1/*	$NetBSD: nfs_clvnops.c,v 1.4 2016/12/13 22:17:33 pgoyette Exp $	*/
2/*-
3 * Copyright (c) 1989, 1993
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Rick Macklem at The University of Guelph.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	from nfs_vnops.c	8.16 (Berkeley) 5/27/95
34 */
35
36#include <sys/cdefs.h>
37/* __FBSDID("FreeBSD: head/sys/fs/nfsclient/nfs_clvnops.c 304026 2016-08-12 22:44:59Z rmacklem "); */
38__RCSID("$NetBSD: nfs_clvnops.c,v 1.4 2016/12/13 22:17:33 pgoyette Exp $");
39
40/*
41 * vnode op calls for Sun NFS version 2, 3 and 4
42 */
43
44#ifdef _KERNEL_OPT
45#include "opt_dtrace.h"
46#include "opt_inet.h"
47#endif
48
49#include <sys/param.h>
50#include <sys/kernel.h>
51#include <sys/systm.h>
52#include <sys/resourcevar.h>
53#include <sys/proc.h>
54#include <sys/mount.h>
55#include <sys/bio.h>
56#include <sys/buf.h>
57#include <sys/jail.h>
58#include <sys/malloc.h>
59#include <sys/mbuf.h>
60#include <sys/namei.h>
61#include <sys/socket.h>
62#include <sys/vnode.h>
63#include <sys/dirent.h>
64#include <sys/fcntl.h>
65#include <sys/lockf.h>
66#include <sys/stat.h>
67#include <sys/sysctl.h>
68#include <sys/signalvar.h>
69
70#include <vm/vm.h>
71#include <vm/vm_extern.h>
72#include <vm/vm_object.h>
73
74#include <fs/nfs/common/nfsport.h>
75#include <fs/nfs/client/nfsnode.h>
76#include <fs/nfs/client/nfsmount.h>
77#include <fs/nfs/client/nfs.h>
78#include <fs/nfs/client/nfs_kdtrace.h>
79
80#include <net/if.h>
81#include <netinet/in.h>
82#include <netinet/in_var.h>
83
84#include <fs/nfs/common/nfs_lock.h>
85
86#ifdef KDTRACE_HOOKS
87#include <sys/dtrace_bsd.h>
88
89dtrace_nfsclient_accesscache_flush_probe_func_t
90		dtrace_nfscl_accesscache_flush_done_probe;
91uint32_t	nfscl_accesscache_flush_done_id;
92
93dtrace_nfsclient_accesscache_get_probe_func_t
94		dtrace_nfscl_accesscache_get_hit_probe,
95		dtrace_nfscl_accesscache_get_miss_probe;
96uint32_t	nfscl_accesscache_get_hit_id;
97uint32_t	nfscl_accesscache_get_miss_id;
98
99dtrace_nfsclient_accesscache_load_probe_func_t
100		dtrace_nfscl_accesscache_load_done_probe;
101uint32_t	nfscl_accesscache_load_done_id;
102#endif /* !KDTRACE_HOOKS */
103
104/* Defs */
105#define	TRUE	1
106#define	FALSE	0
107
108extern struct nfsstatsv1 nfsstatsv1;
109extern int nfsrv_useacl;
110extern int nfscl_debuglevel;
111MALLOC_DECLARE(M_NEWNFSREQ);
112
113/*
114 * Ifdef for FreeBSD-current merged buffer cache. It is unfortunate that these
115 * calls are not in getblk() and brelse() so that they would not be necessary
116 * here.
117 */
118#ifndef B_VMIO
119#define	vfs_busy_pages(bp, f)
120#endif
121
122static vop_read_t	nfsfifo_read;
123static vop_write_t	nfsfifo_write;
124static vop_close_t	nfsfifo_close;
125static int	nfs_setattrrpc(struct vnode *, struct vattr *, struct ucred *,
126		    struct thread *);
127static vop_lookup_t	nfs_lookup;
128static vop_create_t	nfs_create;
129static vop_mknod_t	nfs_mknod;
130static vop_open_t	nfs_open;
131static vop_pathconf_t	nfs_pathconf;
132static vop_close_t	nfs_close;
133static vop_access_t	nfs_access;
134static vop_getattr_t	nfs_getattr;
135static vop_setattr_t	nfs_setattr;
136static vop_read_t	nfs_read;
137static vop_fsync_t	nfs_fsync;
138static vop_remove_t	nfs_remove;
139static vop_link_t	nfs_link;
140static vop_rename_t	nfs_rename;
141static vop_mkdir_t	nfs_mkdir;
142static vop_rmdir_t	nfs_rmdir;
143static vop_symlink_t	nfs_symlink;
144static vop_readdir_t	nfs_readdir;
145static vop_strategy_t	nfs_strategy;
146static	int	nfs_lookitup(struct vnode *, char *, int,
147		    struct ucred *, struct thread *, struct nfsnode **);
148static	int	nfs_sillyrename(struct vnode *, struct vnode *,
149		    struct componentname *);
150static vop_access_t	nfsspec_access;
151static vop_readlink_t	nfs_readlink;
152static vop_print_t	nfs_print;
153static vop_advlock_t	nfs_advlock;
154static vop_advlockasync_t nfs_advlockasync;
155static vop_getacl_t nfs_getacl;
156static vop_setacl_t nfs_setacl;
157
158/*
159 * Global vfs data structures for nfs
160 */
161struct vop_vector newnfs_vnodeops = {
162	.vop_default =		&default_vnodeops,
163	.vop_access =		nfs_access,
164	.vop_advlock =		nfs_advlock,
165	.vop_advlockasync =	nfs_advlockasync,
166	.vop_close =		nfs_close,
167	.vop_create =		nfs_create,
168	.vop_fsync =		nfs_fsync,
169	.vop_getattr =		nfs_getattr,
170	.vop_getpages =		ncl_getpages,
171	.vop_putpages =		ncl_putpages,
172	.vop_inactive =		ncl_inactive,
173	.vop_link =		nfs_link,
174	.vop_lookup =		nfs_lookup,
175	.vop_mkdir =		nfs_mkdir,
176	.vop_mknod =		nfs_mknod,
177	.vop_open =		nfs_open,
178	.vop_pathconf =		nfs_pathconf,
179	.vop_print =		nfs_print,
180	.vop_read =		nfs_read,
181	.vop_readdir =		nfs_readdir,
182	.vop_readlink =		nfs_readlink,
183	.vop_reclaim =		ncl_reclaim,
184	.vop_remove =		nfs_remove,
185	.vop_rename =		nfs_rename,
186	.vop_rmdir =		nfs_rmdir,
187	.vop_setattr =		nfs_setattr,
188	.vop_strategy =		nfs_strategy,
189	.vop_symlink =		nfs_symlink,
190	.vop_write =		ncl_write,
191	.vop_getacl =		nfs_getacl,
192	.vop_setacl =		nfs_setacl,
193};
194
195struct vop_vector newnfs_fifoops = {
196	.vop_default =		&fifo_specops,
197	.vop_access =		nfsspec_access,
198	.vop_close =		nfsfifo_close,
199	.vop_fsync =		nfs_fsync,
200	.vop_getattr =		nfs_getattr,
201	.vop_inactive =		ncl_inactive,
202	.vop_print =		nfs_print,
203	.vop_read =		nfsfifo_read,
204	.vop_reclaim =		ncl_reclaim,
205	.vop_setattr =		nfs_setattr,
206	.vop_write =		nfsfifo_write,
207};
208
209static int nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp,
210    struct componentname *cnp, struct vattr *vap);
211static int nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name,
212    int namelen, struct ucred *cred, struct thread *td);
213static int nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp,
214    char *fnameptr, int fnamelen, struct vnode *tdvp, struct vnode *tvp,
215    char *tnameptr, int tnamelen, struct ucred *cred, struct thread *td);
216static int nfs_renameit(struct vnode *sdvp, struct vnode *svp,
217    struct componentname *scnp, struct sillyrename *sp);
218
219/*
220 * Global variables
221 */
222#define	DIRHDSIZ	(sizeof (struct dirent) - (MAXNAMLEN + 1))
223
224SYSCTL_DECL(_vfs_nfs);
225
226static int	nfsaccess_cache_timeout = NFS_MAXATTRTIMO;
227SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
228	   &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
229
230static int	nfs_prime_access_cache = 0;
231SYSCTL_INT(_vfs_nfs, OID_AUTO, prime_access_cache, CTLFLAG_RW,
232	   &nfs_prime_access_cache, 0,
233	   "Prime NFS ACCESS cache when fetching attributes");
234
235static int	newnfs_commit_on_close = 0;
236SYSCTL_INT(_vfs_nfs, OID_AUTO, commit_on_close, CTLFLAG_RW,
237    &newnfs_commit_on_close, 0, "write+commit on close, else only write");
238
239static int	nfs_clean_pages_on_close = 1;
240SYSCTL_INT(_vfs_nfs, OID_AUTO, clean_pages_on_close, CTLFLAG_RW,
241	   &nfs_clean_pages_on_close, 0, "NFS clean dirty pages on close");
242
243int newnfs_directio_enable = 0;
244SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_enable, CTLFLAG_RW,
245	   &newnfs_directio_enable, 0, "Enable NFS directio");
246
247int nfs_keep_dirty_on_error;
248SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_keep_dirty_on_error, CTLFLAG_RW,
249    &nfs_keep_dirty_on_error, 0, "Retry pageout if error returned");
250
251/*
252 * This sysctl allows other processes to mmap a file that has been opened
253 * O_DIRECT by a process.  In general, having processes mmap the file while
254 * Direct IO is in progress can lead to Data Inconsistencies.  But, we allow
255 * this by default to prevent DoS attacks - to prevent a malicious user from
256 * opening up files O_DIRECT preventing other users from mmap'ing these
257 * files.  "Protected" environments where stricter consistency guarantees are
258 * required can disable this knob.  The process that opened the file O_DIRECT
259 * cannot mmap() the file, because mmap'ed IO on an O_DIRECT open() is not
260 * meaningful.
