1/*	$NetBSD: subr_pool.c,v 1.290 2023/04/09 12:21:59 riastradh Exp $	*/
2
3/*
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018,
5 *     2020, 2021 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10 * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
11 * Maxime Villard.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35#include <sys/cdefs.h>
36__KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.290 2023/04/09 12:21:59 riastradh Exp $");
37
38#ifdef _KERNEL_OPT
39#include "opt_ddb.h"
40#include "opt_lockdebug.h"
41#include "opt_pool.h"
42#endif
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/sysctl.h>
47#include <sys/bitops.h>
48#include <sys/proc.h>
49#include <sys/errno.h>
50#include <sys/kernel.h>
51#include <sys/vmem.h>
52#include <sys/pool.h>
53#include <sys/syslog.h>
54#include <sys/debug.h>
55#include <sys/lock.h>
56#include <sys/lockdebug.h>
57#include <sys/xcall.h>
58#include <sys/cpu.h>
59#include <sys/atomic.h>
60#include <sys/asan.h>
61#include <sys/msan.h>
62#include <sys/fault.h>
63
64#include <uvm/uvm_extern.h>
65
66/*
67 * Pool resource management utility.
68 *
69 * Memory is allocated in pages which are split into pieces according to
70 * the pool item size. Each page is kept on one of three lists in the
71 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
72 * for empty, full and partially-full pages respectively. The individual
73 * pool items are on a linked list headed by `ph_itemlist' in each page
74 * header. The memory for building the page list is either taken from
75 * the allocated pages themselves (for small pool items) or taken from
76 * an internal pool of page headers (`phpool').
77 */
78
79/* List of all pools. Non static as needed by 'vmstat -m' */
80TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
81
82/* Private pool for page header structures */
83#define	PHPOOL_MAX	8
84static struct pool phpool[PHPOOL_MAX];
85#define	PHPOOL_FREELIST_NELEM(idx) \
86	(((idx) == 0) ? BITMAP_MIN_SIZE : BITMAP_SIZE * (1 << (idx)))
87
88#if !defined(KMSAN) && (defined(DIAGNOSTIC) || defined(KASAN))
89#define POOL_REDZONE
90#endif
91
92#if defined(POOL_QUARANTINE)
93#define POOL_NOCACHE
94#endif
95
96#ifdef POOL_REDZONE
97# ifdef KASAN
98#  define POOL_REDZONE_SIZE 8
99# else
100#  define POOL_REDZONE_SIZE 2
101# endif
102static void pool_redzone_init(struct pool *, size_t);
103static void pool_redzone_fill(struct pool *, void *);
104static void pool_redzone_check(struct pool *, void *);
105static void pool_cache_redzone_check(pool_cache_t, void *);
106#else
107# define pool_redzone_init(pp, sz)		__nothing
108# define pool_redzone_fill(pp, ptr)		__nothing
109# define pool_redzone_check(pp, ptr)		__nothing
110# define pool_cache_redzone_check(pc, ptr)	__nothing
111#endif
112
113#ifdef KMSAN
114static inline void pool_get_kmsan(struct pool *, void *);
115static inline void pool_put_kmsan(struct pool *, void *);
116static inline void pool_cache_get_kmsan(pool_cache_t, void *);
117static inline void pool_cache_put_kmsan(pool_cache_t, void *);
118#else
119#define pool_get_kmsan(pp, ptr)		__nothing
120#define pool_put_kmsan(pp, ptr)		__nothing
121#define pool_cache_get_kmsan(pc, ptr)	__nothing
122#define pool_cache_put_kmsan(pc, ptr)	__nothing
123#endif
124
125#ifdef POOL_QUARANTINE
126static void pool_quarantine_init(struct pool *);
127static void pool_quarantine_flush(struct pool *);
128static bool pool_put_quarantine(struct pool *, void *,
129    struct pool_pagelist *);
130#else
131#define pool_quarantine_init(a)			__nothing
132#define pool_quarantine_flush(a)		__nothing
133#define pool_put_quarantine(a, b, c)		false
134#endif
135
136#ifdef POOL_NOCACHE
137static bool pool_cache_put_nocache(pool_cache_t, void *);
138#else
139#define pool_cache_put_nocache(a, b)		false
140#endif
141
142#define NO_CTOR	__FPTRCAST(int (*)(void *, void *, int), nullop)
143#define NO_DTOR	__FPTRCAST(void (*)(void *, void *), nullop)
144
145#define pc_has_pser(pc) (((pc)->pc_roflags & PR_PSERIALIZE) != 0)
146#define pc_has_ctor(pc) ((pc)->pc_ctor != NO_CTOR)
147#define pc_has_dtor(pc) ((pc)->pc_dtor != NO_DTOR)
148
149#define pp_has_pser(pp) (((pp)->pr_roflags & PR_PSERIALIZE) != 0)
150
151#define pool_barrier()	xc_barrier(0)
152
153/*
154 * Pool backend allocators.
155 *
156 * Each pool has a backend allocator that handles allocation, deallocation,
157 * and any additional draining that might be needed.
158 *
159 * We provide two standard allocators:
160 *
161 *	pool_allocator_kmem - the default when no allocator is specified
162 *
163 *	pool_allocator_nointr - used for pools that will not be accessed
164 *	in interrupt context.
165 */
166void *pool_page_alloc(struct pool *, int);
167void pool_page_free(struct pool *, void *);
168
169static void *pool_page_alloc_meta(struct pool *, int);
170static void pool_page_free_meta(struct pool *, void *);
171
172struct pool_allocator pool_allocator_kmem = {
173	.pa_alloc = pool_page_alloc,
174	.pa_free = pool_page_free,
175	.pa_pagesz = 0
176};
177
178struct pool_allocator pool_allocator_nointr = {
179	.pa_alloc = pool_page_alloc,
180	.pa_free = pool_page_free,
181	.pa_pagesz = 0
182};
183
184struct pool_allocator pool_allocator_meta = {
185	.pa_alloc = pool_page_alloc_meta,
186	.pa_free = pool_page_free_meta,
187	.pa_pagesz = 0
188};
189
190#define POOL_ALLOCATOR_BIG_BASE 13
191static struct pool_allocator pool_allocator_big[] = {
192	{
193		.pa_alloc = pool_page_alloc,
194		.pa_free = pool_page_free,
195		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
196	},
197	{
198		.pa_alloc = pool_page_alloc,
199		.pa_free = pool_page_free,
200		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
201	},
202	{
203		.pa_alloc = pool_page_alloc,
204		.pa_free = pool_page_free,
205		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
206	},
207	{
208		.pa_alloc = pool_page_alloc,
209		.pa_free = pool_page_free,
210		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
211	},
212	{
213		.pa_alloc = pool_page_alloc,
214		.pa_free = pool_page_free,
215		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
216	},
217	{
218		.pa_alloc = pool_page_alloc,
219		.pa_free = pool_page_free,
220		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
221	},
222	{
223		.pa_alloc = pool_page_alloc,
224		.pa_free = pool_page_free,
225		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
226	},
227	{
228		.pa_alloc = pool_page_alloc,
229		.pa_free = pool_page_free,
230		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
231	},
232	{
233		.pa_alloc = pool_page_alloc,
234		.pa_free = pool_page_free,
235		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 8),
236	},
237	{
238		.pa_alloc = pool_page_alloc,
239		.pa_free = pool_page_free,
240		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 9),
241	},
242	{
243		.pa_alloc = pool_page_alloc,
244		.pa_free = pool_page_free,
245		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 10),
246	},
247	{
248		.pa_alloc = pool_page_alloc,
249		.pa_free = pool_page_free,
250		.pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 11),
251	}
252};
253
254static int pool_bigidx(size_t);
255
256/* # of seconds to retain page after last use */
257int pool_inactive_time = 10;
258
259/* Next candidate for drainage (see pool_drain()) */
260static struct pool *drainpp;
261
262/* This lock protects both pool_head and drainpp. */
263static kmutex_t pool_head_lock;
264static kcondvar_t pool_busy;
265
266/* This lock protects initialization of a potentially shared pool allocator */
267static kmutex_t pool_allocator_lock;
268
269static unsigned int poolid_counter = 0;
270
271typedef uint32_t pool_item_bitmap_t;
272#define	BITMAP_SIZE	(CHAR_BIT * sizeof(pool_item_bitmap_t))
273#define	BITMAP_MASK	(BITMAP_SIZE - 1)
274#define	BITMAP_MIN_SIZE	(CHAR_BIT * sizeof(((struct pool_item_header *)NULL)->ph_u2))
275
276struct pool_item_header {
277	/* Page headers */
278	LIST_ENTRY(pool_item_header)
279				ph_pagelist;	/* pool page list */
280	union {
281		/* !PR_PHINPAGE */
282		struct {
283			SPLAY_ENTRY(pool_item_header)
284				phu_node;	/* off-page page headers */
285		} phu_offpage;
286		/* PR_PHINPAGE */
287		struct {
288			unsigned int phu_poolid;
289		} phu_onpage;
290	} ph_u1;
291	void *			ph_page;	/* this page's address */
292	uint32_t		ph_time;	/* last referenced */
293	uint16_t		ph_nmissing;	/* # of chunks in use */
294	uint16_t		ph_off;		/* start offset in page */
295	union {
296		/* !PR_USEBMAP */
297		struct {
298			LIST_HEAD(, pool_item)
299				phu_itemlist;	/* chunk list for this page */
300		} phu_normal;
301		/* PR_USEBMAP */
302		struct {
303			pool_item_bitmap_t phu_bitmap[1];
304		} phu_notouch;
305	} ph_u2;
306};
307#define ph_node		ph_u1.phu_offpage.phu_node
308#define ph_poolid	ph_u1.phu_onpage.phu_poolid
309#define ph_itemlist	ph_u2.phu_normal.phu_itemlist
310#define ph_bitmap	ph_u2.phu_notouch.phu_bitmap
311
312#define PHSIZE	ALIGN(sizeof(struct pool_item_header))
313
314CTASSERT(offsetof(struct pool_item_header, ph_u2) +
315    BITMAP_MIN_SIZE / CHAR_BIT == sizeof(struct pool_item_header));
316
317#if defined(DIAGNOSTIC) && !defined(KASAN)
318#define POOL_CHECK_MAGIC
319#endif
320
321struct pool_item {
322#ifdef POOL_CHECK_MAGIC
323	u_int pi_magic;
324#endif
325#define	PI_MAGIC 0xdeaddeadU
326	/* Other entries use only this list entry */
327	LIST_ENTRY(pool_item)	pi_list;
328};
329
330#define	POOL_NEEDS_CATCHUP(pp)						\
331	((pp)->pr_nitems < (pp)->pr_minitems ||				\
332	 (pp)->pr_npages < (pp)->pr_minpages)
333#define	POOL_OBJ_TO_PAGE(pp, v)						\
334	(void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask)
335
336/*
337 * Pool cache management.
338 *
339 * Pool caches provide a way for constructed objects to be cached by the
340 * pool subsystem.  This can lead to performance improvements by avoiding
341 * needless object construction/destruction; it is deferred until absolutely
342 * necessary.
343 *
344 * Caches are grouped into cache groups.  Each cache group references up
345 * to PCG_NUMOBJECTS constructed objects.  When a cache allocates an
346 * object from the pool, it calls the object's constructor and places it
347 * into a cache group.  When a cache group frees an object back to the
348 * pool, it first calls the object's destructor.  This allows the object
349 * to persist in constructed form while freed to the cache.
350 *
351 * The pool references each cache, so that when a pool is drained by the
352 * pagedaemon, it can drain each individual cache as well.  Each time a
353 * cache is drained, the most idle cache group is freed to the pool in
354 * its entirety.
355 *
356 * Pool caches are laid on top of pools.  By layering them, we can avoid
357 * the complexity of cache management for pools which would not benefit
358 * from it.
359 */
360
361static struct pool pcg_normal_pool;
362static struct pool pcg_large_pool;
363static struct pool cache_pool;
364static struct pool cache_cpu_pool;
365
366static pcg_t *volatile pcg_large_cache __cacheline_aligned;
367static pcg_t *volatile pcg_normal_cache __cacheline_aligned;
368
369/* List of all caches. */
370TAILQ_HEAD(,pool_cache) pool_cache_head =
371    TAILQ_HEAD_INITIALIZER(pool_cache_head);
372
373int pool_cache_disable;		/* global disable for caching */
374static const pcg_t pcg_dummy;	/* zero sized: always empty, yet always full */
375
376static bool	pool_cache_put_slow(pool_cache_t, pool_cache_cpu_t *, int,
377				    void *);
378static bool	pool_cache_get_slow(pool_cache_t, pool_cache_cpu_t *, int,
379				    void **, paddr_t *, int);
380static void	pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
381static int	pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
382static void	pool_cache_invalidate_cpu(pool_cache_t, u_int);
383static void	pool_cache_transfer(pool_cache_t);
384static int	pool_pcg_get(pcg_t *volatile *, pcg_t **);
385static int	pool_pcg_put(pcg_t *volatile *, pcg_t *);
386static pcg_t *	pool_pcg_trunc(pcg_t *volatile *);
387
388static int	pool_catchup(struct pool *);
389static void	pool_prime_page(struct pool *, void *,
390		    struct pool_item_header *);
391static void	pool_update_curpage(struct pool *);
392
393static int	pool_grow(struct pool *, int);
394static void	*pool_allocator_alloc(struct pool *, int);
395static void	pool_allocator_free(struct pool *, void *);
396
397static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
398	void (*)(const char *, ...) __printflike(1, 2));
399static void pool_print1(struct pool *, const char *,
400	void (*)(const char *, ...) __printflike(1, 2));
401
402static int pool_chk_page(struct pool *, const char *,
403			 struct pool_item_header *);
404
405/* -------------------------------------------------------------------------- */
406
407static inline unsigned int
408pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
409    const void *v)
410{
411	const char *cp = v;
412	unsigned int idx;
413
414	KASSERT(pp->pr_roflags & PR_USEBMAP);
415	idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
416
417	if (__predict_false(idx >= pp->pr_itemsperpage)) {
418		panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
419		    pp->pr_itemsperpage);
420	}
421
422	return idx;
423}
424
425static inline void
426pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
427    void *obj)
428{
429	unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
430	pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
431	pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
432
433	if (__predict_false((*bitmap & mask) != 0)) {
434		panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
435	}
436
437	*bitmap |= mask;
438}
439
440static inline void *
441pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
442{
443	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
444	unsigned int idx;
445	int i;
446
447	for (i = 0; ; i++) {
448		int bit;
449
450		KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
451		bit = ffs32(bitmap[i]);
452		if (bit) {
453			pool_item_bitmap_t mask;
454
455			bit--;
456			idx = (i * BITMAP_SIZE) + bit;
457			mask = 1U << bit;
458			KASSERT((bitmap[i] & mask) != 0);
459			bitmap[i] &= ~mask;
460			break;
461		}
462	}
463	KASSERT(idx < pp->pr_itemsperpage);
464	return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
465}
466
467static inline void
468pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
469{
470	pool_item_bitmap_t *bitmap = ph->ph_bitmap;
471	const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
472	int i;
473
474	for (i = 0; i < n; i++) {
475		bitmap[i] = (pool_item_bitmap_t)-1;
476	}
477}
478
479/* -------------------------------------------------------------------------- */
480
481static inline void
482pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
483    void *obj)
484{
485	struct pool_item *pi = obj;
486
487	KASSERT(!pp_has_pser(pp));
488
489#ifdef POOL_CHECK_MAGIC
490	pi->pi_magic = PI_MAGIC;
491#endif
492
493	if (pp->pr_redzone) {
494		/*
495		 * Mark the pool_item as valid. The rest is already
496		 * invalid.
