_lockcnt++;
203	UIUNLOCK(uip, s);
204	lock = pool_get(&lockfpool, PR_WAITOK);
205	lock->lf_uid = uid;
206	return lock;
207}
208
209static void
210lf_free(struct lockf *lock)
211{
212	struct uidinfo *uip;
213	int s;
214
215	uip = uid_find(lock->lf_uid);
216	UILOCK(uip, s);
217	uip->ui_lockcnt--;
218	UIUNLOCK(uip, s);
219	pool_put(&lockfpool, lock);
220}
221
222/*
223 * Walk the list of locks for an inode to
224 * find an overlapping lock (if any).
225 *
226 * NOTE: this returns only the FIRST overlapping lock.  There
227 *	 may be more than one.
228 */
229static int
230lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
231    struct lockf ***prev, struct lockf **overlap)
232{
233	off_t start, end;
234
235	*overlap = lf;
236	if (lf == NULL)
237		return 0;
238#ifdef LOCKF_DEBUG
239	if (lockf_debug & 2)
240		lf_print("lf_findoverlap: looking for overlap in", lock);
241#endif /* LOCKF_DEBUG */
242	start = lock->lf_start;
243	end = lock->lf_end;
244	while (lf != NULL) {
245		if (((type == SELF) && lf->lf_id != lock->lf_id) ||
246		    ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
247			*prev = &lf->lf_next;
248			*overlap = lf = lf->lf_next;
249			continue;
250		}
251#ifdef LOCKF_DEBUG
252		if (lockf_debug & 2)
253			lf_print("\tchecking", lf);
254#endif /* LOCKF_DEBUG */
255		/*
256		 * OK, check for overlap
257		 *
258		 * Six cases:
259		 *	0) no overlap
260		 *	1) overlap == lock
261		 *	2) overlap contains lock
262		 *	3) lock contains overlap
263		 *	4) overlap starts before lock
264		 *	5) overlap ends after lock
265		 */
266		if ((lf->lf_end != -1 && start > lf->lf_end) ||
267		    (end != -1 && lf->lf_start > end)) {
268			/* Case 0 */
269#ifdef LOCKF_DEBUG
270			if (lockf_debug & 2)
271				printf("no overlap\n");
272#endif /* LOCKF_DEBUG */
273			if ((type & SELF) && end != -1 && lf->lf_start > end)
274				return 0;
275			*prev = &lf->lf_next;
276			*overlap = lf = lf->lf_next;
277			continue;
278		}
279		if ((lf->lf_start == start) && (lf->lf_end == end)) {
280			/* Case 1 */
281#ifdef LOCKF_DEBUG
282			if (lockf_debug & 2)
283				printf("overlap == lock\n");
284#endif /* LOCKF_DEBUG */
285			return 1;
286		}
287		if ((lf->lf_start <= start) &&
288		    (end != -1) &&
289		    ((lf->lf_end >= end) || (lf->lf_end == -1))) {
290			/* Case 2 */
291#ifdef LOCKF_DEBUG
292			if (lockf_debug & 2)
293				printf("overlap contains lock\n");
294#endif /* LOCKF_DEBUG */
295			return 2;
296		}
297		if (start <= lf->lf_start &&
298		           (end == -1 ||
299			   (lf->lf_end != -1 && end >= lf->lf_end))) {
300			/* Case 3 */
301#ifdef LOCKF_DEBUG
302			if (lockf_debug & 2)
303				printf("lock contains overlap\n");
304#endif /* LOCKF_DEBUG */
305			return 3;
306		}
307		if ((lf->lf_start < start) &&
308			((lf->lf_end >= start) || (lf->lf_end == -1))) {
309			/* Case 4 */
310#ifdef LOCKF_DEBUG
311			if (lockf_debug & 2)
312				printf("overlap starts before lock\n");
313#endif /* LOCKF_DEBUG */
314			return 4;
315		}
316		if ((lf->lf_start > start) &&
317			(end != -1) &&
318			((lf->lf_end > end) || (lf->lf_end == -1))) {
319			/* Case 5 */
320#ifdef LOCKF_DEBUG
321			if (lockf_debug & 2)
322				printf("overlap ends after lock\n");
323#endif /* LOCKF_DEBUG */
324			return 5;
325		}
326		panic("lf_findoverlap: default");
327	}
328	return 0;
329}
330
331/*
332 * Split a lock and a contained region into
333 * two or three locks as necessary.