261 */
262int newnfs_directio_allow_mmap = 1;
263SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_allow_mmap, CTLFLAG_RW,
264	   &newnfs_directio_allow_mmap, 0, "Enable mmaped IO on file with O_DIRECT opens");
265
266#define	NFSACCESS_ALL (NFSACCESS_READ | NFSACCESS_MODIFY		\
267			 | NFSACCESS_EXTEND | NFSACCESS_EXECUTE	\
268			 | NFSACCESS_DELETE | NFSACCESS_LOOKUP)
269
270/*
271 * SMP Locking Note :
272 * The list of locks after the description of the lock is the ordering
273 * of other locks acquired with the lock held.
274 * np->n_mtx : Protects the fields in the nfsnode.
275       VM Object Lock
276       VI_MTX (acquired indirectly)
277 * nmp->nm_mtx : Protects the fields in the nfsmount.
278       rep->r_mtx
279 * ncl_iod_mutex : Global lock, protects shared nfsiod state.
280 * nfs_reqq_mtx : Global lock, protects the nfs_reqq list.
281       nmp->nm_mtx
282       rep->r_mtx
283 * rep->r_mtx : Protects the fields in an nfsreq.
284 */
285
286static int
287nfs34_access_otw(struct vnode *vp, int wmode, struct thread *td,
288    struct ucred *cred, u_int32_t *retmode)
289{
290	int error = 0, attrflag, i, lrupos;
291	u_int32_t rmode;
292	struct nfsnode *np = VTONFS(vp);
293	struct nfsvattr nfsva;
294
295	error = nfsrpc_accessrpc(vp, wmode, cred, td, &nfsva, &attrflag,
296	    &rmode, NULL);
297	if (attrflag)
298		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
299	if (!error) {
300		lrupos = 0;
301		mtx_lock(&np->n_mtx);
302		for (i = 0; i < NFS_ACCESSCACHESIZE; i++) {
303			if (np->n_accesscache[i].uid == cred->cr_uid) {
304				np->n_accesscache[i].mode = rmode;
305				np->n_accesscache[i].stamp = time_second;
306				break;
307			}
308			if (i > 0 && np->n_accesscache[i].stamp <
309			    np->n_accesscache[lrupos].stamp)
310				lrupos = i;
311		}
312		if (i == NFS_ACCESSCACHESIZE) {
313			np->n_accesscache[lrupos].uid = cred->cr_uid;
314			np->n_accesscache[lrupos].mode = rmode;
315			np->n_accesscache[lrupos].stamp = time_second;
316		}
317		mtx_unlock(&np->n_mtx);
318		if (retmode != NULL)
319			*retmode = rmode;
320		KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, rmode, 0);
321	} else if (NFS_ISV4(vp)) {
322		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
323	}
324#ifdef KDTRACE_HOOKS
325	if (error != 0)
326		KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, 0,
327		    error);
328#endif
329	return (error);
330}
331
332/*
333 * nfs access vnode op.
334 * For nfs version 2, just return ok. File accesses may fail later.
335 * For nfs version 3, use the access rpc to check accessibility. If file modes
336 * are changed on the server, accesses might still fail later.
337 */
338static int
339nfs_access(struct vop_access_args *ap)
340{
341	struct vnode *vp = ap->a_vp;
342	int error = 0, i, gotahit;
343	u_int32_t mode, wmode, rmode;
344	int v34 = NFS_ISV34(vp);
345	struct nfsnode *np = VTONFS(vp);
346
347	/*
348	 * Disallow write attempts on filesystems mounted read-only;
349	 * unless the file is a socket, fifo, or a block or character
350	 * device resident on the filesystem.
351	 */
352	if ((ap->a_accmode & (VWRITE | VAPPEND | VWRITE_NAMED_ATTRS |
353	    VDELETE_CHILD | VWRITE_ATTRIBUTES | VDELETE | VWRITE_ACL |
354	    VWRITE_OWNER)) != 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) != 0) {
355		switch (vp->v_type) {
356		case VREG:
357		case VDIR:
358		case VLNK:
359			return (EROFS);
360		default:
361			break;
362		}
363	}
364	/*
365	 * For nfs v3 or v4, check to see if we have done this recently, and if
366	 * so return our cached result instead of making an ACCESS call.
367	 * If not, do an access rpc, otherwise you are stuck emulating
368	 * ufs_access() locally using the vattr. This may not be correct,
369	 * since the server may apply other access criteria such as
370	 * client uid-->server uid mapping that we do not know about.
371	 */
372	if (v34) {
373		if (ap->a_accmode & VREAD)
374			mode = NFSACCESS_READ;
375		else
376			mode = 0;
377		if (vp->v_type != VDIR) {
378			if (ap->a_accmode & VWRITE)
379				mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND);
380			if (ap->a_accmode & VAPPEND)
381				mode |= NFSACCESS_EXTEND;
382			if (ap->a_accmode & VEXEC)
383				mode |= NFSACCESS_EXECUTE;
384			if (ap->a_accmode & VDELETE)
385				mode |= NFSACCESS_DELETE;
386		} else {
387			if (ap->a_accmode & VWRITE)
388				mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND);
389			if (ap->a_accmode & VAPPEND)
390				mode |= NFSACCESS_EXTEND;
391			if (ap->a_accmode & VEXEC)
392				mode |= NFSACCESS_LOOKUP;
393			if (ap->a_accmode & VDELETE)
394				mode |= NFSACCESS_DELETE;
395			if (ap->a_accmode & VDELETE_CHILD)
396				mode |= NFSACCESS_MODIFY;
397		}
398		/* XXX safety belt, only make blanket request if caching */
399		if (nfsaccess_cache_timeout > 0) {
400			wmode = NFSACCESS_READ | NFSACCESS_MODIFY |
401				NFSACCESS_EXTEND | NFSACCESS_EXECUTE |
402				NFSACCESS_DELETE | NFSACCESS_LOOKUP;
403		} else {
404			wmode = mode;
405		}
406
407		/*
408		 * Does our cached result allow us to give a definite yes to
409		 * this request?
410		 */
411		gotahit = 0;
412		mtx_lock(&np->n_mtx);
413		for (i = 0; i < NFS_ACCESSCACHESIZE; i++) {
414			if (ap->a_cred->cr_uid == np->n_accesscache[i].uid) {
415			    if (time_second < (np->n_accesscache[i].stamp
416				+ nfsaccess_cache_timeout) &&
417				(np->n_accesscache[i].mode & mode) == mode) {
418				NFSINCRGLOBAL(nfsstatsv1.accesscache_hits);
419				gotahit = 1;
420			    }
421			    break;
422			}
423		}
424		mtx_unlock(&np->n_mtx);
425#ifdef KDTRACE_HOOKS
426		if (gotahit != 0)
427			KDTRACE_NFS_ACCESSCACHE_GET_HIT(vp,
428			    ap->a_cred->cr_uid, mode);
429		else
430			KDTRACE_NFS_ACCESSCACHE_GET_MISS(vp,
431			    ap->a_cred->cr_uid, mode);
432#endif
433		if (gotahit == 0) {
434			/*
435			 * Either a no, or a don't know.  Go to the wire.