497		 */
498		kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0);
499	}
500
501	LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
502}
503
504static inline void *
505pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
506{
507	struct pool_item *pi;
508	void *v;
509
510	v = pi = LIST_FIRST(&ph->ph_itemlist);
511	if (__predict_false(v == NULL)) {
512		mutex_exit(&pp->pr_lock);
513		panic("%s: [%s] page empty", __func__, pp->pr_wchan);
514	}
515	KASSERTMSG((pp->pr_nitems > 0),
516	    "%s: [%s] nitems %u inconsistent on itemlist",
517	    __func__, pp->pr_wchan, pp->pr_nitems);
518#ifdef POOL_CHECK_MAGIC
519	KASSERTMSG((pi->pi_magic == PI_MAGIC),
520	    "%s: [%s] free list modified: "
521	    "magic=%x; page %p; item addr %p", __func__,
522	    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
523#endif
524
525	/*
526	 * Remove from item list.
527	 */
528	LIST_REMOVE(pi, pi_list);
529
530	return v;
531}
532
533/* -------------------------------------------------------------------------- */
534
535static inline void
536pr_phinpage_check(struct pool *pp, struct pool_item_header *ph, void *page,
537    void *object)
538{
539	if (__predict_false((void *)ph->ph_page != page)) {
540		panic("%s: [%s] item %p not part of pool", __func__,
541		    pp->pr_wchan, object);
542	}
543	if (__predict_false((char *)object < (char *)page + ph->ph_off)) {
544		panic("%s: [%s] item %p below item space", __func__,
545		    pp->pr_wchan, object);
546	}
547	if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
548		panic("%s: [%s] item %p poolid %u != %u", __func__,
549		    pp->pr_wchan, object, ph->ph_poolid, pp->pr_poolid);
550	}
551}
552
553static inline void
554pc_phinpage_check(pool_cache_t pc, void *object)
555{
556	struct pool_item_header *ph;
557	struct pool *pp;
558	void *page;
559
560	pp = &pc->pc_pool;
561	page = POOL_OBJ_TO_PAGE(pp, object);
562	ph = (struct pool_item_header *)page;
563
564	pr_phinpage_check(pp, ph, page, object);
565}
566
567/* -------------------------------------------------------------------------- */
568
569static inline int
570phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
571{
572
573	/*
574	 * We consider pool_item_header with smaller ph_page bigger. This
575	 * unnatural ordering is for the benefit of pr_find_pagehead.
576	 */
577	if (a->ph_page < b->ph_page)
578		return 1;
579	else if (a->ph_page > b->ph_page)
580		return -1;
581	else
582		return 0;
583}
584
585SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
586SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
587
588static inline struct pool_item_header *
589pr_find_pagehead_noalign(struct pool *pp, void *v)
590{
591	struct pool_item_header *ph, tmp;
592
593	tmp.ph_page = (void *)(uintptr_t)v;
594	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
595	if (ph == NULL) {
596		ph = SPLAY_ROOT(&pp->pr_phtree);
597		if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
598			ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
599		}
600		KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
601	}
602
603	return ph;
604}
605
606/*
607 * Return the pool page header based on item address.
608 */
609static inline struct pool_item_header *
610pr_find_pagehead(struct pool *pp, void *v)
611{
612	struct pool_item_header *ph, tmp;
613
614	if ((pp->pr_roflags & PR_NOALIGN) != 0) {
615		ph = pr_find_pagehead_noalign(pp, v);
616	} else {
617		void *page = POOL_OBJ_TO_PAGE(pp, v);
618		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
619			ph = (struct pool_item_header *)page;
620			pr_phinpage_check(pp, ph, page, v);
621		} else {
622			tmp.ph_page = page;
623			ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
624		}
625	}
626
627	KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
628	    ((char *)ph->ph_page <= (char *)v &&
629	    (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
630	return ph;
631}
632
633static void
634pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
635{
636	struct pool_item_header *ph;
637
638	while ((ph = LIST_FIRST(pq)) != NULL) {
639		LIST_REMOVE(ph, ph_pagelist);
640		pool_allocator_free(pp, ph->ph_page);
641		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
642			pool_put(pp->pr_phpool, ph);
643	}
644}
645
646/*
647 * Remove a page from the pool.
648 */
649static inline void
650pr_rmpage(struct pool *pp, struct pool_item_header *ph,
651     struct pool_pagelist *pq)
652{
653
654	KASSERT(mutex_owned(&pp->pr_lock));
655
656	/*
657	 * If the page was idle, decrement the idle page count.
658	 */
659	if (ph->ph_nmissing == 0) {
660		KASSERT(pp->pr_nidle != 0);
661		KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
662		    "%s: [%s] nitems=%u < itemsperpage=%u", __func__,
663		    pp->pr_wchan, pp->pr_nitems, pp->pr_itemsperpage);
664		pp->pr_nidle--;
665	}
666
667	pp->pr_nitems -= pp->pr_itemsperpage;
668
669	/*
670	 * Unlink the page from the pool and queue it for release.
671	 */
672	LIST_REMOVE(ph, ph_pagelist);
673	if (pp->pr_roflags & PR_PHINPAGE) {
674		if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
675			panic("%s: [%s] ph %p poolid %u != %u",
676			    __func__, pp->pr_wchan, ph, ph->ph_poolid,
677			    pp->pr_poolid);
678		}
679	} else {
680		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
681	}
682	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
683
684	pp->pr_npages--;
685	pp->pr_npagefree++;
686
687	pool_update_curpage(pp);
688}
689
690/*
691 * Initialize all the pools listed in the "pools" link set.
692 */
693void
694pool_subsystem_init(void)
695{
696	size_t size;
697	int idx;
698
699	mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
700	mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
701	cv_init(&pool_busy, "poolbusy");
702
703	/*
704	 * Initialize private page header pool and cache magazine pool if we
705	 * haven't done so yet.
706	 */
707	for (idx = 0; idx < PHPOOL_MAX; idx++) {
708		static char phpool_names[PHPOOL_MAX][6+1+6+1];
709		int nelem;
710		size_t sz;
711
712		nelem = PHPOOL_FREELIST_NELEM(idx);
713		KASSERT(nelem != 0);
714		snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
715		    "phpool-%d", nelem);
716		sz = offsetof(struct pool_item_header,
717		    ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
718		pool_init(&phpool[idx], sz, 0, 0, 0,
719		    phpool_names[idx], &pool_allocator_meta, IPL_VM);
720	}
721
722	size = sizeof(pcg_t) +
723	    (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
724	pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
725	    "pcgnormal", &pool_allocator_meta, IPL_VM);
726
727	size = sizeof(pcg_t) +
728	    (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
729	pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
730	    "pcglarge", &pool_allocator_meta, IPL_VM);
731
732	pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
733	    0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
734
735	pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
736	    0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
737}
738
739static inline bool
740pool_init_is_phinpage(const struct pool *pp)
741{
742	size_t pagesize;
743
744	if (pp->pr_roflags & PR_PHINPAGE) {
745		return true;
746	}
747	if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
748		return false;
749	}
750
751	pagesize = pp->pr_alloc->pa_pagesz;
752
753	/*
754	 * Threshold: the item size is below 1/16 of a page size, and below
755	 * 8 times the page header size. The latter ensures we go off-page
756	 * if the page header would make us waste a rather big item.
757	 */
758	if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
759		return true;
760	}
761
762	/* Put the header into the page if it doesn't waste any items. */
763	if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
764		return true;
765	}
766
767	return false;
768}
769
770static inline bool
771pool_init_is_usebmap(const struct pool *pp)
772{
773	size_t bmapsize;
774
775	if (pp->pr_roflags & PR_NOTOUCH) {
776		return true;
777	}
778
779	/*
780	 * If we're off-page, go with a bitmap.
781	 */
782	if (!(pp->pr_roflags & PR_PHINPAGE)) {
783		return true;
784	}
785
786	/*
787	 * If we're on-page, and the page header can already contain a bitmap
788	 * big enough to cover all the items of the page, go with a bitmap.
789	 */
790	bmapsize = roundup(PHSIZE, pp->pr_align) -
791	    offsetof(struct pool_item_header, ph_bitmap[0]);
792	KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
793	if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
794		return true;
795	}
796
797	return false;
798}
799
800/*
801 * Initialize the given pool resource structure.
802 *
803 * We export this routine to allow other kernel parts to declare
804 * static pools that must be initialized before kmem(9) is available.
805 */
806void
807pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
808    const char *wchan, struct pool_allocator *palloc, int ipl)
809{
810	struct pool *pp1;
811	size_t prsize;
812	int itemspace, slack;
813
814	/* XXX ioff will be removed. */
815	KASSERT(ioff == 0);
816
817#ifdef DEBUG
818	if (__predict_true(!cold))
819		mutex_enter(&pool_head_lock);
820	/*
821	 * Check that the pool hasn't already been initialised and
822	 * added to the list of all pools.
823	 */
824	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
825		if (pp == pp1)
826			panic("%s: [%s] already initialised", __func__,
827			    wchan);
828	}
829	if (__predict_true(!cold))
830		mutex_exit(&pool_head_lock);
831#endif
832
833	if (palloc == NULL)
834		palloc = &pool_allocator_kmem;
835
836	if (!cold)
837		mutex_enter(&pool_allocator_lock);
838	if (palloc->pa_refcnt++ == 0) {
839		if (palloc->pa_pagesz == 0)
840			palloc->pa_pagesz = PAGE_SIZE;
841
842		TAILQ_INIT(&palloc->pa_list);
843
844		mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
845		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
846		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
847	}
848	if (!cold)
849		mutex_exit(&pool_allocator_lock);
850
851	/*
852	 * PR_PSERIALIZE implies PR_NOTOUCH; freed objects must remain
853	 * valid until the the backing page is returned to the system.
854	 */
855	if (flags & PR_PSERIALIZE) {
856		flags |= PR_NOTOUCH;
857	}
858
859	if (align == 0)
860		align = ALIGN(1);
861
862	prsize = size;
863	if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
864		prsize = sizeof(struct pool_item);
865
866	prsize = roundup(prsize, align);
867	KASSERTMSG((prsize <= palloc->pa_pagesz),
868	    "%s: [%s] pool item size (%zu) larger than page size (%u)",
869	    __func__, wchan, prsize, palloc->pa_pagesz);
870
871	/*
872	 * Initialize the pool structure.
873	 */
874	LIST_INIT(&pp->pr_emptypages);
875	LIST_INIT(&pp->pr_fullpages);
876	LIST_INIT(&pp->pr_partpages);
877	pp->pr_cache = NULL;
878	pp->pr_curpage = NULL;
879	pp->pr_npages = 0;
880	pp->pr_minitems = 0;
881	pp->pr_minpages = 0;
882	pp->pr_maxpages = UINT_MAX;
883	pp->pr_roflags = flags;
884	pp->pr_flags = 0;
885	pp->pr_size = prsize;
886	pp->pr_reqsize = size;
887	pp->pr_align = align;
888	pp->pr_wchan = wchan;
889	pp->pr_alloc = palloc;
890	pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter);
891	pp->pr_nitems = 0;
892	pp->pr_nout = 0;
893	pp->pr_hardlimit = UINT_MAX;
894	pp->pr_hardlimit_warning = NULL;
895	pp->pr_hardlimit_ratecap.tv_sec = 0;
896	pp->pr_hardlimit_ratecap.tv_usec = 0;
897	pp->pr_hardlimit_warning_last.tv_sec = 0;
898	pp->pr_hardlimit_warning_last.tv_usec = 0;
899	pp->pr_drain_hook = NULL;
900	pp->pr_drain_hook_arg = NULL;
901	pp->pr_freecheck = NULL;
902	pp->pr_redzone = false;
903	pool_redzone_init(pp, size);
904	pool_quarantine_init(pp);
905
906	/*
907	 * Decide whether to put the page header off-page to avoid wasting too
908	 * large a part of the page or too big an item. Off-page page headers
909	 * go on a hash table, so we can match a returned item with its header
910	 * based on the page address.