334 */
335static void
336lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
337{
338	struct lockf *splitlock;
339
340#ifdef LOCKF_DEBUG
341	if (lockf_debug & 2) {
342		lf_print("lf_split", lock1);
343		lf_print("splitting from", lock2);
344	}
345#endif /* LOCKF_DEBUG */
346	/*
347	 * Check to see if spliting into only two pieces.
348	 */
349	if (lock1->lf_start == lock2->lf_start) {
350		lock1->lf_start = lock2->lf_end + 1;
351		lock2->lf_next = lock1;
352		return;
353	}
354	if (lock1->lf_end == lock2->lf_end) {
355		lock1->lf_end = lock2->lf_start - 1;
356		lock2->lf_next = lock1->lf_next;
357		lock1->lf_next = lock2;
358		return;
359	}
360	/*
361	 * Make a new lock consisting of the last part of
362	 * the encompassing lock
363	 */
364	splitlock = *sparelock;
365	*sparelock = NULL;
366	memcpy(splitlock, lock1, sizeof(*splitlock));
367	splitlock->lf_start = lock2->lf_end + 1;
368	TAILQ_INIT(&splitlock->lf_blkhd);
369	lock1->lf_end = lock2->lf_start - 1;
370	/*
371	 * OK, now link it in
372	 */
373	splitlock->lf_next = lock1->lf_next;
374	lock2->lf_next = splitlock;
375	lock1->lf_next = lock2;
376}
377
378/*
379 * Wakeup a blocklist
380 */
381static void
382lf_wakelock(struct lockf *listhead)
383{
384	struct lockf *wakelock;
385
386	while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
387		KASSERT(wakelock->lf_next == listhead);
388		TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
389		wakelock->lf_next = NULL;
390#ifdef LOCKF_DEBUG
391		if (lockf_debug & 2)
392			lf_print("lf_wakelock: awakening", wakelock);
393#endif
394		wakeup(wakelock);
395	}
396}
397
398/*
399 * Remove a byte-range lock on an inode.
400 *
401 * Generally, find the lock (or an overlap to that lock)
402 * and remove it (or shrink it), then wakeup anyone we can.
403 */
404static int
405lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
406{
407	struct lockf **head = unlock->lf_head;
408	struct lockf *lf = *head;
409	struct lockf *overlap, **prev;
410	int ovcase;
411
412	if (lf == NULL)
413		return 0;
414#ifdef LOCKF_DEBUG
415	if (unlock->lf_type != F_UNLCK)
416		panic("lf_clearlock: bad type");
417	if (lockf_debug & 1)
418		lf_print("lf_clearlock", unlock);
419#endif /* LOCKF_DEBUG */
420	prev = head;
421	while ((ovcase = lf_findoverlap(lf, unlock, SELF,
422					&prev, &overlap)) != 0) {
423		/*
424		 * Wakeup the list of locks to be retried.
425		 */
426		lf_wakelock(overlap);
427
428		switch (ovcase) {
429
430		case 1: /* overlap == lock */
431			*prev = overlap->lf_next;
432			lf_free(overlap);
433			break;
434
435		case 2: /* overlap contains lock: split it */
436			if (overlap->lf_start == unlock->lf_start) {
437				overlap->lf_start = unlock->lf_end + 1;
438				break;
439			}
440			lf_split(overlap, unlock, sparelock);
441			overlap->lf_next = unlock->lf_next;
442			break;
443
444		case 3: /* lock contains overlap */
445			*prev = overlap->lf_next;
446			lf = overlap->lf_next;
447			lf_free(overlap);
448			continue;
449
450		case 4: /* overlap starts before lock */
451			overlap->lf_end = unlock->lf_start - 1;
452			prev = &overlap->lf_next;
453			lf = overlap->lf_next;
454			continue;
455
456		case 5: /* overlap ends after lock */
457			overlap->lf_start = unlock->lf_end + 1;
458			break;
459		}
460		break;
461	}
462#ifdef LOCKF_DEBUG
463	if (lockf_debug & 1)
464		lf_printlist("lf_clearlock", unlock);
465#endif /* LOCKF_DEBUG */
466	return 0;
467}
468
469/*
470 * Walk the list of locks for an inode and
471 * return the first blocking lock.
472 */
473static struct lockf *
474lf_getblock(struct lockf *lock)
475{
476	struct lockf **prev, *overlap, *lf = *(lock->lf_head);
477
478	prev = lock->lf_head;
479	while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
480		/*
481		 * We've found an overlap, see if it blocks us
482		 */
483		if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
484			return overlap;
485		/*
486		 * Nope, point to the next one on the list and
487		 * see if it blocks us
488		 */
489		lf = overlap->lf_next;
490	}
491	return NULL;
492}
493
494/*
495 * Set a byte-range lock.