436			 */
437			NFSINCRGLOBAL(nfsstatsv1.accesscache_misses);
438		        error = nfs34_access_otw(vp, wmode, ap->a_td,
439			    ap->a_cred, &rmode);
440			if (!error &&
441			    (rmode & mode) != mode)
442				error = EACCES;
443		}
444		return (error);
445	} else {
446		if ((error = nfsspec_access(ap)) != 0) {
447			return (error);
448		}
449		/*
450		 * Attempt to prevent a mapped root from accessing a file
451		 * which it shouldn't.  We try to read a byte from the file
452		 * if the user is root and the file is not zero length.
453		 * After calling nfsspec_access, we should have the correct
454		 * file size cached.
455		 */
456		mtx_lock(&np->n_mtx);
457		if (ap->a_cred->cr_uid == 0 && (ap->a_accmode & VREAD)
458		    && VTONFS(vp)->n_size > 0) {
459			struct iovec aiov;
460			struct uio auio;
461			char buf[1];
462
463			mtx_unlock(&np->n_mtx);
464			aiov.iov_base = buf;
465			aiov.iov_len = 1;
466			auio.uio_iov = &aiov;
467			auio.uio_iovcnt = 1;
468			auio.uio_offset = 0;
469			auio.uio_resid = 1;
470			auio.uio_segflg = UIO_SYSSPACE;
471			auio.uio_rw = UIO_READ;
472			auio.uio_td = ap->a_td;
473
474			if (vp->v_type == VREG)
475				error = ncl_readrpc(vp, &auio, ap->a_cred);
476			else if (vp->v_type == VDIR) {
477				char* bp;
478				bp = malloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
479				aiov.iov_base = bp;
480				aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
481				error = ncl_readdirrpc(vp, &auio, ap->a_cred,
482				    ap->a_td);
483				free(bp, M_TEMP);
484			} else if (vp->v_type == VLNK)
485				error = ncl_readlinkrpc(vp, &auio, ap->a_cred);
486			else
487				error = EACCES;
488		} else
489			mtx_unlock(&np->n_mtx);
490		return (error);
491	}
492}
493
494
495/*
496 * nfs open vnode op
497 * Check to see if the type is ok
498 * and that deletion is not in progress.
499 * For paged in text files, you will need to flush the page cache
500 * if consistency is lost.
501 */
502/* ARGSUSED */
503static int
504nfs_open(struct vop_open_args *ap)
505{
506	struct vnode *vp = ap->a_vp;
507	struct nfsnode *np = VTONFS(vp);
508	struct vattr vattr;
509	int error;
510	int fmode = ap->a_mode;
511	struct ucred *cred;
512
513	if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK)
514		return (EOPNOTSUPP);
515
516	/*
517	 * For NFSv4, we need to do the Open Op before cache validation,
518	 * so that we conform to RFC3530 Sec. 9.3.1.
519	 */
520	if (NFS_ISV4(vp)) {
521		error = nfsrpc_open(vp, fmode, ap->a_cred, ap->a_td);
522		if (error) {
523			error = nfscl_maperr(ap->a_td, error, (uid_t)0,
524			    (gid_t)0);
525			return (error);
526		}
527	}
528
529	/*
530	 * Now, if this Open will be doing reading, re-validate/flush the
531	 * cache, so that Close/Open coherency is maintained.
532	 */
533	mtx_lock(&np->n_mtx);
534	if (np->n_flag & NMODIFIED) {
535		mtx_unlock(&np->n_mtx);
536		error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
537		if (error == EINTR || error == EIO) {
538			if (NFS_ISV4(vp))
539				(void) nfsrpc_close(vp, 0, ap->a_td);
540			return (error);
541		}
542		mtx_lock(&np->n_mtx);
543		np->n_attrstamp = 0;
544		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
545		if (vp->v_type == VDIR)
546			np->n_direofoffset = 0;
547		mtx_unlock(&np->n_mtx);
548		error = VOP_GETATTR(vp, &vattr, ap->a_cred);
549		if (error) {
550			if (NFS_ISV4(vp))
551				(void) nfsrpc_close(vp, 0, ap->a_td);
552			return (error);
553		}
554		mtx_lock(&np->n_mtx);
555		np->n_mtime = vattr.va_mtime;
556		if (NFS_ISV4(vp))
557			np->n_change = vattr.va_filerev;
558	} else {
559		mtx_unlock(&np->n_mtx);
560		error = VOP_GETATTR(vp, &vattr, ap->a_cred);
561		if (error) {
562			if (NFS_ISV4(vp))
563				(void) nfsrpc_close(vp, 0, ap->a_td);
564			return (error);
565		}
566		mtx_lock(&np->n_mtx);
567		if ((NFS_ISV4(vp) && np->n_change != vattr.va_filerev) ||
568		    NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) {
569			if (vp->v_type == VDIR)
570				np->n_direofoffset = 0;
571			mtx_unlock(&np->n_mtx);
572			error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
573			if (error == EINTR || error == EIO) {
574				if (NFS_ISV4(vp))
575					(void) nfsrpc_close(vp, 0, ap->a_td);
576				return (error);
577			}
578			mtx_lock(&np->n_mtx);
579			np->n_mtime = vattr.va_mtime;
580			if (NFS_ISV4(vp))
581				np->n_change = vattr.va_filerev;
582		}
583	}
584
585	/*
586	 * If the object has >= 1 O_DIRECT active opens, we disable caching.
587	 */
588	if (newnfs_directio_enable && (fmode & O_DIRECT) &&
589	    (vp->v_type == VREG)) {
590		if (np->n_directio_opens == 0) {
591			mtx_unlock(&np->n_mtx);
592			error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
593			if (error) {
594				if (NFS_ISV4(vp))
595					(void) nfsrpc_close(vp, 0, ap->a_td);
596				return (error);
597			}
598			mtx_lock(&np->n_mtx);
599			np->n_flag |= NNONCACHE;
600		}
601		np->n_directio_opens++;
602	}
603
604	/* If opened for writing via NFSv4.1 or later, mark that for pNFS. */
605	if (NFSHASPNFS(VFSTONFS(vp->v_mount)) && (fmode & FWRITE) != 0)
606		np->n_flag |= NWRITEOPENED;
607
608	/*
609	 * If this is an open for writing, capture a reference to the
610	 * credentials, so they can be used by ncl_putpages(). Using
611	 * these write credentials is preferable to the credentials of
612	 * whatever thread happens to be doing the VOP_PUTPAGES() since
613	 * the write RPCs are less likely to fail with EACCES.
614	 */
615	if ((fmode & FWRITE) != 0) {
616		cred = np->n_writecred;
617		np->n_writecred = crhold(ap->a_cred);
618	} else
619		cred = NULL;
620	mtx_unlock(&np->n_mtx);
621
622	if (cred != NULL)
623		crfree(cred);
624	vnode_create_vobject(vp, vattr.va_size, ap->a_td);
625	return (0);
626}
627
628/*
629 * nfs close vnode op
630 * What an NFS client should do upon close after writing is a debatable issue.
631 * Most NFS clients push delayed writes to the server upon close, basically for
632 * two reasons:
633 * 1 - So that any write errors may be reported back to the client process
634 *     doing the close system call. By far the two most likely errors are
635 *     NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
636 * 2 - To put a worst case upper bound on cache inconsistency between
637 *     multiple clients for the file.
638 * There is also a consistency problem for Version 2 of the protocol w.r.t.
639 * not being able to tell if other clients are writing a file concurrently,
640 * since there is no way of knowing if the changed modify time in the reply
641 * is only due to the write for this client.
642 * (NFS Version 3 provides weak cache consistency data in the reply that
643 *  should be sufficient to detect and handle this case.)
644 *
645 * The current code does the following:
646 * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
647 * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
648 *                     or commit them (this satisfies 1 and 2 except for the
649 *                     case where the server crashes after this close but
650 *                     before the commit RPC, which is felt to be "good
651 *                     enough". Changing the last argument to ncl_flush() to
652 *                     a 1 would force a commit operation, if it is felt a
653 *                     commit is necessary now.
654 * for NFS Version 4 - flush the dirty buffers and commit them, if
655 *		       nfscl_mustflush() says this is necessary.
656 *                     It is necessary if there is no write delegation held,
657 *                     in order to satisfy open/close coherency.
658 *                     If the file isn't cached on local stable storage,
659 *                     it may be necessary in order to detect "out of space"
660 *                     errors from the server, if the write delegation
661 *                     issued by the server doesn't allow the file to grow.