911	 */
912	if (pool_init_is_phinpage(pp)) {
913		/* Use the beginning of the page for the page header */
914		itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
915		pp->pr_itemoffset = roundup(PHSIZE, align);
916		pp->pr_roflags |= PR_PHINPAGE;
917	} else {
918		/* The page header will be taken from our page header pool */
919		itemspace = palloc->pa_pagesz;
920		pp->pr_itemoffset = 0;
921		SPLAY_INIT(&pp->pr_phtree);
922	}
923
924	pp->pr_itemsperpage = itemspace / pp->pr_size;
925	KASSERT(pp->pr_itemsperpage != 0);
926
927	/*
928	 * Decide whether to use a bitmap or a linked list to manage freed
929	 * items.
930	 */
931	if (pool_init_is_usebmap(pp)) {
932		pp->pr_roflags |= PR_USEBMAP;
933	}
934
935	/*
936	 * If we're off-page, then we're using a bitmap; choose the appropriate
937	 * pool to allocate page headers, whose size varies depending on the
938	 * bitmap. If we're on-page, nothing to do.
939	 */
940	if (!(pp->pr_roflags & PR_PHINPAGE)) {
941		int idx;
942
943		KASSERT(pp->pr_roflags & PR_USEBMAP);
944
945		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
946		    idx++) {
947			/* nothing */
948		}
949		if (idx >= PHPOOL_MAX) {
950			/*
951			 * if you see this panic, consider to tweak
952			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
953			 */
954			panic("%s: [%s] too large itemsperpage(%d) for "
955			    "PR_USEBMAP", __func__,
956			    pp->pr_wchan, pp->pr_itemsperpage);
957		}
958		pp->pr_phpool = &phpool[idx];
959	} else {
960		pp->pr_phpool = NULL;
961	}
962
963	/*
964	 * Use the slack between the chunks and the page header
965	 * for "cache coloring".
966	 */
967	slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
968	pp->pr_maxcolor = rounddown(slack, align);
969	pp->pr_curcolor = 0;
970
971	pp->pr_nget = 0;
972	pp->pr_nfail = 0;
973	pp->pr_nput = 0;
974	pp->pr_npagealloc = 0;
975	pp->pr_npagefree = 0;
976	pp->pr_hiwat = 0;
977	pp->pr_nidle = 0;
978	pp->pr_refcnt = 0;
979
980	mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
981	cv_init(&pp->pr_cv, wchan);
982	pp->pr_ipl = ipl;
983
984	/* Insert into the list of all pools. */
985	if (!cold)
986		mutex_enter(&pool_head_lock);
987	TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
988		if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
989			break;
990	}
991	if (pp1 == NULL)
992		TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
993	else
994		TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
995	if (!cold)
996		mutex_exit(&pool_head_lock);
997
998	/* Insert this into the list of pools using this allocator. */
999	if (!cold)
1000		mutex_enter(&palloc->pa_lock);
1001	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
1002	if (!cold)
1003		mutex_exit(&palloc->pa_lock);
1004}
1005
1006/*
1007 * De-commission a pool resource.
1008 */
1009void
1010pool_destroy(struct pool *pp)
1011{
1012	struct pool_pagelist pq;
1013	struct pool_item_header *ph;
1014
1015	pool_quarantine_flush(pp);
1016
1017	/* Remove from global pool list */
1018	mutex_enter(&pool_head_lock);
1019	while (pp->pr_refcnt != 0)
1020		cv_wait(&pool_busy, &pool_head_lock);
1021	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
1022	if (drainpp == pp)
1023		drainpp = NULL;
1024	mutex_exit(&pool_head_lock);
1025
1026	/* Remove this pool from its allocator's list of pools. */
1027	mutex_enter(&pp->pr_alloc->pa_lock);
1028	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
1029	mutex_exit(&pp->pr_alloc->pa_lock);
1030
1031	mutex_enter(&pool_allocator_lock);
1032	if (--pp->pr_alloc->pa_refcnt == 0)
1033		mutex_destroy(&pp->pr_alloc->pa_lock);
1034	mutex_exit(&pool_allocator_lock);
1035
1036	mutex_enter(&pp->pr_lock);
1037
1038	KASSERT(pp->pr_cache == NULL);
1039	KASSERTMSG((pp->pr_nout == 0),
1040	    "%s: [%s] pool busy: still out: %u", __func__, pp->pr_wchan,
1041	    pp->pr_nout);
1042	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
1043	KASSERT(LIST_EMPTY(&pp->pr_partpages));
1044
1045	/* Remove all pages */
1046	LIST_INIT(&pq);
1047	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1048		pr_rmpage(pp, ph, &pq);
1049
1050	mutex_exit(&pp->pr_lock);
1051
1052	pr_pagelist_free(pp, &pq);
1053	cv_destroy(&pp->pr_cv);
1054	mutex_destroy(&pp->pr_lock);
1055}
1056
1057void
1058pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
1059{
1060
1061	/* XXX no locking -- must be used just after pool_init() */
1062	KASSERTMSG((pp->pr_drain_hook == NULL),
1063	    "%s: [%s] already set", __func__, pp->pr_wchan);
1064	pp->pr_drain_hook = fn;
1065	pp->pr_drain_hook_arg = arg;
1066}
1067
1068static struct pool_item_header *
1069pool_alloc_item_header(struct pool *pp, void *storage, int flags)
1070{
1071	struct pool_item_header *ph;
1072
1073	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
1074		ph = storage;
1075	else
1076		ph = pool_get(pp->pr_phpool, flags);
1077
1078	return ph;
1079}
1080
1081/*
1082 * Grab an item from the pool.
1083 */
1084void *
1085pool_get(struct pool *pp, int flags)
1086{
1087	struct pool_item_header *ph;
1088	void *v;
1089
1090	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
1091	KASSERTMSG((pp->pr_itemsperpage != 0),
1092	    "%s: [%s] pr_itemsperpage is zero, "
1093	    "pool not initialized?", __func__, pp->pr_wchan);
1094	KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
1095		|| pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
1096	    "%s: [%s] is IPL_NONE, but called from interrupt context",
1097	    __func__, pp->pr_wchan);
1098	if (flags & PR_WAITOK) {
1099		ASSERT_SLEEPABLE();
1100	}
1101
1102	if (flags & PR_NOWAIT) {
1103		if (fault_inject())
1104			return NULL;
1105	}
1106
1107	mutex_enter(&pp->pr_lock);
1108 startover:
1109	/*
1110	 * Check to see if we've reached the hard limit.  If we have,
1111	 * and we can wait, then wait until an item has been returned to
1112	 * the pool.
1113	 */
1114	KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
1115	    "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
1116	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
1117		if (pp->pr_drain_hook != NULL) {
1118			/*
1119			 * Since the drain hook is going to free things
1120			 * back to the pool, unlock, call the hook, re-lock,
1121			 * and check the hardlimit condition again.
1122			 */
1123			mutex_exit(&pp->pr_lock);
1124			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
1125			mutex_enter(&pp->pr_lock);
1126			if (pp->pr_nout < pp->pr_hardlimit)
1127				goto startover;
1128		}
1129
1130		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
1131			/*
1132			 * XXX: A warning isn't logged in this case.  Should
1133			 * it be?
1134			 */
1135			pp->pr_flags |= PR_WANTED;
1136			do {
1137				cv_wait(&pp->pr_cv, &pp->pr_lock);
1138			} while (pp->pr_flags & PR_WANTED);
1139			goto startover;
1140		}
1141
1142		/*
1143		 * Log a message that the hard limit has been hit.
1144		 */
1145		if (pp->pr_hardlimit_warning != NULL &&
1146		    ratecheck(&pp->pr_hardlimit_warning_last,
1147			      &pp->pr_hardlimit_ratecap))
1148			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
1149
1150		pp->pr_nfail++;
1151
1152		mutex_exit(&pp->pr_lock);
1153		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
1154		return NULL;
1155	}
1156
1157	/*
1158	 * The convention we use is that if `curpage' is not NULL, then
1159	 * it points at a non-empty bucket. In particular, `curpage'
1160	 * never points at a page header which has PR_PHINPAGE set and
1161	 * has no items in its bucket.
1162	 */
1163	if ((ph = pp->pr_curpage) == NULL) {
1164		int error;
1165
1166		KASSERTMSG((pp->pr_nitems == 0),
1167		    "%s: [%s] curpage NULL, inconsistent nitems %u",
1168		    __func__, pp->pr_wchan, pp->pr_nitems);
1169
1170		/*
1171		 * Call the back-end page allocator for more memory.
1172		 * Release the pool lock, as the back-end page allocator
1173		 * may block.
1174		 */
1175		error = pool_grow(pp, flags);
1176		if (error != 0) {
1177			/*
1178			 * pool_grow aborts when another thread
1179			 * is allocating a new page. Retry if it
1180			 * waited for it.
1181			 */
1182			if (error == ERESTART)
1183				goto startover;
1184
1185			/*
1186			 * We were unable to allocate a page or item
1187			 * header, but we released the lock during
1188			 * allocation, so perhaps items were freed
1189			 * back to the pool.  Check for this case.
1190			 */
1191			if (pp->pr_curpage != NULL)
1192				goto startover;
1193
1194			pp->pr_nfail++;
1195			mutex_exit(&pp->pr_lock);
1196			KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
1197			return NULL;
1198		}
1199
1200		/* Start the allocation process over. */
1201		goto startover;
1202	}
1203	if (pp->pr_roflags & PR_USEBMAP) {
1204		KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
1205		    "%s: [%s] pool page empty", __func__, pp->pr_wchan);
1206		v = pr_item_bitmap_get(pp, ph);
1207	} else {
1208		v = pr_item_linkedlist_get(pp, ph);
1209	}
1210	pp->pr_nitems--;
1211	pp->pr_nout++;
1212	if (ph->ph_nmissing == 0) {
1213		KASSERT(pp->pr_nidle > 0);
1214		pp->pr_nidle--;
1215
1216		/*
1217		 * This page was previously empty.  Move it to the list of
1218		 * partially-full pages.  This page is already curpage.
1219		 */
1220		LIST_REMOVE(ph, ph_pagelist);
1221		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1222	}
1223	ph->ph_nmissing++;
1224	if (ph->ph_nmissing == pp->pr_itemsperpage) {
1225		KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
1226			LIST_EMPTY(&ph->ph_itemlist)),
1227		    "%s: [%s] nmissing (%u) inconsistent", __func__,
1228			pp->pr_wchan, ph->ph_nmissing);
1229		/*
1230		 * This page is now full.  Move it to the full list
1231		 * and select a new current page.
1232		 */
1233		LIST_REMOVE(ph, ph_pagelist);
1234		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1235		pool_update_curpage(pp);
1236	}
1237
1238	pp->pr_nget++;
1239
1240	/*
1241	 * If we have a low water mark and we are now below that low
1242	 * water mark, add more items to the pool.
1243	 */
1244	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1245		/*
1246		 * XXX: Should we log a warning?  Should we set up a timeout
1247		 * to try again in a second or so?  The latter could break
1248		 * a caller's assumptions about interrupt protection, etc.
1249		 */
1250	}
1251
1252	mutex_exit(&pp->pr_lock);
1253	KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
1254	FREECHECK_OUT(&pp->pr_freecheck, v);
1255	pool_redzone_fill(pp, v);
1256	pool_get_kmsan(pp, v);
1257	if (flags & PR_ZERO)
1258		memset(v, 0, pp->pr_reqsize);
1259	return v;
1260}
1261
1262/*
1263 * Internal version of pool_put().  Pool is already locked/entered.
1264 */
1265static void
1266pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1267{
1268	struct pool_item_header *ph;
1269
1270	KASSERT(mutex_owned(&pp->pr_lock));
1271	pool_redzone_check(pp, v);
1272	pool_put_kmsan(pp, v);
1273	FREECHECK_IN(&pp->pr_freecheck, v);
1274	LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1275
1276	KASSERTMSG((pp->pr_nout > 0),
1277	    "%s: [%s] putting with none out", __func__, pp->pr_wchan);
1278
1279	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1280		panic("%s: [%s] page header missing", __func__,  pp->pr_wchan);
1281	}
1282
1283	/*
1284	 * Return to item list.
1285	 */
1286	if (pp->pr_roflags & PR_USEBMAP) {
1287		pr_item_bitmap_put(pp, ph, v);
1288	} else {
1289		pr_item_linkedlist_put(pp, ph, v);
1290	}
1291	KDASSERT(ph->ph_nmissing != 0);
1292	ph->ph_nmissing--;
1293	pp->pr_nput++;
1294	pp->pr_nitems++;
1295	pp->pr_nout--;
1296
1297	/* Cancel "pool empty" condition if it exists */
1298	if (pp->pr_curpage == NULL)
1299		pp->pr_curpage = ph;
1300
1301	if (pp->pr_flags & PR_WANTED) {
1302		pp->pr_flags &= ~PR_WANTED;
1303		cv_broadcast(&pp->pr_cv);
1304	}
1305
1306	/*
1307	 * If this page is now empty, do one of two things:
1308	 *
1309	 *	(1) If we have more pages than the page high water mark,
1310	 *	    free the page back to the system.  ONLY CONSIDER
1311	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1312	 *	    CLAIM.
1313	 *
1314	 *	(2) Otherwise, move the page to the empty page list.
1315	 *
1316	 * Either way, select a new current page (so we use a partially-full
1317	 * page if one is available).