496 */
497static int
498lf_setlock(struct lockf *lock, struct lockf **sparelock,
499    struct simplelock *interlock)
500{
501	struct lockf *block;
502	struct lockf **head = lock->lf_head;
503	struct lockf **prev, *overlap, *ltmp;
504	static char lockstr[] = "lockf";
505	int ovcase, priority, needtolink, error;
506
507#ifdef LOCKF_DEBUG
508	if (lockf_debug & 1)
509		lf_print("lf_setlock", lock);
510#endif /* LOCKF_DEBUG */
511
512	/*
513	 * Set the priority
514	 */
515	priority = PLOCK;
516	if (lock->lf_type == F_WRLCK)
517		priority += 4;
518	priority |= PCATCH;
519	/*
520	 * Scan lock list for this file looking for locks that would block us.
521	 */
522	while ((block = lf_getblock(lock)) != NULL) {
523		/*
524		 * Free the structure and return if nonblocking.
525		 */
526		if ((lock->lf_flags & F_WAIT) == 0) {
527			lf_free(lock);
528			return EAGAIN;
529		}
530		/*
531		 * We are blocked. Since flock style locks cover
532		 * the whole file, there is no chance for deadlock.
533		 * For byte-range locks we must check for deadlock.
534		 *
535		 * Deadlock detection is done by looking through the
536		 * wait channels to see if there are any cycles that
537		 * involve us. MAXDEPTH is set just to make sure we
538		 * do not go off into neverneverland.
539		 */
540		if ((lock->lf_flags & F_POSIX) &&
541		    (block->lf_flags & F_POSIX)) {
542			struct lwp *wlwp;
543			volatile const struct lockf *waitblock;
544			int i = 0;
545			struct proc *p;
546
547			p = (struct proc *)block->lf_id;
548			KASSERT(p != NULL);
549			while (i++ < maxlockdepth) {
550				simple_lock(&p->p_lock);
551				if (p->p_nlwps > 1) {
552					simple_unlock(&p->p_lock);
553					break;
554				}
555				wlwp = LIST_FIRST(&p->p_lwps);
556				if (wlwp->l_wmesg != lockstr) {
557					simple_unlock(&p->p_lock);
558					break;
559				}
560				simple_unlock(&p->p_lock);
561				waitblock = wlwp->l_wchan;
562				if (waitblock == NULL) {
563					/*
564					 * this lwp just got up but
565					 * not returned from ltsleep yet.
566					 */
567					break;
568				}
569				/* Get the owner of the blocking lock */
570				waitblock = waitblock->lf_next;
571				if ((waitblock->lf_flags & F_POSIX) == 0)
572					break;
573				p = (struct proc *)waitblock->lf_id;
574				if (p == curproc) {
575					lf_free(lock);
576					return EDEADLK;
577				}
578			}
579			/*
580			 * If we're still following a dependency chain
581			 * after maxlockdepth iterations, assume we're in
582			 * a cycle to be safe.
583			 */
584			if (i >= maxlockdepth) {
585				lf_free(lock);
586				return EDEADLK;
587			}
588		}
589		/*
590		 * For flock type locks, we must first remove
591		 * any shared locks that we hold before we sleep
592		 * waiting for an exclusive lock.
593		 */
594		if ((lock->lf_flags & F_FLOCK) &&
595		    lock->lf_type == F_WRLCK) {
596			lock->lf_type = F_UNLCK;
597			(void) lf_clearlock(lock, NULL);
598			lock->lf_type = F_WRLCK;
599		}
600		/*
601		 * Add our lock to the blocked list and sleep until we're free.
602		 * Remember who blocked us (for deadlock detection).
603		 */
604		lock->lf_next = block;
605		TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
606#ifdef LOCKF_DEBUG
607		if (lockf_debug & 1) {
608			lf_print("lf_setlock: blocking on", block);
609			lf_printlist("lf_setlock", block);
610		}
611#endif /* LOCKF_DEBUG */
612		error = ltsleep(lock, priority, lockstr, 0, interlock);
613
614		/*
615		 * We may have been awakened by a signal (in
616		 * which case we must remove ourselves from the
617		 * blocked list) and/or by another process
618		 * releasing a lock (in which case we have already
619		 * been removed from the blocked list and our
620		 * lf_next field set to NULL).