662 */
663/* ARGSUSED */
664static int
665nfs_close(struct vop_close_args *ap)
666{
667	struct vnode *vp = ap->a_vp;
668	struct nfsnode *np = VTONFS(vp);
669	struct nfsvattr nfsva;
670	struct ucred *cred;
671	int error = 0, ret, localcred = 0;
672	int fmode = ap->a_fflag;
673
674	if ((vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF))
675		return (0);
676	/*
677	 * During shutdown, a_cred isn't valid, so just use root.
678	 */
679	if (ap->a_cred == NOCRED) {
680		cred = newnfs_getcred();
681		localcred = 1;
682	} else {
683		cred = ap->a_cred;
684	}
685	if (vp->v_type == VREG) {
686	    /*
687	     * Examine and clean dirty pages, regardless of NMODIFIED.
688	     * This closes a major hole in close-to-open consistency.
689	     * We want to push out all dirty pages (and buffers) on
690	     * close, regardless of whether they were dirtied by
691	     * mmap'ed writes or via write().
692	     */
693	    if (nfs_clean_pages_on_close && vp->v_object) {
694		VM_OBJECT_WLOCK(vp->v_object);
695		vm_object_page_clean(vp->v_object, 0, 0, 0);
696		VM_OBJECT_WUNLOCK(vp->v_object);
697	    }
698	    mtx_lock(&np->n_mtx);
699	    if (np->n_flag & NMODIFIED) {
700		mtx_unlock(&np->n_mtx);
701		if (NFS_ISV3(vp)) {
702		    /*
703		     * Under NFSv3 we have dirty buffers to dispose of.  We
704		     * must flush them to the NFS server.  We have the option
705		     * of waiting all the way through the commit rpc or just
706		     * waiting for the initial write.  The default is to only
707		     * wait through the initial write so the data is in the
708		     * server's cache, which is roughly similar to the state
709		     * a standard disk subsystem leaves the file in on close().
710		     *
711		     * We cannot clear the NMODIFIED bit in np->n_flag due to
712		     * potential races with other processes, and certainly
713		     * cannot clear it if we don't commit.
714		     * These races occur when there is no longer the old
715		     * traditional vnode locking implemented for Vnode Ops.
716		     */
717		    int cm = newnfs_commit_on_close ? 1 : 0;
718		    error = ncl_flush(vp, MNT_WAIT, cred, ap->a_td, cm, 0);
719		    /* np->n_flag &= ~NMODIFIED; */
720		} else if (NFS_ISV4(vp)) {
721			if (nfscl_mustflush(vp) != 0) {
722				int cm = newnfs_commit_on_close ? 1 : 0;
723				error = ncl_flush(vp, MNT_WAIT, cred, ap->a_td,
724				    cm, 0);
725				/*
726				 * as above w.r.t races when clearing
727				 * NMODIFIED.
728				 * np->n_flag &= ~NMODIFIED;
729				 */
730			}
731		} else
732		    error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
733		mtx_lock(&np->n_mtx);
734	    }
735 	    /*
736 	     * Invalidate the attribute cache in all cases.
737 	     * An open is going to fetch fresh attrs any way, other procs
738 	     * on this node that have file open will be forced to do an
739 	     * otw attr fetch, but this is safe.
740	     * --> A user found that their RPC count dropped by 20% when
741	     *     this was commented out and I can't see any requirement
742	     *     for it, so I've disabled it when negative lookups are
743	     *     enabled. (What does this have to do with negative lookup
744	     *     caching? Well nothing, except it was reported by the
745	     *     same user that needed negative lookup caching and I wanted
746	     *     there to be a way to disable it to see if it
747	     *     is the cause of some caching/coherency issue that might
748	     *     crop up.)
749 	     */
750	    if (VFSTONFS(vp->v_mount)->nm_negnametimeo == 0) {
751		    np->n_attrstamp = 0;
752		    KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
753	    }
754	    if (np->n_flag & NWRITEERR) {
755		np->n_flag &= ~NWRITEERR;
756		error = np->n_error;
757	    }
758	    mtx_unlock(&np->n_mtx);
759	}
760
761	if (NFS_ISV4(vp)) {
762		/*
763		 * Get attributes so "change" is up to date.
764		 */
765		if (error == 0 && nfscl_mustflush(vp) != 0 &&
766		    vp->v_type == VREG &&
767		    (VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOCTO) == 0) {
768			ret = nfsrpc_getattr(vp, cred, ap->a_td, &nfsva,
769			    NULL);
770			if (!ret) {
771				np->n_change = nfsva.na_filerev;
772				(void) nfscl_loadattrcache(&vp, &nfsva, NULL,
773				    NULL, 0, 0);
774			}
775		}
776
777		/*
778		 * and do the close.
779		 */
780		ret = nfsrpc_close(vp, 0, ap->a_td);
781		if (!error && ret)
782			error = ret;
783		if (error)
784			error = nfscl_maperr(ap->a_td, error, (uid_t)0,
785			    (gid_t)0);
786	}
787	if (newnfs_directio_enable)
788		KASSERT((np->n_directio_asyncwr == 0),
789			("nfs_close: dirty unflushed (%d) directio buffers\n",
790			 np->n_directio_asyncwr));
791	if (newnfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) {
792		mtx_lock(&np->n_mtx);
793		KASSERT((np->n_directio_opens > 0),
794			("nfs_close: unexpectedly value (0) of n_directio_opens\n"));
795		np->n_directio_opens--;
796		if (np->n_directio_opens == 0)
797			np->n_flag &= ~NNONCACHE;
798		mtx_unlock(&np->n_mtx);
799	}
800	if (localcred)
801		NFSFREECRED(cred);
802	return (error);
803}
804
805/*
806 * nfs getattr call from vfs.
807 */
808static int
809nfs_getattr(struct vop_getattr_args *ap)
810{
811	struct vnode *vp = ap->a_vp;
812	struct thread *td = curthread;	/* XXX */
813	struct nfsnode *np = VTONFS(vp);
814	int error = 0;
815	struct nfsvattr nfsva;
816	struct vattr *vap = ap->a_vap;
817	struct vattr vattr;
818
819	/*
820	 * Update local times for special files.
821	 */
822	mtx_lock(&np->n_mtx);
823	if (np->n_flag & (NACC | NUPD))
824		np->n_flag |= NCHG;
825	mtx_unlock(&np->n_mtx);
826	/*
827	 * First look in the cache.
828	 */
829	if (ncl_getattrcache(vp, &vattr) == 0) {
830		vap->va_type = vattr.va_type;
831		vap->va_mode = vattr.va_mode;
832		vap->va_nlink = vattr.va_nlink;
833		vap->va_uid = vattr.va_uid;
834		vap->va_gid = vattr.va_gid;
835		vap->va_fsid = vattr.va_fsid;
836		vap->va_fileid = vattr.va_fileid;
837		vap->va_size = vattr.va_size;
838		vap->va_blocksize = vattr.va_blocksize;
839		vap->va_atime = vattr.va_atime;
840		vap->va_mtime = vattr.va_mtime;
841		vap->va_ctime = vattr.va_ctime;
842		vap->va_gen = vattr.va_gen;
843		vap->va_flags = vattr.va_flags;
844		vap->va_rdev = vattr.va_rdev;
845		vap->va_bytes = vattr.va_bytes;
846		vap->va_filerev = vattr.va_filerev;
847		/*
848		 * Get the local modify time for the case of a write
849		 * delegation.
850		 */
851		nfscl_deleggetmodtime(vp, &vap->va_mtime);
852		return (0);
853	}
854
855	if (NFS_ISV34(vp) && nfs_prime_access_cache &&
856	    nfsaccess_cache_timeout > 0) {
857		NFSINCRGLOBAL(nfsstatsv1.accesscache_misses);
858		nfs34_access_otw(vp, NFSACCESS_ALL, td, ap->a_cred, NULL);
859		if (ncl_getattrcache(vp, ap->a_vap) == 0) {
860			nfscl_deleggetmodtime(vp, &ap->a_vap->va_mtime);
861			return (0);
862		}
863	}
864	error = nfsrpc_getattr(vp, ap->a_cred, td, &nfsva, NULL);
865	if (!error)
866		error = nfscl_loadattrcache(&vp, &nfsva, vap, NULL, 0, 0);
867	if (!error) {
868		/*
869		 * Get the local modify time for the case of a write
870		 * delegation.
871		 */
872		nfscl_deleggetmodtime(vp, &vap->va_mtime);
873	} else if (NFS_ISV4(vp)) {
874		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
875	}
876	return (error);
877}
878
879/*
880 * nfs setattr call.
881 */
882static int
883nfs_setattr(struct vop_setattr_args *ap)
884{
885	struct vnode *vp = ap->a_vp;
886	struct nfsnode *np = VTONFS(vp);
887	struct thread *td = curthread;	/* XXX */
888	struct vattr *vap = ap->a_vap;
889	int error = 0;
890	u_quad_t tsize;
891
892#ifndef nolint
893	tsize = (u_quad_t)0;
894#endif
895
896	/*
897	 * Setting of flags and marking of atimes are not supported.