1318	 */
1319	if (ph->ph_nmissing == 0) {
1320		pp->pr_nidle++;
1321		if (pp->pr_nitems - pp->pr_itemsperpage >= pp->pr_minitems &&
1322		    pp->pr_npages > pp->pr_minpages &&
1323		    pp->pr_npages > pp->pr_maxpages) {
1324			pr_rmpage(pp, ph, pq);
1325		} else {
1326			LIST_REMOVE(ph, ph_pagelist);
1327			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1328
1329			/*
1330			 * Update the timestamp on the page.  A page must
1331			 * be idle for some period of time before it can
1332			 * be reclaimed by the pagedaemon.  This minimizes
1333			 * ping-pong'ing for memory.
1334			 *
1335			 * note for 64-bit time_t: truncating to 32-bit is not
1336			 * a problem for our usage.
1337			 */
1338			ph->ph_time = time_uptime;
1339		}
1340		pool_update_curpage(pp);
1341	}
1342
1343	/*
1344	 * If the page was previously completely full, move it to the
1345	 * partially-full list and make it the current page.  The next
1346	 * allocation will get the item from this page, instead of
1347	 * further fragmenting the pool.
1348	 */
1349	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1350		LIST_REMOVE(ph, ph_pagelist);
1351		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1352		pp->pr_curpage = ph;
1353	}
1354}
1355
1356void
1357pool_put(struct pool *pp, void *v)
1358{
1359	struct pool_pagelist pq;
1360
1361	LIST_INIT(&pq);
1362
1363	mutex_enter(&pp->pr_lock);
1364	if (!pool_put_quarantine(pp, v, &pq)) {
1365		pool_do_put(pp, v, &pq);
1366	}
1367	mutex_exit(&pp->pr_lock);
1368
1369	pr_pagelist_free(pp, &pq);
1370}
1371
1372/*
1373 * pool_grow: grow a pool by a page.
1374 *
1375 * => called with pool locked.
1376 * => unlock and relock the pool.
1377 * => return with pool locked.
1378 */
1379
1380static int
1381pool_grow(struct pool *pp, int flags)
1382{
1383	struct pool_item_header *ph;
1384	char *storage;
1385
1386	/*
1387	 * If there's a pool_grow in progress, wait for it to complete
1388	 * and try again from the top.
1389	 */
1390	if (pp->pr_flags & PR_GROWING) {
1391		if (flags & PR_WAITOK) {
1392			do {
1393				cv_wait(&pp->pr_cv, &pp->pr_lock);
1394			} while (pp->pr_flags & PR_GROWING);
1395			return ERESTART;
1396		} else {
1397			if (pp->pr_flags & PR_GROWINGNOWAIT) {
1398				/*
1399				 * This needs an unlock/relock dance so
1400				 * that the other caller has a chance to
1401				 * run and actually do the thing.  Note
1402				 * that this is effectively a busy-wait.
1403				 */
1404				mutex_exit(&pp->pr_lock);
1405				mutex_enter(&pp->pr_lock);
1406				return ERESTART;
1407			}
1408			return EWOULDBLOCK;
1409		}
1410	}
1411	pp->pr_flags |= PR_GROWING;
1412	if (flags & PR_WAITOK)
1413		mutex_exit(&pp->pr_lock);
1414	else
1415		pp->pr_flags |= PR_GROWINGNOWAIT;
1416
1417	storage = pool_allocator_alloc(pp, flags);
1418	if (__predict_false(storage == NULL))
1419		goto out;
1420
1421	ph = pool_alloc_item_header(pp, storage, flags);
1422	if (__predict_false(ph == NULL)) {
1423		pool_allocator_free(pp, storage);
1424		goto out;
1425	}
1426
1427	if (flags & PR_WAITOK)
1428		mutex_enter(&pp->pr_lock);
1429	pool_prime_page(pp, storage, ph);
1430	pp->pr_npagealloc++;
1431	KASSERT(pp->pr_flags & PR_GROWING);
1432	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1433	/*
1434	 * If anyone was waiting for pool_grow, notify them that we
1435	 * may have just done it.
1436	 */
1437	cv_broadcast(&pp->pr_cv);
1438	return 0;
1439out:
1440	if (flags & PR_WAITOK)
1441		mutex_enter(&pp->pr_lock);
1442	KASSERT(pp->pr_flags & PR_GROWING);
1443	pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1444	return ENOMEM;
1445}
1446
1447void
1448pool_prime(struct pool *pp, int n)
1449{
1450
1451	mutex_enter(&pp->pr_lock);
1452	pp->pr_minpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1453	if (pp->pr_maxpages <= pp->pr_minpages)
1454		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
1455	while (pp->pr_npages < pp->pr_minpages)
1456		(void) pool_grow(pp, PR_WAITOK);
1457	mutex_exit(&pp->pr_lock);
1458}
1459
1460/*
1461 * Add a page worth of items to the pool.
1462 *
1463 * Note, we must be called with the pool descriptor LOCKED.
1464 */
1465static void
1466pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1467{
1468	const unsigned int align = pp->pr_align;
1469	struct pool_item *pi;
1470	void *cp = storage;
1471	int n;
1472
1473	KASSERT(mutex_owned(&pp->pr_lock));
1474	KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
1475		(((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
1476	    "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
1477
1478	/*
1479	 * Insert page header.
1480	 */
1481	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1482	LIST_INIT(&ph->ph_itemlist);
1483	ph->ph_page = storage;
1484	ph->ph_nmissing = 0;
1485	ph->ph_time = time_uptime;
1486	if (pp->pr_roflags & PR_PHINPAGE)
1487		ph->ph_poolid = pp->pr_poolid;
1488	else
1489		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1490
1491	pp->pr_nidle++;
1492
1493	/*
1494	 * The item space starts after the on-page header, if any.
1495	 */
1496	ph->ph_off = pp->pr_itemoffset;
1497
1498	/*
1499	 * Color this page.
1500	 */
1501	ph->ph_off += pp->pr_curcolor;
1502	cp = (char *)cp + ph->ph_off;
1503	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1504		pp->pr_curcolor = 0;
1505
1506	KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1507
1508	/*
1509	 * Insert remaining chunks on the bucket list.
1510	 */
1511	n = pp->pr_itemsperpage;
1512	pp->pr_nitems += n;
1513
1514	if (pp->pr_roflags & PR_USEBMAP) {
1515		pr_item_bitmap_init(pp, ph);
1516	} else {
1517		while (n--) {
1518			pi = (struct pool_item *)cp;
1519
1520			KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
1521
1522			/* Insert on page list */
1523			LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1524#ifdef POOL_CHECK_MAGIC
1525			pi->pi_magic = PI_MAGIC;
1526#endif
1527			cp = (char *)cp + pp->pr_size;
1528
1529			KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1530		}
1531	}
1532
1533	/*
1534	 * If the pool was depleted, point at the new page.
1535	 */
1536	if (pp->pr_curpage == NULL)
1537		pp->pr_curpage = ph;
1538
1539	if (++pp->pr_npages > pp->pr_hiwat)
1540		pp->pr_hiwat = pp->pr_npages;
1541}
1542
1543/*
1544 * Used by pool_get() when nitems drops below the low water mark.  This
1545 * is used to catch up pr_nitems with the low water mark.
1546 *
1547 * Note 1, we never wait for memory here, we let the caller decide what to do.
1548 *
1549 * Note 2, we must be called with the pool already locked, and we return
1550 * with it locked.
1551 */
1552static int
1553pool_catchup(struct pool *pp)
1554{
1555	int error = 0;
1556
1557	while (POOL_NEEDS_CATCHUP(pp)) {
1558		error = pool_grow(pp, PR_NOWAIT);
1559		if (error) {
1560			if (error == ERESTART)
1561				continue;
1562			break;
1563		}
1564	}
1565	return error;
1566}
1567
1568static void
1569pool_update_curpage(struct pool *pp)
1570{
1571
1572	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1573	if (pp->pr_curpage == NULL) {
1574		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1575	}
1576	KASSERTMSG((pp->pr_curpage == NULL) == (pp->pr_nitems == 0),
1577	    "pp=%p curpage=%p nitems=%u", pp, pp->pr_curpage, pp->pr_nitems);
1578}
1579
1580void
1581pool_setlowat(struct pool *pp, int n)
1582{
1583
1584	mutex_enter(&pp->pr_lock);
1585	pp->pr_minitems = n;
1586
1587	/* Make sure we're caught up with the newly-set low water mark. */
1588	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1589		/*
1590		 * XXX: Should we log a warning?  Should we set up a timeout
1591		 * to try again in a second or so?  The latter could break
1592		 * a caller's assumptions about interrupt protection, etc.
1593		 */
1594	}
1595
1596	mutex_exit(&pp->pr_lock);
1597}
1598
1599void
1600pool_sethiwat(struct pool *pp, int n)
1601{
1602
1603	mutex_enter(&pp->pr_lock);
1604
1605	pp->pr_maxitems = n;
1606
1607	mutex_exit(&pp->pr_lock);
1608}
1609
1610void
1611pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1612{
1613
1614	mutex_enter(&pp->pr_lock);
1615
1616	pp->pr_hardlimit = n;
1617	pp->pr_hardlimit_warning = warnmess;
1618	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1619	pp->pr_hardlimit_warning_last.tv_sec = 0;
1620	pp->pr_hardlimit_warning_last.tv_usec = 0;
1621
1622	pp->pr_maxpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1623
1624	mutex_exit(&pp->pr_lock);
1625}
1626
1627unsigned int
1628pool_nget(struct pool *pp)
1629{
1630
1631	return pp->pr_nget;
1632}
1633
1634unsigned int
1635pool_nput(struct pool *pp)
1636{
1637
1638	return pp->pr_nput;
1639}
1640
1641/*
1642 * Release all complete pages that have not been used recently.
1643 *
1644 * Must not be called from interrupt context.
1645 */
1646int
1647pool_reclaim(struct pool *pp)
1648{
1649	struct pool_item_header *ph, *phnext;
1650	struct pool_pagelist pq;
1651	struct pool_cache *pc;
1652	uint32_t curtime;
1653	bool klock;
1654	int rv;
1655
1656	KASSERT(!cpu_intr_p());
1657	KASSERT(!cpu_softintr_p());
1658
1659	if (pp->pr_drain_hook != NULL) {
1660		/*
1661		 * The drain hook must be called with the pool unlocked.
1662		 */
1663		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1664	}
1665
1666	/*
1667	 * XXXSMP Because we do not want to cause non-MPSAFE code
1668	 * to block.
1669	 */
1670	if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1671	    pp->pr_ipl == IPL_SOFTSERIAL) {
1672		KERNEL_LOCK(1, NULL);
1673		klock = true;
1674	} else
1675		klock = false;
1676
1677	/* Reclaim items from the pool's cache (if any). */
1678	if ((pc = atomic_load_consume(&pp->pr_cache)) != NULL)
1679		pool_cache_invalidate(pc);
1680
1681	if (mutex_tryenter(&pp->pr_lock) == 0) {
1682		if (klock) {
1683			KERNEL_UNLOCK_ONE(NULL);
1684		}
1685		return 0;
1686	}
1687
1688	LIST_INIT(&pq);
1689
1690	curtime = time_uptime;
1691
1692	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1693		phnext = LIST_NEXT(ph, ph_pagelist);
1694
1695		/* Check our minimum page claim */
1696		if (pp->pr_npages <= pp->pr_minpages)
1697			break;
1698
1699		KASSERT(ph->ph_nmissing == 0);
1700		if (curtime - ph->ph_time < pool_inactive_time)
1701			continue;
1702
1703		/*
1704		 * If freeing this page would put us below the minimum free items
1705		 * or the minimum pages, stop now.
1706		 */
1707		if (pp->pr_nitems - pp->pr_itemsperpage < pp->pr_minitems ||
1708		    pp->pr_npages - 1 < pp->pr_minpages)
1709			break;
1710
1711		pr_rmpage(pp, ph, &pq);
1712	}
1713
1714	mutex_exit(&pp->pr_lock);
1715
1716	if (LIST_EMPTY(&pq))
1717		rv = 0;
1718	else {
1719		pr_pagelist_free(pp, &pq);
1720		rv = 1;
1721	}
1722
1723	if (klock) {
1724		KERNEL_UNLOCK_ONE(NULL);
1725	}
1726
1727	return rv;
1728}
1729
1730/*
1731 * Drain pools, one at a time. The drained pool is returned within ppp.
1732 *
1733 * Note, must never be called from interrupt context.
1734 */
1735bool
1736pool_drain(struct pool **ppp)
1737{
1738	bool reclaimed;
1739	struct pool *pp;
1740
1741	KASSERT(!TAILQ_EMPTY(&pool_head));
1742
1743	pp = NULL;
1744
1745	/* Find next pool to drain, and add a reference. */
1746	mutex_enter(&pool_head_lock);
1747	do {
1748		if (drainpp == NULL) {
1749			drainpp = TAILQ_FIRST(&pool_head);
1750		}
1751		if (drainpp != NULL) {
1752			pp = drainpp;
1753			drainpp = TAILQ_NEXT(pp, pr_poollist);
1754		}
1755		/*
1756		 * Skip completely idle pools.  We depend on at least
1757		 * one pool in the system being active.
1758		 */
1759	} while (pp == NULL || pp->pr_npages == 0);
1760	pp->pr_refcnt++;
1761	mutex_exit(&pool_head_lock);
1762
1763	/* Drain the cache (if any) and pool.. */
1764	reclaimed = pool_reclaim(pp);
1765
1766	/* Finally, unlock the pool. */
1767	mutex_enter(&pool_head_lock);
1768	pp->pr_refcnt--;
1769	cv_broadcast(&pool_busy);
1770	mutex_exit(&pool_head_lock);
1771
1772	if (ppp != NULL)
1773		*ppp = pp;
1774
1775	return reclaimed;
1776}
1777
1778/*
1779 * Calculate the total number of pages consumed by pools.