621		 */
622		if (lock->lf_next != NULL) {
623			TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
624			lock->lf_next = NULL;
625		}
626		if (error) {
627			lf_free(lock);
628			return error;
629		}
630	}
631	/*
632	 * No blocks!!  Add the lock.  Note that we will
633	 * downgrade or upgrade any overlapping locks this
634	 * process already owns.
635	 *
636	 * Skip over locks owned by other processes.
637	 * Handle any locks that overlap and are owned by ourselves.
638	 */
639	prev = head;
640	block = *head;
641	needtolink = 1;
642	for (;;) {
643		ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
644		if (ovcase)
645			block = overlap->lf_next;
646		/*
647		 * Six cases:
648		 *	0) no overlap
649		 *	1) overlap == lock
650		 *	2) overlap contains lock
651		 *	3) lock contains overlap
652		 *	4) overlap starts before lock
653		 *	5) overlap ends after lock
654		 */
655		switch (ovcase) {
656		case 0: /* no overlap */
657			if (needtolink) {
658				*prev = lock;
659				lock->lf_next = overlap;
660			}
661			break;
662
663		case 1: /* overlap == lock */
664			/*
665			 * If downgrading lock, others may be
666			 * able to acquire it.
667			 */
668			if (lock->lf_type == F_RDLCK &&
669			    overlap->lf_type == F_WRLCK)
670				lf_wakelock(overlap);
671			overlap->lf_type = lock->lf_type;
672			lf_free(lock);
673			lock = overlap; /* for debug output below */
674			break;
675
676		case 2: /* overlap contains lock */
677			/*
678			 * Check for common starting point and different types.
679			 */
680			if (overlap->lf_type == lock->lf_type) {
681				lf_free(lock);
682				lock = overlap; /* for debug output below */
683				break;
684			}
685			if (overlap->lf_start == lock->lf_start) {
686				*prev = lock;
687				lock->lf_next = overlap;
688				overlap->lf_start = lock->lf_end + 1;
689			} else
690				lf_split(overlap, lock, sparelock);
691			lf_wakelock(overlap);
692			break;
693
694		case 3: /* lock contains overlap */
695			/*
696			 * If downgrading lock, others may be able to
697			 * acquire it, otherwise take the list.
698			 */
699			if (lock->lf_type == F_RDLCK &&
700			    overlap->lf_type == F_WRLCK) {
701				lf_wakelock(overlap);
702			} else {
703				while ((ltmp = TAILQ_FIRST(&overlap->lf_blkhd))) {
704					KASSERT(ltmp->lf_next == overlap);
705					TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
706					    lf_block);
707					ltmp->lf_next = lock;
708					TAILQ_INSERT_TAIL(&lock->lf_blkhd,
709					    ltmp, lf_block);
710				}
711			}
712			/*
713			 * Add the new lock if necessary and delete the overlap.
714			 */
715			if (needtolink) {
716				*prev = lock;
717				lock->lf_next = overlap->lf_next;
718				prev = &lock->lf_next;
719				needtolink = 0;
720			} else
721				*prev = overlap->lf_next;
722			lf_free(overlap);
723			continue;
724
725		case 4: /* overlap starts before lock */
726			/*
727			 * Add lock after overlap on the list.
728			 */
729			lock->lf_next = overlap->lf_next;
730			overlap->lf_next = lock;
731			overlap->lf_end = lock->lf_start - 1;
732			prev = &lock->lf_next;
733			lf_wakelock(overlap);
734			needtolink = 0;
735			continue;
736
737		case 5: /* overlap ends after lock */
738			/*
739			 * Add the new lock before overlap.
740			 */
741			if (needtolink) {
742				*prev = lock;
743				lock->lf_next = overlap;
744			}
745			overlap->lf_start = lock->lf_end + 1;
746			lf_wakelock(overlap);
747			break;
748		}
749		break;
750	}
751#ifdef LOCKF_DEBUG
752	if (lockf_debug & 1) {
753		lf_print("lf_setlock: got the lock", lock);
754		lf_printlist("lf_setlock", lock);
755	}
756#endif /* LOCKF_DEBUG */
757	return 0;
758}
759
760/*
761 * Check whether there is a blocking lock,
762 * and if so return its process identifier.