898	 */
899	if (vap->va_flags != VNOVAL)
900		return (EOPNOTSUPP);
901
902	/*
903	 * Disallow write attempts if the filesystem is mounted read-only.
904	 */
905  	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
906	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
907	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
908	    (vp->v_mount->mnt_flag & MNT_RDONLY))
909		return (EROFS);
910	if (vap->va_size != VNOVAL) {
911 		switch (vp->v_type) {
912 		case VDIR:
913 			return (EISDIR);
914 		case VCHR:
915 		case VBLK:
916 		case VSOCK:
917 		case VFIFO:
918			if (vap->va_mtime.tv_sec == VNOVAL &&
919			    vap->va_atime.tv_sec == VNOVAL &&
920			    vap->va_mode == (mode_t)VNOVAL &&
921			    vap->va_uid == (uid_t)VNOVAL &&
922			    vap->va_gid == (gid_t)VNOVAL)
923				return (0);
924 			vap->va_size = VNOVAL;
925 			break;
926 		default:
927			/*
928			 * Disallow write attempts if the filesystem is
929			 * mounted read-only.
930			 */
931			if (vp->v_mount->mnt_flag & MNT_RDONLY)
932				return (EROFS);
933			/*
934			 *  We run vnode_pager_setsize() early (why?),
935			 * we must set np->n_size now to avoid vinvalbuf
936			 * V_SAVE races that might setsize a lower
937			 * value.
938			 */
939			mtx_lock(&np->n_mtx);
940			tsize = np->n_size;
941			mtx_unlock(&np->n_mtx);
942			error = ncl_meta_setsize(vp, ap->a_cred, td,
943			    vap->va_size);
944			mtx_lock(&np->n_mtx);
945 			if (np->n_flag & NMODIFIED) {
946			    tsize = np->n_size;
947			    mtx_unlock(&np->n_mtx);
948 			    if (vap->va_size == 0)
949 				error = ncl_vinvalbuf(vp, 0, td, 1);
950 			    else
951 				error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
952 			    if (error) {
953				vnode_pager_setsize(vp, tsize);
954				return (error);
955			    }
956			    /*
957			     * Call nfscl_delegmodtime() to set the modify time
958			     * locally, as required.
959			     */
960			    nfscl_delegmodtime(vp);
961 			} else
962			    mtx_unlock(&np->n_mtx);
963			/*
964			 * np->n_size has already been set to vap->va_size
965			 * in ncl_meta_setsize(). We must set it again since
966			 * nfs_loadattrcache() could be called through
967			 * ncl_meta_setsize() and could modify np->n_size.
968			 */
969			mtx_lock(&np->n_mtx);
970 			np->n_vattr.na_size = np->n_size = vap->va_size;
971			mtx_unlock(&np->n_mtx);
972  		}
973  	} else {
974		mtx_lock(&np->n_mtx);
975		if ((vap->va_mtime.tv_sec != VNOVAL || vap->va_atime.tv_sec != VNOVAL) &&
976		    (np->n_flag & NMODIFIED) && vp->v_type == VREG) {
977			mtx_unlock(&np->n_mtx);
978			if ((error = ncl_vinvalbuf(vp, V_SAVE, td, 1)) != 0 &&
979			    (error == EINTR || error == EIO))
980				return (error);
981		} else
982			mtx_unlock(&np->n_mtx);
983	}
984	error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
985	if (error && vap->va_size != VNOVAL) {
986		mtx_lock(&np->n_mtx);
987		np->n_size = np->n_vattr.na_size = tsize;
988		vnode_pager_setsize(vp, tsize);
989		mtx_unlock(&np->n_mtx);
990	}
991	return (error);
992}
993
994/*
995 * Do an nfs setattr rpc.
996 */
997static int
998nfs_setattrrpc(struct vnode *vp, struct vattr *vap, struct ucred *cred,
999    struct thread *td)
1000{
1001	struct nfsnode *np = VTONFS(vp);
1002	int error, ret, attrflag, i;
1003	struct nfsvattr nfsva;
1004
1005	if (NFS_ISV34(vp)) {
1006		mtx_lock(&np->n_mtx);
1007		for (i = 0; i < NFS_ACCESSCACHESIZE; i++)
1008			np->n_accesscache[i].stamp = 0;
1009		np->n_flag |= NDELEGMOD;
1010		mtx_unlock(&np->n_mtx);
1011		KDTRACE_NFS_ACCESSCACHE_FLUSH_DONE(vp);
1012	}
1013	error = nfsrpc_setattr(vp, vap, NULL, cred, td, &nfsva, &attrflag,
1014	    NULL);
1015	if (attrflag) {
1016		ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1017		if (ret && !error)
1018			error = ret;
1019	}
1020	if (error && NFS_ISV4(vp))
1021		error = nfscl_maperr(td, error, vap->va_uid, vap->va_gid);
1022	return (error);
1023}
1024
1025/*
1026 * nfs lookup call, one step at a time...
1027 * First look in cache
1028 * If not found, unlock the directory nfsnode and do the rpc
1029 */
1030static int
1031nfs_lookup(struct vop_lookup_args *ap)
1032{
1033	struct componentname *cnp = ap->a_cnp;
1034	struct vnode *dvp = ap->a_dvp;
1035	struct vnode **vpp = ap->a_vpp;
1036	struct mount *mp = dvp->v_mount;
1037	int flags = cnp->cn_flags;
1038	struct vnode *newvp;
1039	struct nfsmount *nmp;
1040	struct nfsnode *np, *newnp;
1041	int error = 0, attrflag, dattrflag, ltype, ncticks;
1042	struct thread *td = cnp->cn_thread;
1043	struct nfsfh *nfhp;
1044	struct nfsvattr dnfsva, nfsva;
1045	struct vattr vattr;
1046	struct timespec nctime;
1047
1048	*vpp = NULLVP;
1049	if ((flags & ISLASTCN) && (mp->mnt_flag & MNT_RDONLY) &&
1050	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
1051		return (EROFS);
1052	if (dvp->v_type != VDIR)
1053		return (ENOTDIR);
1054	nmp = VFSTONFS(mp);
1055	np = VTONFS(dvp);
1056
1057	/* For NFSv4, wait until any remove is done. */
1058	mtx_lock(&np->n_mtx);
1059	while (NFSHASNFSV4(nmp) && (np->n_flag & NREMOVEINPROG)) {
1060		np->n_flag |= NREMOVEWANT;
1061		(void) msleep((caddr_t)np, &np->n_mtx, PZERO, "nfslkup", 0);
1062	}
1063	mtx_unlock(&np->n_mtx);
1064
1065	if ((error = VOP_ACCESS(dvp, VEXEC, cnp->cn_cred, td)) != 0)
1066		return (error);
1067	error = cache_lookup(dvp, vpp, cnp, &nctime, &ncticks);
1068	if (error > 0 && error != ENOENT)
1069		return (error);
1070	if (error == -1) {
1071		/*
1072		 * Lookups of "." are special and always return the
1073		 * current directory.  cache_lookup() already handles
1074		 * associated locking bookkeeping, etc.
1075		 */
1076		if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') {
1077			/* XXX: Is this really correct? */
1078			if (cnp->cn_nameiop != LOOKUP &&
1079			    (flags & ISLASTCN))
1080				cnp->cn_flags |= SAVENAME;
1081			return (0);
1082		}
1083
1084		/*
1085		 * We only accept a positive hit in the cache if the
1086		 * change time of the file matches our cached copy.
1087		 * Otherwise, we discard the cache entry and fallback
1088		 * to doing a lookup RPC.  We also only trust cache
1089		 * entries for less than nm_nametimeo seconds.
1090		 *
1091		 * To better handle stale file handles and attributes,
1092		 * clear the attribute cache of this node if it is a
1093		 * leaf component, part of an open() call, and not
1094		 * locally modified before fetching the attributes.
1095		 * This should allow stale file handles to be detected
1096		 * here where we can fall back to a LOOKUP RPC to
1097		 * recover rather than having nfs_open() detect the
1098		 * stale file handle and failing open(2) with ESTALE.