1780 */
1781int
1782pool_totalpages(void)
1783{
1784
1785	mutex_enter(&pool_head_lock);
1786	int pages = pool_totalpages_locked();
1787	mutex_exit(&pool_head_lock);
1788
1789	return pages;
1790}
1791
1792int
1793pool_totalpages_locked(void)
1794{
1795	struct pool *pp;
1796	uint64_t total = 0;
1797
1798	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1799		uint64_t bytes =
1800		    (uint64_t)pp->pr_npages * pp->pr_alloc->pa_pagesz;
1801
1802		if ((pp->pr_roflags & PR_RECURSIVE) != 0)
1803			bytes -= ((uint64_t)pp->pr_nout * pp->pr_size);
1804		total += bytes;
1805	}
1806
1807	return atop(total);
1808}
1809
1810/*
1811 * Diagnostic helpers.
1812 */
1813
1814void
1815pool_printall(const char *modif, void (*pr)(const char *, ...))
1816{
1817	struct pool *pp;
1818
1819	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1820		pool_printit(pp, modif, pr);
1821	}
1822}
1823
1824void
1825pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1826{
1827
1828	if (pp == NULL) {
1829		(*pr)("Must specify a pool to print.\n");
1830		return;
1831	}
1832
1833	pool_print1(pp, modif, pr);
1834}
1835
1836static void
1837pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1838    void (*pr)(const char *, ...))
1839{
1840	struct pool_item_header *ph;
1841
1842	LIST_FOREACH(ph, pl, ph_pagelist) {
1843		(*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1844		    ph->ph_page, ph->ph_nmissing, ph->ph_time);
1845#ifdef POOL_CHECK_MAGIC
1846		struct pool_item *pi;
1847		if (!(pp->pr_roflags & PR_USEBMAP)) {
1848			LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1849				if (pi->pi_magic != PI_MAGIC) {
1850					(*pr)("\t\t\titem %p, magic 0x%x\n",
1851					    pi, pi->pi_magic);
1852				}
1853			}
1854		}
1855#endif
1856	}
1857}
1858
1859static void
1860pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1861{
1862	struct pool_item_header *ph;
1863	pool_cache_t pc;
1864	pcg_t *pcg;
1865	pool_cache_cpu_t *cc;
1866	uint64_t cpuhit, cpumiss, pchit, pcmiss;
1867	uint32_t nfull;
1868	int i;
1869	bool print_log = false, print_pagelist = false, print_cache = false;
1870	bool print_short = false, skip_empty = false;
1871	char c;
1872
1873	while ((c = *modif++) != '\0') {
1874		if (c == 'l')
1875			print_log = true;
1876		if (c == 'p')
1877			print_pagelist = true;
1878		if (c == 'c')
1879			print_cache = true;
1880		if (c == 's')
1881			print_short = true;
1882		if (c == 'S')
1883			skip_empty = true;
1884	}
1885
1886	if (skip_empty && pp->pr_nget == 0)
1887		return;
1888
1889	if ((pc = atomic_load_consume(&pp->pr_cache)) != NULL) {
1890		(*pr)("POOLCACHE");
1891	} else {
1892		(*pr)("POOL");
1893	}
1894
1895	/* Single line output. */
1896	if (print_short) {
1897		(*pr)(" %s:%p:%u:%u:%u:%u:%u:%u:%u:%u:%u:%u\n",
1898		    pp->pr_wchan, pp, pp->pr_size, pp->pr_align, pp->pr_npages,
1899		    pp->pr_nitems, pp->pr_nout, pp->pr_nget, pp->pr_nput,
1900		    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_nidle);
1901		return;
1902	}
1903
1904	(*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1905	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1906	    pp->pr_roflags);
1907	(*pr)("\tpool %p, alloc %p\n", pp, pp->pr_alloc);
1908	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1909	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1910	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1911	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1912
1913	(*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1914	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1915	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1916	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1917
1918	if (!print_pagelist)
1919		goto skip_pagelist;
1920
1921	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1922		(*pr)("\n\tempty page list:\n");
1923	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1924	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1925		(*pr)("\n\tfull page list:\n");
1926	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1927	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1928		(*pr)("\n\tpartial-page list:\n");
1929	pool_print_pagelist(pp, &pp->pr_partpages, pr);
1930
1931	if (pp->pr_curpage == NULL)
1932		(*pr)("\tno current page\n");
1933	else
1934		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1935
1936 skip_pagelist:
1937	if (print_log)
1938		goto skip_log;
1939
1940	(*pr)("\n");
1941
1942 skip_log:
1943
1944#define PR_GROUPLIST(pcg)						\
1945	(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);		\
1946	for (i = 0; i < pcg->pcg_size; i++) {				\
1947		if (pcg->pcg_objects[i].pcgo_pa !=			\
1948		    POOL_PADDR_INVALID) {				\
1949			(*pr)("\t\t\t%p, 0x%llx\n",			\
1950			    pcg->pcg_objects[i].pcgo_va,		\
1951			    (unsigned long long)			\
1952			    pcg->pcg_objects[i].pcgo_pa);		\
1953		} else {						\
1954			(*pr)("\t\t\t%p\n",				\
1955			    pcg->pcg_objects[i].pcgo_va);		\
1956		}							\
1957	}
1958
1959	if (pc != NULL) {
1960		cpuhit = 0;
1961		cpumiss = 0;
1962		pcmiss = 0;
1963		nfull = 0;
1964		for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1965			if ((cc = pc->pc_cpus[i]) == NULL)
1966				continue;
1967			cpuhit += cc->cc_hits;
1968			cpumiss += cc->cc_misses;
1969			pcmiss += cc->cc_pcmisses;
1970			nfull += cc->cc_nfull;
1971		}
1972		pchit = cpumiss - pcmiss;
1973		(*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1974		(*pr)("\tcache layer hits %llu misses %llu\n", pchit, pcmiss);
1975		(*pr)("\tcache layer full groups %u\n", nfull);
1976		if (print_cache) {
1977			(*pr)("\tfull cache groups:\n");
1978			for (pcg = pc->pc_fullgroups; pcg != NULL;
1979			    pcg = pcg->pcg_next) {
1980				PR_GROUPLIST(pcg);
1981			}
1982		}
1983	}
1984#undef PR_GROUPLIST
1985}
1986
1987static int
1988pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1989{
1990	struct pool_item *pi;
1991	void *page;
1992	int n;
1993
1994	if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1995		page = POOL_OBJ_TO_PAGE(pp, ph);
1996		if (page != ph->ph_page &&
1997		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1998			if (label != NULL)
1999				printf("%s: ", label);
2000			printf("pool(%p:%s): page inconsistency: page %p;"
2001			       " at page head addr %p (p %p)\n", pp,
2002				pp->pr_wchan, ph->ph_page,
2003				ph, page);
2004			return 1;
2005		}
2006	}
2007
2008	if ((pp->pr_roflags & PR_USEBMAP) != 0)
2009		return 0;
2010
2011	for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
2012	     pi != NULL;
2013	     pi = LIST_NEXT(pi,pi_list), n++) {
2014
2015#ifdef POOL_CHECK_MAGIC
2016		if (pi->pi_magic != PI_MAGIC) {
2017			if (label != NULL)
2018				printf("%s: ", label);
2019			printf("pool(%s): free list modified: magic=%x;"
2020			       " page %p; item ordinal %d; addr %p\n",
2021				pp->pr_wchan, pi->pi_magic, ph->ph_page,
2022				n, pi);
2023			panic("pool");
2024		}
2025#endif
2026		if ((pp->pr_roflags & PR_NOALIGN) != 0) {
2027			continue;
2028		}
2029		page = POOL_OBJ_TO_PAGE(pp, pi);
2030		if (page == ph->ph_page)
2031			continue;
2032
2033		if (label != NULL)
2034			printf("%s: ", label);
2035		printf("pool(%p:%s): page inconsistency: page %p;"
2036		       " item ordinal %d; addr %p (p %p)\n", pp,
2037			pp->pr_wchan, ph->ph_page,
2038			n, pi, page);
2039		return 1;
2040	}
2041	return 0;
2042}
2043
2044
2045int
2046pool_chk(struct pool *pp, const char *label)
2047{
2048	struct pool_item_header *ph;
2049	int r = 0;
2050
2051	mutex_enter(&pp->pr_lock);
2052	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
2053		r = pool_chk_page(pp, label, ph);
2054		if (r) {
2055			goto out;
2056		}
2057	}
2058	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
2059		r = pool_chk_page(pp, label, ph);
2060		if (r) {
2061			goto out;
2062		}
2063	}
2064	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
2065		r = pool_chk_page(pp, label, ph);
2066		if (r) {
2067			goto out;
2068		}
2069	}
2070
2071out:
2072	mutex_exit(&pp->pr_lock);
2073	return r;
2074}
2075
2076/*
2077 * pool_cache_init:
2078 *
2079 *	Initialize a pool cache.
2080 */
2081pool_cache_t
2082pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
2083    const char *wchan, struct pool_allocator *palloc, int ipl,
2084    int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
2085{
2086	pool_cache_t pc;
2087
2088	pc = pool_get(&cache_pool, PR_WAITOK);
2089	if (pc == NULL)
2090		return NULL;
2091
2092	pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
2093	   palloc, ipl, ctor, dtor, arg);
2094
2095	return pc;
2096}
2097
2098/*
2099 * pool_cache_bootstrap:
2100 *
2101 *	Kernel-private version of pool_cache_init().  The caller
2102 *	provides initial storage.
2103 */
2104void
2105pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
2106    u_int align_offset, u_int flags, const char *wchan,
2107    struct pool_allocator *palloc, int ipl,
2108    int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
2109    void *arg)
2110{
2111	CPU_INFO_ITERATOR cii;
2112	pool_cache_t pc1;
2113	struct cpu_info *ci;
2114	struct pool *pp;
2115	unsigned int ppflags;
2116
2117	pp = &pc->pc_pool;
2118	if (palloc == NULL && ipl == IPL_NONE) {
2119		if (size > PAGE_SIZE) {
2120			int bigidx = pool_bigidx(size);
2121
2122			palloc = &pool_allocator_big[bigidx];
2123			flags |= PR_NOALIGN;
2124		} else
2125			palloc = &pool_allocator_nointr;
2126	}
2127
2128	ppflags = flags;
2129	if (ctor == NULL) {
2130		ctor = NO_CTOR;
2131	}
2132	if (dtor == NULL) {
2133		dtor = NO_DTOR;
2134	} else {
2135		/*
2136		 * If we have a destructor, then the pool layer does not
2137		 * need to worry about PR_PSERIALIZE.
2138		 */
2139		ppflags &= ~PR_PSERIALIZE;
2140	}
2141
2142	pool_init(pp, size, align, align_offset, ppflags, wchan, palloc, ipl);
2143
2144	pc->pc_fullgroups = NULL;
2145	pc->pc_partgroups = NULL;
2146	pc->pc_ctor = ctor;
2147	pc->pc_dtor = dtor;
2148	pc->pc_arg  = arg;
2149	pc->pc_refcnt = 0;
2150	pc->pc_roflags = flags;
2151	pc->pc_freecheck = NULL;
2152
2153	if ((flags & PR_LARGECACHE) != 0) {
2154		pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
2155		pc->pc_pcgpool = &pcg_large_pool;
2156		pc->pc_pcgcache = &pcg_large_cache;
2157	} else {
2158		pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
2159		pc->pc_pcgpool = &pcg_normal_pool;
2160		pc->pc_pcgcache = &pcg_normal_cache;
2161	}
2162
2163	/* Allocate per-CPU caches. */
2164	memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2165	pc->pc_ncpu = 0;
2166	if (ncpu < 2) {
2167		/* XXX For sparc: boot CPU is not attached yet. */
2168		pool_cache_cpu_init1(curcpu(), pc);
2169	} else {
2170		for (CPU_INFO_FOREACH(cii, ci)) {
2171			pool_cache_cpu_init1(ci, pc);
2172		}
2173	}
2174
2175	/* Add to list of all pools. */
2176	if (__predict_true(!cold))
2177		mutex_enter(&pool_head_lock);
2178	TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2179		if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2180			break;
2181	}
2182	if (pc1 == NULL)
2183		TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2184	else
2185		TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2186	if (__predict_true(!cold))
2187		mutex_exit(&pool_head_lock);
2188
2189	atomic_store_release(&pp->pr_cache, pc);
2190}
2191
2192/*
2193 * pool_cache_destroy:
2194 *
2195 *	Destroy a pool cache.
2196 */
2197void
2198pool_cache_destroy(pool_cache_t pc)
2199{
2200
2201	pool_cache_bootstrap_destroy(pc);
2202	pool_put(&cache_pool, pc);
2203}
2204
2205/*
2206 * pool_cache_bootstrap_destroy:
2207 *
2208 *	Destroy a pool cache.
2209 */
2210void
2211pool_cache_bootstrap_destroy(pool_cache_t pc)
2212{
2213	struct pool *pp = &pc->pc_pool;
2214	u_int i;
2215
2216	/* Remove it from the global list. */
2217	mutex_enter(&pool_head_lock);
2218	while (pc->pc_refcnt != 0)
2219		cv_wait(&pool_busy, &pool_head_lock);
2220	TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2221	mutex_exit(&pool_head_lock);
2222
2223	/* First, invalidate the entire cache. */
2224	pool_cache_invalidate(pc);
2225
2226	/* Disassociate it from the pool. */
2227	mutex_enter(&pp->pr_lock);
2228	atomic_store_relaxed(&pp->pr_cache, NULL);
2229	mutex_exit(&pp->pr_lock);
2230
2231	/* Destroy per-CPU data */
2232	for (i = 0; i < __arraycount(pc->pc_cpus); i++)
2233		pool_cache_invalidate_cpu(pc, i);
2234
2235	/* Finally, destroy it. */
2236	pool_destroy(pp);
2237}
2238
2239/*
2240 * pool_cache_cpu_init1:
2241 *
2242 *	Called for each pool_cache whenever a new CPU is attached.