763 */
764static int
765lf_getlock(struct lockf *lock, struct flock *fl)
766{
767	struct lockf *block;
768
769#ifdef LOCKF_DEBUG
770	if (lockf_debug & 1)
771		lf_print("lf_getlock", lock);
772#endif /* LOCKF_DEBUG */
773
774	if ((block = lf_getblock(lock)) != NULL) {
775		fl->l_type = block->lf_type;
776		fl->l_whence = SEEK_SET;
777		fl->l_start = block->lf_start;
778		if (block->lf_end == -1)
779			fl->l_len = 0;
780		else
781			fl->l_len = block->lf_end - block->lf_start + 1;
782		if (block->lf_flags & F_POSIX)
783			fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
784		else
785			fl->l_pid = -1;
786	} else {
787		fl->l_type = F_UNLCK;
788	}
789	return 0;
790}
791
792/*
793 * Do an advisory lock operation.
794 */
795int
796lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
797{
798	struct proc *p = curproc;
799	struct flock *fl = ap->a_fl;
800	struct lockf *lock = NULL;
801	struct lockf *sparelock;
802	struct simplelock *interlock = &ap->a_vp->v_interlock;
803	off_t start, end;
804	int error = 0;
805
806	/*
807	 * Convert the flock structure into a start and end.
808	 */
809	switch (fl->l_whence) {
810	case SEEK_SET:
811	case SEEK_CUR:
812		/*
813		 * Caller is responsible for adding any necessary offset
814		 * when SEEK_CUR is used.
815		 */
816		start = fl->l_start;
817		break;
818
819	case SEEK_END:
820		start = size + fl->l_start;
821		break;
822
823	default:
824		return EINVAL;
825	}
826	if (start < 0)
827		return EINVAL;
828
829	/*
830	 * allocate locks before acquire simple lock.
831	 * we need two locks in the worst case.
832	 */
833	switch (ap->a_op) {
834	case F_SETLK:
835	case F_UNLCK:
836		/*
837		 * XXX for F_UNLCK case, we can re-use lock.
838		 */
839		if ((ap->a_flags & F_FLOCK) == 0) {
840			/*
841			 * byte-range lock might need one more lock.
842			 */
843			sparelock = lf_alloc(kauth_cred_geteuid(p->p_cred), 0);
844			if (sparelock == NULL) {
845				error = ENOMEM;
846				goto quit;
847			}
848			break;
849		}
850		/* FALLTHROUGH */
851
852	case F_GETLK:
853		sparelock = NULL;
854		break;
855
856	default:
857		return EINVAL;
858	}
859
860	lock = lf_alloc(kauth_cred_geteuid(p->p_cred), ap->a_op != F_UNLCK ? 1 : 2);
861	if (lock == NULL) {
862		error = ENOMEM;
863		goto quit;
864	}
865
866	simple_lock(interlock);
867
868	/*
869	 * Avoid the common case of unlocking when inode has no locks.
870	 */
871	if (*head == (struct lockf *)0) {
872		if (ap->a_op != F_SETLK) {
873			fl->l_type = F_UNLCK;
874			error = 0;
875			goto quit_unlock;
876		}
877	}
878
879	if (fl->l_len == 0)
880		end = -1;
881	else
882		end = start + fl->l_len - 1;
883	/*
884	 * Create the lockf structure.
885	 */
886	lock->lf_start = start;
887	lock->lf_end = end;
888	/* XXX NJWLWP
889	 * I don't want to make the entire VFS universe use LWPs, because
890	 * they don't need them, for the most part. This is an exception,
891	 * and a kluge.
892	 */
893
894	lock->lf_head = head;
895	lock->lf_type = fl->l_type;
896	lock->lf_next = (struct lockf *)0;
897	TAILQ_INIT(&lock->lf_blkhd);
898	lock->lf_flags = ap->a_flags;
899	if (lock->lf_flags & F_POSIX) {
900		KASSERT(curproc == (struct proc *)ap->a_id);
901	}
902	lock->lf_id = (struct proc *)ap->a_id;
903
904	/*
905	 * Do the requested operation.
906	 */
907	switch (ap->a_op) {
908
909	case F_SETLK:
910		error = lf_setlock(lock, &sparelock, interlock);
911		lock = NULL; /* lf_setlock freed it */
912		break;
913
914	case F_UNLCK:
915		error = lf_clearlock(lock, &sparelock);
916		break;
917
918	case F_GETLK:
919		error = lf_getlock(lock, fl);
920		break;
921
922	default:
923		break;
924		/* NOTREACHED */
925	}
926
927quit_unlock:
928	simple_unlock(interlock);
929quit:
930	if (lock)
931		lf_free(lock);
932	if (sparelock)
933		lf_free(sparelock);
934
935	return error;
936}
937