1099		 */
1100		newvp = *vpp;
1101		newnp = VTONFS(newvp);
1102		if (!(nmp->nm_flag & NFSMNT_NOCTO) &&
1103		    (flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) &&
1104		    !(newnp->n_flag & NMODIFIED)) {
1105			mtx_lock(&newnp->n_mtx);
1106			newnp->n_attrstamp = 0;
1107			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp);
1108			mtx_unlock(&newnp->n_mtx);
1109		}
1110		if (nfscl_nodeleg(newvp, 0) == 0 ||
1111		    ((u_int)(ticks - ncticks) < (nmp->nm_nametimeo * hz) &&
1112		    VOP_GETATTR(newvp, &vattr, cnp->cn_cred) == 0 &&
1113		    timespeccmp(&vattr.va_ctime, &nctime, ==))) {
1114			NFSINCRGLOBAL(nfsstatsv1.lookupcache_hits);
1115			if (cnp->cn_nameiop != LOOKUP &&
1116			    (flags & ISLASTCN))
1117				cnp->cn_flags |= SAVENAME;
1118			return (0);
1119		}
1120		cache_purge(newvp);
1121		if (dvp != newvp)
1122			vput(newvp);
1123		else
1124			vrele(newvp);
1125		*vpp = NULLVP;
1126	} else if (error == ENOENT) {
1127		if (dvp->v_iflag & VI_DOOMED)
1128			return (ENOENT);
1129		/*
1130		 * We only accept a negative hit in the cache if the
1131		 * modification time of the parent directory matches
1132		 * the cached copy in the name cache entry.
1133		 * Otherwise, we discard all of the negative cache
1134		 * entries for this directory.  We also only trust
1135		 * negative cache entries for up to nm_negnametimeo
1136		 * seconds.
1137		 */
1138		if ((u_int)(ticks - ncticks) < (nmp->nm_negnametimeo * hz) &&
1139		    VOP_GETATTR(dvp, &vattr, cnp->cn_cred) == 0 &&
1140		    timespeccmp(&vattr.va_mtime, &nctime, ==)) {
1141			NFSINCRGLOBAL(nfsstatsv1.lookupcache_hits);
1142			return (ENOENT);
1143		}
1144		cache_purge_negative(dvp);
1145	}
1146
1147	error = 0;
1148	newvp = NULLVP;
1149	NFSINCRGLOBAL(nfsstatsv1.lookupcache_misses);
1150	error = nfsrpc_lookup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1151	    cnp->cn_cred, td, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1152	    NULL);
1153	if (dattrflag)
1154		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1155	if (error) {
1156		if (newvp != NULLVP) {
1157			vput(newvp);
1158			*vpp = NULLVP;
1159		}
1160
1161		if (error != ENOENT) {
1162			if (NFS_ISV4(dvp))
1163				error = nfscl_maperr(td, error, (uid_t)0,
1164				    (gid_t)0);
1165			return (error);
1166		}
1167
1168		/* The requested file was not found. */
1169		if ((cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME) &&
1170		    (flags & ISLASTCN)) {
1171			/*
1172			 * XXX: UFS does a full VOP_ACCESS(dvp,
1173			 * VWRITE) here instead of just checking
1174			 * MNT_RDONLY.
1175			 */
1176			if (mp->mnt_flag & MNT_RDONLY)
1177				return (EROFS);
1178			cnp->cn_flags |= SAVENAME;
1179			return (EJUSTRETURN);
1180		}
1181
1182		if ((cnp->cn_flags & MAKEENTRY) != 0 && dattrflag) {
1183			/*
1184			 * Cache the modification time of the parent
1185			 * directory from the post-op attributes in
1186			 * the name cache entry.  The negative cache
1187			 * entry will be ignored once the directory
1188			 * has changed.  Don't bother adding the entry
1189			 * if the directory has already changed.
1190			 */
1191			mtx_lock(&np->n_mtx);
1192			if (timespeccmp(&np->n_vattr.na_mtime,
1193			    &dnfsva.na_mtime, ==)) {
1194				mtx_unlock(&np->n_mtx);
1195				cache_enter_time(dvp, NULL, cnp,
1196				    &dnfsva.na_mtime, NULL);
1197			} else
1198				mtx_unlock(&np->n_mtx);
1199		}
1200		return (ENOENT);
1201	}
1202
1203	/*
1204	 * Handle RENAME case...
1205	 */
1206	if (cnp->cn_nameiop == RENAME && (flags & ISLASTCN)) {
1207		if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) {
1208			FREE((caddr_t)nfhp, M_NFSFH);
1209			return (EISDIR);
1210		}
1211		error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL,
1212		    LK_EXCLUSIVE);
1213		if (error)
1214			return (error);
1215		newvp = NFSTOV(np);
1216		if (attrflag)
1217			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1218			    0, 1);
1219		*vpp = newvp;
1220		cnp->cn_flags |= SAVENAME;
1221		return (0);
1222	}
1223
1224	if (flags & ISDOTDOT) {
1225		ltype = NFSVOPISLOCKED(dvp);
1226		error = vfs_busy(mp, MBF_NOWAIT);
1227		if (error != 0) {
1228			vfs_ref(mp);
1229			NFSVOPUNLOCK(dvp, 0);
1230			error = vfs_busy(mp, 0);
1231			NFSVOPLOCK(dvp, ltype | LK_RETRY);
1232			vfs_rel(mp);
1233			if (error == 0 && (dvp->v_iflag & VI_DOOMED)) {
1234				vfs_unbusy(mp);
1235				error = ENOENT;
1236			}
1237			if (error != 0)
1238				return (error);
1239		}
1240		NFSVOPUNLOCK(dvp, 0);
1241		error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL,
1242		    cnp->cn_lkflags);
1243		if (error == 0)
1244			newvp = NFSTOV(np);
1245		vfs_unbusy(mp);
1246		if (newvp != dvp)
1247			NFSVOPLOCK(dvp, ltype | LK_RETRY);
1248		if (dvp->v_iflag & VI_DOOMED) {
1249			if (error == 0) {
1250				if (newvp == dvp)
1251					vrele(newvp);
1252				else
1253					vput(newvp);
1254			}
1255			error = ENOENT;
1256		}
1257		if (error != 0)
1258			return (error);
1259		if (attrflag)
1260			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1261			    0, 1);
1262	} else if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) {
1263		FREE((caddr_t)nfhp, M_NFSFH);
1264		VREF(dvp);
1265		newvp = dvp;
1266		if (attrflag)
1267			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1268			    0, 1);
1269	} else {
1270		error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL,
1271		    cnp->cn_lkflags);
1272		if (error)
1273			return (error);
1274		newvp = NFSTOV(np);
1275		if (attrflag)
1276			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1277			    0, 1);
1278		else if ((flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) &&
1279		    !(np->n_flag & NMODIFIED)) {
1280			/*
1281			 * Flush the attribute cache when opening a
1282			 * leaf node to ensure that fresh attributes
1283			 * are fetched in nfs_open() since we did not
1284			 * fetch attributes from the LOOKUP reply.
1285			 */
1286			mtx_lock(&np->n_mtx);
1287			np->n_attrstamp = 0;
1288			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp);
1289			mtx_unlock(&np->n_mtx);
1290		}
1291	}
1292	if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN))
1293		cnp->cn_flags |= SAVENAME;
1294	if ((cnp->cn_flags & MAKEENTRY) &&
1295	    (cnp->cn_nameiop != DELETE || !(flags & ISLASTCN)) &&
1296	    attrflag != 0 && (newvp->v_type != VDIR || dattrflag != 0))
1297		cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime,
1298		    newvp->v_type != VDIR ? NULL : &dnfsva.na_ctime);
1299	*vpp = newvp;
1300	return (0);
1301}
1302
1303/*
1304 * nfs read call.
1305 * Just call ncl_bioread() to do the work.
1306 */
1307static int
1308nfs_read(struct vop_read_args *ap)
1309{
1310	struct vnode *vp = ap->a_vp;
1311
1312	switch (vp->v_type) {
1313	case VREG:
1314		return (ncl_bioread(vp, ap->a_uio, ap->a_ioflag, ap->a_cred));
1315	case VDIR:
1316		return (EISDIR);
1317	default:
1318		return (EOPNOTSUPP);
1319	}
1320}
1321
1322/*
1323 * nfs readlink call
1324 */
1325static int
1326nfs_readlink(struct vop_readlink_args *ap)
1327{
1328	struct vnode *vp = ap->a_vp;
1329
1330	if (vp->v_type != VLNK)
1331		return (EINVAL);
1332	return (ncl_bioread(vp, ap->a_uio, 0, ap->a_cred));
1333}
1334
1335/*
1336 * Do a readlink rpc.
1337 * Called by ncl_doio() from below the buffer cache.