2243 */
2244static void
2245pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2246{
2247	pool_cache_cpu_t *cc;
2248	int index;
2249
2250	index = ci->ci_index;
2251
2252	KASSERT(index < __arraycount(pc->pc_cpus));
2253
2254	if ((cc = pc->pc_cpus[index]) != NULL) {
2255		return;
2256	}
2257
2258	/*
2259	 * The first CPU is 'free'.  This needs to be the case for
2260	 * bootstrap - we may not be able to allocate yet.
2261	 */
2262	if (pc->pc_ncpu == 0) {
2263		cc = &pc->pc_cpu0;
2264		pc->pc_ncpu = 1;
2265	} else {
2266		pc->pc_ncpu++;
2267		cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2268	}
2269
2270	cc->cc_current = __UNCONST(&pcg_dummy);
2271	cc->cc_previous = __UNCONST(&pcg_dummy);
2272	cc->cc_pcgcache = pc->pc_pcgcache;
2273	cc->cc_hits = 0;
2274	cc->cc_misses = 0;
2275	cc->cc_pcmisses = 0;
2276	cc->cc_contended = 0;
2277	cc->cc_nfull = 0;
2278	cc->cc_npart = 0;
2279
2280	pc->pc_cpus[index] = cc;
2281}
2282
2283/*
2284 * pool_cache_cpu_init:
2285 *
2286 *	Called whenever a new CPU is attached.
2287 */
2288void
2289pool_cache_cpu_init(struct cpu_info *ci)
2290{
2291	pool_cache_t pc;
2292
2293	mutex_enter(&pool_head_lock);
2294	TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2295		pc->pc_refcnt++;
2296		mutex_exit(&pool_head_lock);
2297
2298		pool_cache_cpu_init1(ci, pc);
2299
2300		mutex_enter(&pool_head_lock);
2301		pc->pc_refcnt--;
2302		cv_broadcast(&pool_busy);
2303	}
2304	mutex_exit(&pool_head_lock);
2305}
2306
2307/*
2308 * pool_cache_reclaim:
2309 *
2310 *	Reclaim memory from a pool cache.
2311 */
2312bool
2313pool_cache_reclaim(pool_cache_t pc)
2314{
2315
2316	return pool_reclaim(&pc->pc_pool);
2317}
2318
2319static inline void
2320pool_cache_pre_destruct(pool_cache_t pc)
2321{
2322	/*
2323	 * Perform a passive serialization barrier before destructing
2324	 * a batch of one or more objects.
2325	 */
2326	if (__predict_false(pc_has_pser(pc))) {
2327		pool_barrier();
2328	}
2329}
2330
2331static void
2332pool_cache_destruct_object1(pool_cache_t pc, void *object)
2333{
2334	(*pc->pc_dtor)(pc->pc_arg, object);
2335	pool_put(&pc->pc_pool, object);
2336}
2337
2338/*
2339 * pool_cache_destruct_object:
2340 *
2341 *	Force destruction of an object and its release back into
2342 *	the pool.
2343 */
2344void
2345pool_cache_destruct_object(pool_cache_t pc, void *object)
2346{
2347
2348	FREECHECK_IN(&pc->pc_freecheck, object);
2349
2350	pool_cache_pre_destruct(pc);
2351	pool_cache_destruct_object1(pc, object);
2352}
2353
2354/*
2355 * pool_cache_invalidate_groups:
2356 *
2357 *	Invalidate a chain of groups and destruct all objects.  Return the
2358 *	number of groups that were invalidated.
2359 */
2360static int
2361pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2362{
2363	void *object;
2364	pcg_t *next;
2365	int i, n;
2366
2367	if (pcg == NULL) {
2368		return 0;
2369	}
2370
2371	pool_cache_pre_destruct(pc);
2372
2373	for (n = 0; pcg != NULL; pcg = next, n++) {
2374		next = pcg->pcg_next;
2375
2376		for (i = 0; i < pcg->pcg_avail; i++) {
2377			object = pcg->pcg_objects[i].pcgo_va;
2378			pool_cache_destruct_object1(pc, object);
2379		}
2380
2381		if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2382			pool_put(&pcg_large_pool, pcg);
2383		} else {
2384			KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2385			pool_put(&pcg_normal_pool, pcg);
2386		}
2387	}
2388	return n;
2389}
2390
2391/*
2392 * pool_cache_invalidate:
2393 *
2394 *	Invalidate a pool cache (destruct and release all of the
2395 *	cached objects).  Does not reclaim objects from the pool.
2396 *
2397 *	Note: For pool caches that provide constructed objects, there
2398 *	is an assumption that another level of synchronization is occurring
2399 *	between the input to the constructor and the cache invalidation.
2400 *
2401 *	Invalidation is a costly process and should not be called from
2402 *	interrupt context.
2403 */
2404void
2405pool_cache_invalidate(pool_cache_t pc)
2406{
2407	uint64_t where;
2408	pcg_t *pcg;
2409	int n, s;
2410
2411	KASSERT(!cpu_intr_p());
2412	KASSERT(!cpu_softintr_p());
2413
2414	if (ncpu < 2 || !mp_online) {
2415		/*
2416		 * We might be called early enough in the boot process
2417		 * for the CPU data structures to not be fully initialized.
2418		 * In this case, transfer the content of the local CPU's
2419		 * cache back into global cache as only this CPU is currently
2420		 * running.
2421		 */
2422		pool_cache_transfer(pc);
2423	} else {
2424		/*
2425		 * Signal all CPUs that they must transfer their local
2426		 * cache back to the global pool then wait for the xcall to
2427		 * complete.
2428		 */
2429		where = xc_broadcast(0,
2430		    __FPTRCAST(xcfunc_t, pool_cache_transfer), pc, NULL);
2431		xc_wait(where);
2432	}
2433
2434	/* Now dequeue and invalidate everything. */
2435	pcg = pool_pcg_trunc(&pcg_normal_cache);
2436	(void)pool_cache_invalidate_groups(pc, pcg);
2437
2438	pcg = pool_pcg_trunc(&pcg_large_cache);
2439	(void)pool_cache_invalidate_groups(pc, pcg);
2440
2441	pcg = pool_pcg_trunc(&pc->pc_fullgroups);
2442	n = pool_cache_invalidate_groups(pc, pcg);
2443	s = splvm();
2444	((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_nfull -= n;
2445	splx(s);
2446
2447	pcg = pool_pcg_trunc(&pc->pc_partgroups);
2448	n = pool_cache_invalidate_groups(pc, pcg);
2449	s = splvm();
2450	((pool_cache_cpu_t *)pc->pc_cpus[curcpu()->ci_index])->cc_npart -= n;
2451	splx(s);
2452}
2453
2454/*
2455 * pool_cache_invalidate_cpu:
2456 *
2457 *	Invalidate all CPU-bound cached objects in pool cache, the CPU being
2458 *	identified by its associated index.
2459 *	It is caller's responsibility to ensure that no operation is
2460 *	taking place on this pool cache while doing this invalidation.
2461 *	WARNING: as no inter-CPU locking is enforced, trying to invalidate
2462 *	pool cached objects from a CPU different from the one currently running
2463 *	may result in an undefined behaviour.
2464 */
2465static void
2466pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2467{
2468	pool_cache_cpu_t *cc;
2469	pcg_t *pcg;
2470
2471	if ((cc = pc->pc_cpus[index]) == NULL)
2472		return;
2473
2474	if ((pcg = cc->cc_current) != &pcg_dummy) {
2475		pcg->pcg_next = NULL;
2476		pool_cache_invalidate_groups(pc, pcg);
2477	}
2478	if ((pcg = cc->cc_previous) != &pcg_dummy) {
2479		pcg->pcg_next = NULL;
2480		pool_cache_invalidate_groups(pc, pcg);
2481	}
2482	if (cc != &pc->pc_cpu0)
2483		pool_put(&cache_cpu_pool, cc);
2484
2485}
2486
2487void
2488pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2489{
2490
2491	pool_set_drain_hook(&pc->pc_pool, fn, arg);
2492}
2493
2494void
2495pool_cache_setlowat(pool_cache_t pc, int n)
2496{
2497
2498	pool_setlowat(&pc->pc_pool, n);
2499}
2500
2501void
2502pool_cache_sethiwat(pool_cache_t pc, int n)
2503{
2504
2505	pool_sethiwat(&pc->pc_pool, n);
2506}
2507
2508void
2509pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2510{
2511
2512	pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2513}
2514
2515void
2516pool_cache_prime(pool_cache_t pc, int n)
2517{
2518
2519	pool_prime(&pc->pc_pool, n);
2520}
2521
2522unsigned int
2523pool_cache_nget(pool_cache_t pc)
2524{
2525
2526	return pool_nget(&pc->pc_pool);
2527}
2528
2529unsigned int
2530pool_cache_nput(pool_cache_t pc)
2531{
2532
2533	return pool_nput(&pc->pc_pool);
2534}
2535
2536/*
2537 * pool_pcg_get:
2538 *
2539 *	Get a cache group from the specified list.  Return true if
2540 *	contention was encountered.  Must be called at IPL_VM because
2541 *	of spin wait vs. kernel_lock.
2542 */
2543static int
2544pool_pcg_get(pcg_t *volatile *head, pcg_t **pcgp)
2545{
2546	int count = SPINLOCK_BACKOFF_MIN;
2547	pcg_t *o, *n;
2548
2549	for (o = atomic_load_relaxed(head);; o = n) {
2550		if (__predict_false(o == &pcg_dummy)) {
2551			/* Wait for concurrent get to complete. */
2552			SPINLOCK_BACKOFF(count);
2553			n = atomic_load_relaxed(head);
2554			continue;
2555		}
2556		if (__predict_false(o == NULL)) {
2557			break;
2558		}
2559		/* Lock out concurrent get/put. */
2560		n = atomic_cas_ptr(head, o, __UNCONST(&pcg_dummy));
2561		if (o == n) {
2562			/* Fetch pointer to next item and then unlock. */
2563			membar_datadep_consumer(); /* alpha */
2564			n = atomic_load_relaxed(&o->pcg_next);
2565			atomic_store_release(head, n);
2566			break;
2567		}
2568	}
2569	*pcgp = o;
2570	return count != SPINLOCK_BACKOFF_MIN;
2571}
2572
2573/*
2574 * pool_pcg_trunc:
2575 *
2576 *	Chop out entire list of pool cache groups.
2577 */
2578static pcg_t *
2579pool_pcg_trunc(pcg_t *volatile *head)
2580{
2581	int count = SPINLOCK_BACKOFF_MIN, s;
2582	pcg_t *o, *n;
2583
2584	s = splvm();
2585	for (o = atomic_load_relaxed(head);; o = n) {
2586		if (__predict_false(o == &pcg_dummy)) {
2587			/* Wait for concurrent get to complete. */
2588			SPINLOCK_BACKOFF(count);
2589			n = atomic_load_relaxed(head);
2590			continue;
2591		}
2592		n = atomic_cas_ptr(head, o, NULL);
2593		if (o == n) {
2594			splx(s);
2595			membar_datadep_consumer(); /* alpha */
2596			return o;
2597		}
2598	}
2599}
2600
2601/*
2602 * pool_pcg_put:
2603 *
2604 *	Put a pool cache group to the specified list.  Return true if
2605 *	contention was encountered.  Must be called at IPL_VM because of
2606 *	spin wait vs. kernel_lock.
2607 */
2608static int
2609pool_pcg_put(pcg_t *volatile *head, pcg_t *pcg)
2610{
2611	int count = SPINLOCK_BACKOFF_MIN;
2612	pcg_t *o, *n;
2613
2614	for (o = atomic_load_relaxed(head);; o = n) {
2615		if (__predict_false(o == &pcg_dummy)) {
2616			/* Wait for concurrent get to complete. */
2617			SPINLOCK_BACKOFF(count);
2618			n = atomic_load_relaxed(head);
2619			continue;
2620		}
2621		pcg->pcg_next = o;
2622		membar_release();
2623		n = atomic_cas_ptr(head, o, pcg);
2624		if (o == n) {
2625			return count != SPINLOCK_BACKOFF_MIN;
2626		}
2627	}
2628}
2629
2630static bool __noinline
2631pool_cache_get_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s,
2632    void **objectp, paddr_t *pap, int flags)
2633{
2634	pcg_t *pcg, *cur;
2635	void *object;
2636
2637	KASSERT(cc->cc_current->pcg_avail == 0);
2638	KASSERT(cc->cc_previous->pcg_avail == 0);
2639
2640	cc->cc_misses++;
2641
2642	/*
2643	 * If there's a full group, release our empty group back to the
2644	 * cache.  Install the full group as cc_current and return.
2645	 */
2646	cc->cc_contended += pool_pcg_get(&pc->pc_fullgroups, &pcg);
2647	if (__predict_true(pcg != NULL)) {
2648		KASSERT(pcg->pcg_avail == pcg->pcg_size);
2649		if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2650			KASSERT(cur->pcg_avail == 0);
2651			(void)pool_pcg_put(cc->cc_pcgcache, cur);
2652		}
2653		cc->cc_nfull--;
2654		cc->cc_current = pcg;
2655		return true;
2656	}
2657
2658	/*
2659	 * Nothing available locally or in cache.  Take the slow
2660	 * path: fetch a new object from the pool and construct
2661	 * it.