1338 */
1339int
1340ncl_readlinkrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
1341{
1342	int error, ret, attrflag;
1343	struct nfsvattr nfsva;
1344
1345	error = nfsrpc_readlink(vp, uiop, cred, uiop->uio_td, &nfsva,
1346	    &attrflag, NULL);
1347	if (attrflag) {
1348		ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1349		if (ret && !error)
1350			error = ret;
1351	}
1352	if (error && NFS_ISV4(vp))
1353		error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1354	return (error);
1355}
1356
1357/*
1358 * nfs read rpc call
1359 * Ditto above
1360 */
1361int
1362ncl_readrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
1363{
1364	int error, ret, attrflag;
1365	struct nfsvattr nfsva;
1366	struct nfsmount *nmp;
1367
1368	nmp = VFSTONFS(vnode_mount(vp));
1369	error = EIO;
1370	attrflag = 0;
1371	if (NFSHASPNFS(nmp))
1372		error = nfscl_doiods(vp, uiop, NULL, NULL,
1373		    NFSV4OPEN_ACCESSREAD, cred, uiop->uio_td);
1374	NFSCL_DEBUG(4, "readrpc: aft doiods=%d\n", error);
1375	if (error != 0)
1376		error = nfsrpc_read(vp, uiop, cred, uiop->uio_td, &nfsva,
1377		    &attrflag, NULL);
1378	if (attrflag) {
1379		ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1380		if (ret && !error)
1381			error = ret;
1382	}
1383	if (error && NFS_ISV4(vp))
1384		error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1385	return (error);
1386}
1387
1388/*
1389 * nfs write call
1390 */
1391int
1392ncl_writerpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
1393    int *iomode, int *must_commit, int called_from_strategy)
1394{
1395	struct nfsvattr nfsva;
1396	int error, attrflag, ret;
1397	struct nfsmount *nmp;
1398
1399	nmp = VFSTONFS(vnode_mount(vp));
1400	error = EIO;
1401	attrflag = 0;
1402	if (NFSHASPNFS(nmp))
1403		error = nfscl_doiods(vp, uiop, iomode, must_commit,
1404		    NFSV4OPEN_ACCESSWRITE, cred, uiop->uio_td);
1405	NFSCL_DEBUG(4, "writerpc: aft doiods=%d\n", error);
1406	if (error != 0)
1407		error = nfsrpc_write(vp, uiop, iomode, must_commit, cred,
1408		    uiop->uio_td, &nfsva, &attrflag, NULL,
1409		    called_from_strategy);
1410	if (attrflag) {
1411		if (VTONFS(vp)->n_flag & ND_NFSV4)
1412			ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 1,
1413			    1);
1414		else
1415			ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0,
1416			    1);
1417		if (ret && !error)
1418			error = ret;
1419	}
1420	if (DOINGASYNC(vp))
1421		*iomode = NFSWRITE_FILESYNC;
1422	if (error && NFS_ISV4(vp))
1423		error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1424	return (error);
1425}
1426
1427/*
1428 * nfs mknod rpc
1429 * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1430 * mode set to specify the file type and the size field for rdev.
1431 */
1432static int
1433nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1434    struct vattr *vap)
1435{
1436	struct nfsvattr nfsva, dnfsva;
1437	struct vnode *newvp = NULL;
1438	struct nfsnode *np = NULL, *dnp;
1439	struct nfsfh *nfhp;
1440	struct vattr vattr;
1441	int error = 0, attrflag, dattrflag;
1442	u_int32_t rdev;
1443
1444	if (vap->va_type == VCHR || vap->va_type == VBLK)
1445		rdev = vap->va_rdev;
1446	else if (vap->va_type == VFIFO || vap->va_type == VSOCK)
1447		rdev = 0xffffffff;
1448	else
1449		return (EOPNOTSUPP);
1450	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)))
1451		return (error);
1452	error = nfsrpc_mknod(dvp, cnp->cn_nameptr, cnp->cn_namelen, vap,
1453	    rdev, vap->va_type, cnp->cn_cred, cnp->cn_thread, &dnfsva,
1454	    &nfsva, &nfhp, &attrflag, &dattrflag, NULL);
1455	if (!error) {
1456		if (!nfhp)
1457			(void) nfsrpc_lookup(dvp, cnp->cn_nameptr,
1458			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread,
1459			    &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1460			    NULL);
1461		if (nfhp)
1462			error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp,
1463			    cnp->cn_thread, &np, NULL, LK_EXCLUSIVE);
1464	}
1465	if (dattrflag)
1466		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1467	if (!error) {
1468		newvp = NFSTOV(np);
1469		if (attrflag != 0) {
1470			error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1471			    0, 1);
1472			if (error != 0)
1473				vput(newvp);
1474		}
1475	}
1476	if (!error) {
1477		*vpp = newvp;
1478	} else if (NFS_ISV4(dvp)) {
1479		error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid,
1480		    vap->va_gid);
1481	}
1482	dnp = VTONFS(dvp);
1483	mtx_lock(&dnp->n_mtx);
1484	dnp->n_flag |= NMODIFIED;
1485	if (!dattrflag) {
1486		dnp->n_attrstamp = 0;
1487		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
1488	}
1489	mtx_unlock(&dnp->n_mtx);
1490	return (error);
1491}
1492
1493/*
1494 * nfs mknod vop
1495 * just call nfs_mknodrpc() to do the work.
1496 */
1497/* ARGSUSED */
1498static int
1499nfs_mknod(struct vop_mknod_args *ap)
1500{
1501	return (nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap));
1502}
1503
1504static struct mtx nfs_cverf_mtx;
1505MTX_SYSINIT(nfs_cverf_mtx, &nfs_cverf_mtx, "NFS create verifier mutex",
1506    MTX_DEF);
1507
1508static nfsquad_t
1509nfs_get_cverf(void)
1510{
1511	static nfsquad_t cverf;
1512	nfsquad_t ret;
1513	static int cverf_initialized = 0;
1514
1515	mtx_lock(&nfs_cverf_mtx);
1516	if (cverf_initialized == 0) {
1517		cverf.lval[0] = arc4random();
1518		cverf.lval[1] = arc4random();
1519		cverf_initialized = 1;
1520	} else
1521		cverf.qval++;
1522	ret = cverf;
1523	mtx_unlock(&nfs_cverf_mtx);
1524
1525	return (ret);
1526}
1527
1528/*
1529 * nfs file create call
1530 */
1531static int
1532nfs_create(struct vop_create_args *ap)
1533{
1534	struct vnode *dvp = ap->a_dvp;
1535	struct vattr *vap = ap->a_vap;
1536	struct componentname *cnp = ap->a_cnp;
1537	struct nfsnode *np = NULL, *dnp;
1538	struct vnode *newvp = NULL;
1539	struct nfsmount *nmp;
1540	struct nfsvattr dnfsva, nfsva;
1541	struct nfsfh *nfhp;
1542	nfsquad_t cverf;
1543	int error = 0, attrflag, dattrflag, fmode = 0;
1544	struct vattr vattr;
1545
1546	/*
1547	 * Oops, not for me..