2662	 */
2663	cc->cc_pcmisses++;
2664	splx(s);
2665
2666	object = pool_get(&pc->pc_pool, flags);
2667	*objectp = object;
2668	if (__predict_false(object == NULL)) {
2669		KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
2670		return false;
2671	}
2672
2673	if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2674		pool_put(&pc->pc_pool, object);
2675		*objectp = NULL;
2676		return false;
2677	}
2678
2679	KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
2680
2681	if (pap != NULL) {
2682#ifdef POOL_VTOPHYS
2683		*pap = POOL_VTOPHYS(object);
2684#else
2685		*pap = POOL_PADDR_INVALID;
2686#endif
2687	}
2688
2689	FREECHECK_OUT(&pc->pc_freecheck, object);
2690	return false;
2691}
2692
2693/*
2694 * pool_cache_get{,_paddr}:
2695 *
2696 *	Get an object from a pool cache (optionally returning
2697 *	the physical address of the object).
2698 */
2699void *
2700pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2701{
2702	pool_cache_cpu_t *cc;
2703	pcg_t *pcg;
2704	void *object;
2705	int s;
2706
2707	KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
2708	if (pc->pc_pool.pr_ipl == IPL_NONE &&
2709	    __predict_true(!cold) &&
2710	    __predict_true(panicstr == NULL)) {
2711		KASSERTMSG(!cpu_intr_p(),
2712		    "%s: [%s] is IPL_NONE, but called from interrupt context",
2713		    __func__, pc->pc_pool.pr_wchan);
2714		KASSERTMSG(!cpu_softintr_p(),
2715		    "%s: [%s] is IPL_NONE,"
2716		    " but called from soft interrupt context",
2717		    __func__, pc->pc_pool.pr_wchan);
2718	}
2719
2720	if (flags & PR_WAITOK) {
2721		ASSERT_SLEEPABLE();
2722	}
2723
2724	if (flags & PR_NOWAIT) {
2725		if (fault_inject())
2726			return NULL;
2727	}
2728
2729	/* Lock out interrupts and disable preemption. */
2730	s = splvm();
2731	while (/* CONSTCOND */ true) {
2732		/* Try and allocate an object from the current group. */
2733		cc = pc->pc_cpus[curcpu()->ci_index];
2734	 	pcg = cc->cc_current;
2735		if (__predict_true(pcg->pcg_avail > 0)) {
2736			object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2737			if (__predict_false(pap != NULL))
2738				*pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2739#if defined(DIAGNOSTIC)
2740			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2741			KASSERT(pcg->pcg_avail < pcg->pcg_size);
2742			KASSERT(object != NULL);
2743#endif
2744			cc->cc_hits++;
2745			splx(s);
2746			FREECHECK_OUT(&pc->pc_freecheck, object);
2747			pool_redzone_fill(&pc->pc_pool, object);
2748			pool_cache_get_kmsan(pc, object);
2749			return object;
2750		}
2751
2752		/*
2753		 * That failed.  If the previous group isn't empty, swap
2754		 * it with the current group and allocate from there.
2755		 */
2756		pcg = cc->cc_previous;
2757		if (__predict_true(pcg->pcg_avail > 0)) {
2758			cc->cc_previous = cc->cc_current;
2759			cc->cc_current = pcg;
2760			continue;
2761		}
2762
2763		/*
2764		 * Can't allocate from either group: try the slow path.
2765		 * If get_slow() allocated an object for us, or if
2766		 * no more objects are available, it will return false.
2767		 * Otherwise, we need to retry.
2768		 */
2769		if (!pool_cache_get_slow(pc, cc, s, &object, pap, flags)) {
2770			if (object != NULL) {
2771				kmsan_orig(object, pc->pc_pool.pr_size,
2772				    KMSAN_TYPE_POOL, __RET_ADDR);
2773			}
2774			break;
2775		}
2776	}
2777
2778	/*
2779	 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
2780	 * pool_cache_get can fail even in the PR_WAITOK case, if the
2781	 * constructor fails.
2782	 */
2783	return object;
2784}
2785
2786static bool __noinline
2787pool_cache_put_slow(pool_cache_t pc, pool_cache_cpu_t *cc, int s, void *object)
2788{
2789	pcg_t *pcg, *cur;
2790
2791	KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2792	KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2793
2794	cc->cc_misses++;
2795
2796	/*
2797	 * Try to get an empty group from the cache.  If there are no empty
2798	 * groups in the cache then allocate one.
2799	 */
2800	(void)pool_pcg_get(cc->cc_pcgcache, &pcg);
2801	if (__predict_false(pcg == NULL)) {
2802		if (__predict_true(!pool_cache_disable)) {
2803			pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2804		}
2805		if (__predict_true(pcg != NULL)) {
2806			pcg->pcg_avail = 0;
2807			pcg->pcg_size = pc->pc_pcgsize;
2808		}
2809	}
2810
2811	/*
2812	 * If there's a empty group, release our full group back to the
2813	 * cache.  Install the empty group to the local CPU and return.
2814	 */
2815	if (pcg != NULL) {
2816		KASSERT(pcg->pcg_avail == 0);
2817		if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2818			cc->cc_previous = pcg;
2819		} else {
2820			cur = cc->cc_current;
2821			if (__predict_true(cur != &pcg_dummy)) {
2822				KASSERT(cur->pcg_avail == cur->pcg_size);
2823				cc->cc_contended +=
2824				    pool_pcg_put(&pc->pc_fullgroups, cur);
2825				cc->cc_nfull++;
2826			}
2827			cc->cc_current = pcg;
2828		}
2829		return true;
2830	}
2831
2832	/*
2833	 * Nothing available locally or in cache, and we didn't
2834	 * allocate an empty group.  Take the slow path and destroy
2835	 * the object here and now.
2836	 */
2837	cc->cc_pcmisses++;
2838	splx(s);
2839	pool_cache_destruct_object(pc, object);
2840
2841	return false;
2842}
2843
2844/*
2845 * pool_cache_put{,_paddr}:
2846 *
2847 *	Put an object back to the pool cache (optionally caching the
2848 *	physical address of the object).
2849 */
2850void
2851pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2852{
2853	pool_cache_cpu_t *cc;
2854	pcg_t *pcg;
2855	int s;
2856
2857	KASSERT(object != NULL);
2858	pool_cache_put_kmsan(pc, object);
2859	pool_cache_redzone_check(pc, object);
2860	FREECHECK_IN(&pc->pc_freecheck, object);
2861
2862	if (pc->pc_pool.pr_roflags & PR_PHINPAGE) {
2863		pc_phinpage_check(pc, object);
2864	}
2865
2866	if (pool_cache_put_nocache(pc, object)) {
2867		return;
2868	}
2869
2870	/* Lock out interrupts and disable preemption. */
2871	s = splvm();
2872	while (/* CONSTCOND */ true) {
2873		/* If the current group isn't full, release it there. */
2874		cc = pc->pc_cpus[curcpu()->ci_index];
2875	 	pcg = cc->cc_current;
2876		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2877			pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2878			pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2879			pcg->pcg_avail++;
2880			cc->cc_hits++;
2881			splx(s);
2882			return;
2883		}
2884
2885		/*
2886		 * That failed.  If the previous group isn't full, swap
2887		 * it with the current group and try again.
2888		 */
2889		pcg = cc->cc_previous;
2890		if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2891			cc->cc_previous = cc->cc_current;
2892			cc->cc_current = pcg;
2893			continue;
2894		}
2895
2896		/*
2897		 * Can't free to either group: try the slow path.
2898		 * If put_slow() releases the object for us, it
2899		 * will return false.  Otherwise we need to retry.
2900		 */
2901		if (!pool_cache_put_slow(pc, cc, s, object))
2902			break;
2903	}
2904}
2905
2906/*
2907 * pool_cache_transfer:
2908 *
2909 *	Transfer objects from the per-CPU cache to the global cache.
2910 *	Run within a cross-call thread.
2911 */
2912static void
2913pool_cache_transfer(pool_cache_t pc)
2914{
2915	pool_cache_cpu_t *cc;
2916	pcg_t *prev, *cur;
2917	int s;
2918
2919	s = splvm();
2920	cc = pc->pc_cpus[curcpu()->ci_index];
2921	cur = cc->cc_current;
2922	cc->cc_current = __UNCONST(&pcg_dummy);
2923	prev = cc->cc_previous;
2924	cc->cc_previous = __UNCONST(&pcg_dummy);
2925	if (cur != &pcg_dummy) {
2926		if (cur->pcg_avail == cur->pcg_size) {
2927			(void)pool_pcg_put(&pc->pc_fullgroups, cur);
2928			cc->cc_nfull++;
2929		} else if (cur->pcg_avail == 0) {
2930			(void)pool_pcg_put(pc->pc_pcgcache, cur);
2931		} else {
2932			(void)pool_pcg_put(&pc->pc_partgroups, cur);
2933			cc->cc_npart++;
2934		}
2935	}
2936	if (prev != &pcg_dummy) {
2937		if (prev->pcg_avail == prev->pcg_size) {
2938			(void)pool_pcg_put(&pc->pc_fullgroups, prev);
2939			cc->cc_nfull++;
2940		} else if (prev->pcg_avail == 0) {
2941			(void)pool_pcg_put(pc->pc_pcgcache, prev);
2942		} else {
2943			(void)pool_pcg_put(&pc->pc_partgroups, prev);
2944			cc->cc_npart++;
2945		}
2946	}
2947	splx(s);
2948}
2949
2950static int
2951pool_bigidx(size_t size)
2952{
2953	int i;
2954
2955	for (i = 0; i < __arraycount(pool_allocator_big); i++) {
2956		if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
2957			return i;
2958	}
2959	panic("pool item size %zu too large, use a custom allocator", size);
2960}
2961
2962static void *
2963pool_allocator_alloc(struct pool *pp, int flags)
2964{
2965	struct pool_allocator *pa = pp->pr_alloc;
2966	void *res;
2967
2968	res = (*pa->pa_alloc)(pp, flags);
2969	if (res == NULL && (flags & PR_WAITOK) == 0) {
2970		/*
2971		 * We only run the drain hook here if PR_NOWAIT.
2972		 * In other cases, the hook will be run in
2973		 * pool_reclaim().
2974		 */
2975		if (pp->pr_drain_hook != NULL) {
2976			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2977			res = (*pa->pa_alloc)(pp, flags);
2978		}
2979	}
2980	return res;
2981}
2982
2983static void
2984pool_allocator_free(struct pool *pp, void *v)
2985{
2986	struct pool_allocator *pa = pp->pr_alloc;
2987
2988	if (pp->pr_redzone) {
2989		KASSERT(!pp_has_pser(pp));
2990		kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0);
2991	} else if (__predict_false(pp_has_pser(pp))) {
2992		/*
2993		 * Perform a passive serialization barrier before freeing
2994		 * the pool page back to the system.
2995		 */
2996		pool_barrier();
2997	}
2998	(*pa->pa_free)(pp, v);
2999}
3000
3001void *
3002pool_page_alloc(struct pool *pp, int flags)
3003{
3004	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
3005	vmem_addr_t va;
3006	int ret;
3007
3008	ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
3009	    vflags | VM_INSTANTFIT, &va);
3010
3011	return ret ? NULL : (void *)va;
3012}
3013
3014void
3015pool_page_free(struct pool *pp, void *v)
3016{
3017
3018	uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
3019}
3020
3021static void *
3022pool_page_alloc_meta(struct pool *pp, int flags)
3023{
3024	const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
3025	vmem_addr_t va;
3026	int ret;
3027
3028	ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
3029	    vflags | VM_INSTANTFIT, &va);
3030
3031	return ret ? NULL : (void *)va;
3032}
3033
3034static void
3035pool_page_free_meta(struct pool *pp, void *v)
3036{
3037
3038	vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
3039}
3040
3041#ifdef KMSAN
3042static inline void
3043pool_get_kmsan(struct pool *pp, void *p)
3044{
3045	kmsan_orig(p, pp->pr_size, KMSAN_TYPE_POOL, __RET_ADDR);
3046	kmsan_mark(p, pp->pr_size, KMSAN_STATE_UNINIT);
3047}
3048
3049static inline void
3050pool_put_kmsan(struct pool *pp, void *p)
3051{
3052	kmsan_mark(p, pp->pr_size, KMSAN_STATE_INITED);
3053}
3054
3055static inline void
3056pool_cache_get_kmsan(pool_cache_t pc, void *p)
3057{
3058	if (__predict_false(pc_has_ctor(pc))) {
3059		return;
3060	}
3061	pool_get_kmsan(&pc->pc_pool, p);
3062}
3063
3064static inline void
3065pool_cache_put_kmsan(pool_cache_t pc, void *p)
3066{
3067	pool_put_kmsan(&pc->pc_pool, p);
3068}
3069#endif
3070
3071#ifdef POOL_QUARANTINE
3072static void
3073pool_quarantine_init(struct pool *pp)
3074{
3075	pp->pr_quar.rotor = 0;
3076	memset(&pp->pr_quar, 0, sizeof(pp->pr_quar));
3077}
3078
3079static void
3080pool_quarantine_flush(struct pool *pp)
3081{
3082	pool_quar_t *quar = &pp->pr_quar;
3083	struct pool_pagelist pq;
3084	size_t i;
3085
3086	LIST_INIT(&pq);
3087
3088	mutex_enter(&pp->pr_lock);
3089	for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) {
3090		if (quar->list[i] == 0)
3091			continue;
3092		pool_do_put(pp, (void *)quar->list[i], &pq);
3093	}
3094	mutex_exit(&pp->pr_lock);
3095
3096	pr_pagelist_free(pp, &pq);
3097}
3098
3099static bool
3100pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq)
3101{
3102	pool_quar_t *quar = &pp->pr_quar;
3103	uintptr_t old;
3104
3105	if (pp->pr_roflags & PR_NOTOUCH) {
3106		return false;
3107	}
3108
3109	pool_redzone_check(pp, v);
3110
3111	old = quar->list[quar->rotor];
3112	quar->list[quar->rotor] = (uintptr_t)v;
3113	quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH;
3114	if (old != 0) {
3115		pool_do_put(pp, (void *)old, pq);
3116	}
3117
3118	return true;
3119}
3120#endif
3121
3122#ifdef POOL_NOCACHE
3123static bool
3124pool_cache_put_nocache(pool_cache_t pc, void *p)
3125{
3126	pool_cache_destruct_object(pc, p);
3127	return true;
3128}
3129#endif
3130
3131#ifdef POOL_REDZONE
3132#if defined(_LP64)
3133# define PRIME 0x9e37fffffffc0000UL
3134#else /* defined(_LP64) */
3135# define PRIME 0x9e3779b1
3136#endif /* defined(_LP64) */
3137#define STATIC_BYTE	0xFE
3138CTASSERT(POOL_REDZONE_SIZE > 1);
3139
3140#ifndef KASAN
3141static inline uint8_t
3142pool_pattern_generate(const void *p)
3143{
3144	return (uint8_t)(((uintptr_t)p) * PRIME
3145	   >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
3146}
3147#endif
3148
3149static void
3150pool_redzone_init(struct pool *pp, size_t requested_size)
3151{
3152	size_t redzsz;
3153	size_t nsz;
3154
3155#ifdef KASAN
3156	redzsz = requested_size;
3157	kasan_add_redzone(&redzsz);
3158	redzsz -= requested_size;
3159#else
3160	redzsz = POOL_REDZONE_SIZE;
3161#endif
3162
3163	if (pp->pr_roflags & PR_NOTOUCH) {
3164		pp->pr_redzone = false;
3165		return;
3166	}
3167
3168	/*
3169	 * We may have extended the requested size earlier; check if
3170	 * there's naturally space in the padding for a red zone.
3171	 */
3172	if (pp->pr_size - requested_size >= redzsz) {
3173		pp->pr_reqsize_with_redzone = requested_size + redzsz;
3174		pp->pr_redzone = true;
3175		return;
3176	}
3177
3178	/*
3179	 * No space in the natural padding; check if we can extend a
3180	 * bit the size of the pool.
3181	 *
3182	 * Avoid using redzone for allocations half of a page or larger.
3183	 * For pagesize items, we'd waste a whole new page (could be
3184	 * unmapped?), and for half pagesize items, approximately half
3185	 * the space is lost (eg, 4K pages, you get one 2K allocation.)
3186	 */
3187	nsz = roundup(pp->pr_size + redzsz, pp->pr_align);
3188	if (nsz <= (pp->pr_alloc->pa_pagesz / 2)) {
3189		/* Ok, we can */
3190		pp->pr_size = nsz;
3191		pp->pr_reqsize_with_redzone = requested_size + redzsz;
3192		pp->pr_redzone = true;
3193	} else {
3194		/* No space for a red zone... snif :'( */
3195		pp->pr_redzone = false;
3196		aprint_debug("pool redzone disabled for '%s'\n", pp->pr_wchan);
3197	}
3198}
3199
3200static void
3201pool_redzone_fill(struct pool *pp, void *p)
3202{
3203	if (!pp->pr_redzone)
3204		return;
3205	KASSERT(!pp_has_pser(pp));
3206#ifdef KASAN
3207	kasan_mark(p, pp->pr_reqsize, pp->pr_reqsize_with_redzone,
3208	    KASAN_POOL_REDZONE);
3209#else
3210	uint8_t *cp, pat;
3211	const uint8_t *ep;
3212
3213	cp = (uint8_t *)p + pp->pr_reqsize;
3214	ep = cp + POOL_REDZONE_SIZE;
3215
3216	/*
3217	 * We really don't want the first byte of the red zone to be '\0';
3218	 * an off-by-one in a string may not be properly detected.
3219	 */
3220	pat = pool_pattern_generate(cp);
3221	*cp = (pat == '\0') ? STATIC_BYTE: pat;
3222	cp++;
3223
3224	while (cp < ep) {
3225		*cp = pool_pattern_generate(cp);
3226		cp++;
3227	}
3228#endif
3229}
3230
3231static void
3232pool_redzone_check(struct pool *pp, void *p)
3233{
3234	if (!pp->pr_redzone)
3235		return;
3236	KASSERT(!pp_has_pser(pp));
3237#ifdef KASAN
3238	kasan_mark(p, 0, pp->pr_reqsize_with_redzone, KASAN_POOL_FREED);
3239#else
3240	uint8_t *cp, pat, expected;
3241	const uint8_t *ep;
3242
3243	cp = (uint8_t *)p + pp->pr_reqsize;
3244	ep = cp + POOL_REDZONE_SIZE;
3245
3246	pat = pool_pattern_generate(cp);
3247	expected = (pat == '\0') ? STATIC_BYTE: pat;
3248	if (__predict_false(*cp != expected)) {
3249		panic("%s: [%s] 0x%02x != 0x%02x", __func__,
3250		    pp->pr_wchan, *cp, expected);
3251	}
3252	cp++;
3253
3254	while (cp < ep) {
3255		expected = pool_pattern_generate(cp);
3256		if (__predict_false(*cp != expected)) {
3257			panic("%s: [%s] 0x%02x != 0x%02x", __func__,
3258			    pp->pr_wchan, *cp, expected);
3259		}
3260		cp++;
3261	}
3262#endif
3263}
3264
3265static void
3266pool_cache_redzone_check(pool_cache_t pc, void *p)
3267{
3268#ifdef KASAN
3269	/*
3270	 * If there is a ctor/dtor, or if the cache objects use
3271	 * passive serialization, leave the data as valid.
3272	 */
3273	if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc) ||
3274	    pc_has_pser(pc))) {
3275		return;
3276	}
3277#endif
3278	pool_redzone_check(&pc->pc_pool, p);
3279}
3280
3281#endif /* POOL_REDZONE */
3282
3283#if defined(DDB)
3284static bool
3285pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3286{
3287
3288	return (uintptr_t)ph->ph_page <= addr &&
3289	    addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz;
3290}
3291
3292static bool
3293pool_in_item(struct pool *pp, void *item, uintptr_t addr)
3294{
3295
3296	return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size;
3297}
3298
3299static bool
3300pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr)
3301{
3302	int i;
3303
3304	if (pcg == NULL) {
3305		return false;
3306	}
3307	for (i = 0; i < pcg->pcg_avail; i++) {
3308		if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) {
3309			return true;
3310		}
3311	}
3312	return false;
3313}
3314
3315static bool
3316pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr)
3317{
3318
3319	if ((pp->pr_roflags & PR_USEBMAP) != 0) {
3320		unsigned int idx = pr_item_bitmap_index(pp, ph, (void *)addr);
3321		pool_item_bitmap_t *bitmap =
3322		    ph->ph_bitmap + (idx / BITMAP_SIZE);
3323		pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
3324
3325		return (*bitmap & mask) == 0;
3326	} else {
3327		struct pool_item *pi;
3328
3329		LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
3330			if (pool_in_item(pp, pi, addr)) {
3331				return false;
3332			}
3333		}
3334		return true;
3335	}
3336}
3337
3338void
3339pool_whatis(uintptr_t addr, void (*pr)(const char *, ...))
3340{
3341	struct pool *pp;
3342
3343	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3344		struct pool_item_header *ph;
3345		struct pool_cache *pc;
3346		uintptr_t item;
3347		bool allocated = true;
3348		bool incache = false;
3349		bool incpucache = false;
3350		char cpucachestr[32];
3351
3352		if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
3353			LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
3354				if (pool_in_page(pp, ph, addr)) {
3355					goto found;
3356				}
3357			}
3358			LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
3359				if (pool_in_page(pp, ph, addr)) {
3360					allocated =
3361					    pool_allocated(pp, ph, addr);
3362					goto found;
3363				}
3364			}
3365			LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
3366				if (pool_in_page(pp, ph, addr)) {
3367					allocated = false;
3368					goto found;
3369				}
3370			}
3371			continue;
3372		} else {
3373			ph = pr_find_pagehead_noalign(pp, (void *)addr);
3374			if (ph == NULL || !pool_in_page(pp, ph, addr)) {
3375				continue;
3376			}
3377			allocated = pool_allocated(pp, ph, addr);
3378		}
3379found:
3380		if (allocated &&
3381		    (pc = atomic_load_consume(&pp->pr_cache)) != NULL) {
3382			struct pool_cache_group *pcg;
3383			int i;
3384
3385			for (pcg = pc->pc_fullgroups; pcg != NULL;
3386			    pcg = pcg->pcg_next) {
3387				if (pool_in_cg(pp, pcg, addr)) {
3388					incache = true;
3389					goto print;
3390				}
3391			}
3392			for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
3393				pool_cache_cpu_t *cc;
3394
3395				if ((cc = pc->pc_cpus[i]) == NULL) {
3396					continue;
3397				}
3398				if (pool_in_cg(pp, cc->cc_current, addr) ||
3399				    pool_in_cg(pp, cc->cc_previous, addr)) {
3400					struct cpu_info *ci =
3401					    cpu_lookup(i);
3402
3403					incpucache = true;
3404					snprintf(cpucachestr,
3405					    sizeof(cpucachestr),
3406					    "cached by CPU %u",
3407					    ci->ci_index);
3408					goto print;
3409				}
3410			}
3411		}
3412print:
3413		item = (uintptr_t)ph->ph_page + ph->ph_off;
3414		item = item + rounddown(addr - item, pp->pr_size);
3415		(*pr)("%p is %p+%zu in POOL '%s' (%s)\n",
3416		    (void *)addr, item, (size_t)(addr - item),
3417		    pp->pr_wchan,
3418		    incpucache ? cpucachestr :
3419		    incache ? "cached" : allocated ? "allocated" : "free");
3420	}
3421}
3422#endif /* defined(DDB) */
3423
3424static int
3425pool_sysctl(SYSCTLFN_ARGS)
3426{
3427	struct pool_sysctl data;
3428	struct pool *pp;
3429	struct pool_cache *pc;
3430	pool_cache_cpu_t *cc;
3431	int error;
3432	size_t i, written;
3433
3434	if (oldp == NULL) {
3435		*oldlenp = 0;
3436		TAILQ_FOREACH(pp, &pool_head, pr_poollist)
3437			*oldlenp += sizeof(data);
3438		return 0;
3439	}
3440
3441	memset(&data, 0, sizeof(data));
3442	error = 0;
3443	written = 0;
3444	mutex_enter(&pool_head_lock);
3445	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
3446		if (written + sizeof(data) > *oldlenp)
3447			break;
3448		pp->pr_refcnt++;
3449		strlcpy(data.pr_wchan, pp->pr_wchan, sizeof(data.pr_wchan));
3450		data.pr_pagesize = pp->pr_alloc->pa_pagesz;
3451		data.pr_flags = pp->pr_roflags | pp->pr_flags;
3452#define COPY(field) data.field = pp->field
3453		COPY(pr_size);
3454
3455		COPY(pr_itemsperpage);
3456		COPY(pr_nitems);
3457		COPY(pr_nout);
3458		COPY(pr_hardlimit);
3459		COPY(pr_npages);
3460		COPY(pr_minpages);
3461		COPY(pr_maxpages);
3462
3463		COPY(pr_nget);
3464		COPY(pr_nfail);
3465		COPY(pr_nput);
3466		COPY(pr_npagealloc);
3467		COPY(pr_npagefree);
3468		COPY(pr_hiwat);
3469		COPY(pr_nidle);
3470#undef COPY
3471
3472		data.pr_cache_nmiss_pcpu = 0;
3473		data.pr_cache_nhit_pcpu = 0;
3474		data.pr_cache_nmiss_global = 0;
3475		data.pr_cache_nempty = 0;
3476		data.pr_cache_ncontended = 0;
3477		data.pr_cache_npartial = 0;
3478		if ((pc = atomic_load_consume(&pp->pr_cache)) != NULL) {
3479			uint32_t nfull = 0;
3480			data.pr_cache_meta_size = pc->pc_pcgsize;
3481			for (i = 0; i < pc->pc_ncpu; ++i) {
3482				cc = pc->pc_cpus[i];
3483				if (cc == NULL)
3484					continue;
3485				data.pr_cache_ncontended += cc->cc_contended;
3486				data.pr_cache_nmiss_pcpu += cc->cc_misses;
3487				data.pr_cache_nhit_pcpu += cc->cc_hits;
3488				data.pr_cache_nmiss_global += cc->cc_pcmisses;
3489				nfull += cc->cc_nfull; /* 32-bit rollover! */
3490				data.pr_cache_npartial += cc->cc_npart;
3491			}
3492			data.pr_cache_nfull = nfull;
3493		} else {
3494			data.pr_cache_meta_size = 0;
3495			data.pr_cache_nfull = 0;
3496		}
3497		data.pr_cache_nhit_global = data.pr_cache_nmiss_pcpu -
3498		    data.pr_cache_nmiss_global;
3499
3500		if (pp->pr_refcnt == UINT_MAX) /* XXX possible? */
3501			continue;
3502		mutex_exit(&pool_head_lock);
3503		error = sysctl_copyout(l, &data, oldp, sizeof(data));
3504		mutex_enter(&pool_head_lock);
3505		if (--pp->pr_refcnt == 0)
3506			cv_broadcast(&pool_busy);
3507		if (error)
3508			break;
3509		written += sizeof(data);
3510		oldp = (char *)oldp + sizeof(data);
3511	}
3512	mutex_exit(&pool_head_lock);
3513
3514	*oldlenp = written;
3515	return error;
3516}
3517
3518SYSCTL_SETUP(sysctl_pool_setup, "sysctl kern.pool setup")
3519{
3520	const struct sysctlnode *rnode = NULL;
3521
3522	sysctl_createv(clog, 0, NULL, &rnode,
3523		       CTLFLAG_PERMANENT,
3524		       CTLTYPE_STRUCT, "pool",
3525		       SYSCTL_DESCR("Get pool statistics"),
3526		       pool_sysctl, 0, NULL, 0,
3527		       CTL_KERN, CTL_CREATE, CTL_EOL);
3528}
3529