1548	 */
1549	if (vap->va_type == VSOCK)
1550		return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1551
1552	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)))
1553		return (error);
1554	if (vap->va_vaflags & VA_EXCLUSIVE)
1555		fmode |= O_EXCL;
1556	dnp = VTONFS(dvp);
1557	nmp = VFSTONFS(vnode_mount(dvp));
1558again:
1559	/* For NFSv4, wait until any remove is done. */
1560	mtx_lock(&dnp->n_mtx);
1561	while (NFSHASNFSV4(nmp) && (dnp->n_flag & NREMOVEINPROG)) {
1562		dnp->n_flag |= NREMOVEWANT;
1563		(void) msleep((caddr_t)dnp, &dnp->n_mtx, PZERO, "nfscrt", 0);
1564	}
1565	mtx_unlock(&dnp->n_mtx);
1566
1567	cverf = nfs_get_cverf();
1568	error = nfsrpc_create(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1569	    vap, cverf, fmode, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva,
1570	    &nfhp, &attrflag, &dattrflag, NULL);
1571	if (!error) {
1572		if (nfhp == NULL)
1573			(void) nfsrpc_lookup(dvp, cnp->cn_nameptr,
1574			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread,
1575			    &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1576			    NULL);
1577		if (nfhp != NULL)
1578			error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp,
1579			    cnp->cn_thread, &np, NULL, LK_EXCLUSIVE);
1580	}
1581	if (dattrflag)
1582		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1583	if (!error) {
1584		newvp = NFSTOV(np);
1585		if (attrflag == 0)
1586			error = nfsrpc_getattr(newvp, cnp->cn_cred,
1587			    cnp->cn_thread, &nfsva, NULL);
1588		if (error == 0)
1589			error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1590			    0, 1);
1591	}
1592	if (error) {
1593		if (newvp != NULL) {
1594			vput(newvp);
1595			newvp = NULL;
1596		}
1597		if (NFS_ISV34(dvp) && (fmode & O_EXCL) &&
1598		    error == NFSERR_NOTSUPP) {
1599			fmode &= ~O_EXCL;
1600			goto again;
1601		}
1602	} else if (NFS_ISV34(dvp) && (fmode & O_EXCL)) {
1603		if (nfscl_checksattr(vap, &nfsva)) {
1604			error = nfsrpc_setattr(newvp, vap, NULL, cnp->cn_cred,
1605			    cnp->cn_thread, &nfsva, &attrflag, NULL);
1606			if (error && (vap->va_uid != (uid_t)VNOVAL ||
1607			    vap->va_gid != (gid_t)VNOVAL)) {
1608				/* try again without setting uid/gid */
1609				vap->va_uid = (uid_t)VNOVAL;
1610				vap->va_gid = (uid_t)VNOVAL;
1611				error = nfsrpc_setattr(newvp, vap, NULL,
1612				    cnp->cn_cred, cnp->cn_thread, &nfsva,
1613				    &attrflag, NULL);
1614			}
1615			if (attrflag)
1616				(void) nfscl_loadattrcache(&newvp, &nfsva, NULL,
1617				    NULL, 0, 1);
1618			if (error != 0)
1619				vput(newvp);
1620		}
1621	}
1622	if (!error) {
1623		if ((cnp->cn_flags & MAKEENTRY) && attrflag)
1624			cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime,
1625			    NULL);
1626		*ap->a_vpp = newvp;
1627	} else if (NFS_ISV4(dvp)) {
1628		error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid,
1629		    vap->va_gid);
1630	}
1631	mtx_lock(&dnp->n_mtx);
1632	dnp->n_flag |= NMODIFIED;
1633	if (!dattrflag) {
1634		dnp->n_attrstamp = 0;
1635		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
1636	}
1637	mtx_unlock(&dnp->n_mtx);
1638	return (error);
1639}
1640
1641/*
1642 * nfs file remove call
1643 * To try and make nfs semantics closer to ufs semantics, a file that has
1644 * other processes using the vnode is renamed instead of removed and then
1645 * removed later on the last close.
1646 * - If v_usecount > 1
1647 *	  If a rename is not already in the works
1648 *	     call nfs_sillyrename() to set it up
1649 *     else
1650 *	  do the remove rpc
1651 */
1652static int
1653nfs_remove(struct vop_remove_args *ap)
1654{
1655	struct vnode *vp = ap->a_vp;
1656	struct vnode *dvp = ap->a_dvp;
1657	struct componentname *cnp = ap->a_cnp;
1658	struct nfsnode *np = VTONFS(vp);
1659	int error = 0;
1660	struct vattr vattr;
1661
1662	KASSERT((cnp->cn_flags & HASBUF) != 0, ("nfs_remove: no name"));
1663	KASSERT(vrefcnt(vp) > 0, ("nfs_remove: bad v_usecount"));
1664	if (vp->v_type == VDIR)
1665		error = EPERM;
1666	else if (vrefcnt(vp) == 1 || (np->n_sillyrename &&
1667	    VOP_GETATTR(vp, &vattr, cnp->cn_cred) == 0 &&
1668	    vattr.va_nlink > 1)) {
1669		/*
1670		 * Purge the name cache so that the chance of a lookup for
1671		 * the name succeeding while the remove is in progress is
1672		 * minimized. Without node locking it can still happen, such
1673		 * that an I/O op returns ESTALE, but since you get this if
1674		 * another host removes the file..
1675		 */
1676		cache_purge(vp);
1677		/*
1678		 * throw away biocache buffers, mainly to avoid
1679		 * unnecessary delayed writes later.
1680		 */
1681		error = ncl_vinvalbuf(vp, 0, cnp->cn_thread, 1);
1682		/* Do the rpc */
1683		if (error != EINTR && error != EIO)
1684			error = nfs_removerpc(dvp, vp, cnp->cn_nameptr,
1685			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread);
1686		/*
1687		 * Kludge City: If the first reply to the remove rpc is lost..
1688		 *   the reply to the retransmitted request will be ENOENT
1689		 *   since the file was in fact removed
1690		 *   Therefore, we cheat and return success.
1691		 */
1692		if (error == ENOENT)
1693			error = 0;
1694	} else if (!np->n_sillyrename)
1695		error = nfs_sillyrename(dvp, vp, cnp);
1696	mtx_lock(&np->n_mtx);
1697	np->n_attrstamp = 0;
1698	mtx_unlock(&np->n_mtx);
1699	KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1700	return (error);
1701}
1702
1703/*
1704 * nfs file remove rpc called from nfs_inactive
1705 */
1706int
1707ncl_removeit(struct sillyrename *sp, struct vnode *vp)
1708{
1709	/*
1710	 * Make sure that the directory vnode is still valid.
1711	 * XXX we should lock sp->s_dvp here.
1712	 */
1713	if (sp->s_dvp->v_type == VBAD)
1714		return (0);
1715	return (nfs_removerpc(sp->s_dvp, vp, sp->s_name, sp->s_namlen,
1716	    sp->s_cred, NULL));
1717}
1718
1719/*
1720 * Nfs remove rpc, called from nfs_remove() and ncl_removeit().
1721 */
1722static int
1723nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name,
1724    int namelen, struct ucred *cred, struct thread *td)
1725{
1726	struct nfsvattr dnfsva;
1727	struct nfsnode *dnp = VTONFS(dvp);
1728	int error = 0, dattrflag;
1729
1730	mtx_lock(&dnp->n_mtx);
1731	dnp->n_flag |= NREMOVEINPROG;
1732	mtx_unlock(&dnp->n_mtx);
1733	error = nfsrpc_remove(dvp, name, namelen, vp, cred, td, &dnfsva,
1734	    &dattrflag, NULL);
1735	mtx_lock(&dnp->n_mtx);
1736	if ((dnp->n_flag & NREMOVEWANT)) {
1737		dnp->n_flag &= ~(NREMOVEWANT | NREMOVEINPROG);
1738		mtx_unlock(&dnp->n_mtx);
1739		wakeup((caddr_t)dnp);
1740	} else {
1741		dnp->n_flag &= ~NREMOVEINPROG;
1742		mtx_unlock(&dnp->n_mtx);
1743	}
1744	if (dattrflag)
1745		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1746	mtx_lock(&dnp->n_mtx);
1747	dnp->n_flag |= NMODIFIED;
1748	if (!dattrflag) {
1749		dnp->n_attrstamp = 0;
1750		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
1751	}
1752	mtx_unlock(&dnp->n_mtx);
1753	if (error && NFS_ISV4(dvp))
1754		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
1755	return (error);
1756}
1757
1758/*
1759 * nfs file rename call
1760 */
1761static int
1762nfs_rename(struct vop_rename_args *ap)
1763{
1764	struct vnode *fvp = ap->a_fvp;
1765	struct vnode *tvp = ap->a_tvp;
1766	struct vnode *fdvp = ap->a_fdvp;
1767	struct vnode *tdvp = ap->a_tdvp;
1768	struct componentname *tcnp = ap->a_tcnp;
1769	struct componentname *fcnp = ap->a_fcnp;
1770	struct nfsnode *fnp = VTONFS(ap->a_fvp);
1771	struct nfsnode *tdnp = VTONFS(ap->a_tdvp);
1772	struct nfsv4node *newv4 = NULL;
1773	int error;
1774
1775	KASSERT((tcnp->cn_flags & HASBUF) != 0 &&
1776	    (fcnp->cn_flags & HASBUF) != 0, ("nfs_rename: no name"));
1777	/* Check for cross-device rename */
1778	if ((fvp->v_mount != tdvp->v_mount) ||
1779	    (tvp && (fvp->v_mount != tvp->v_mount))) {
1780		error = EXDEV;
1781		goto out;
1782	}
1783
1784	if (fvp == tvp) {
1785		printf("nfs_rename: fvp == tvp (can't happen)\n");
1786		error = 0;
1787		goto out;
1788	}
1789	if ((error = NFSVOPLOCK(fvp, LK_EXCLUSIVE)) != 0)
1790		goto out;
1791
1792	/*
1793	 * We have to flush B_DELWRI data prior to renaming
1794	 * the file.  If we don't, the delayed-write buffers
1795	 * can be flushed out later after the file has gone stale
1796	 * under NFSV3.  NFSV2 does not have this problem because
1797	 * ( as far as I can tell ) it flushes dirty buffers more
1798	 * often.
1799	 *
1800	 * Skip the rename operation if the fsync fails, this can happen
1801	 * due to the server's volume being full, when we pushed out data
1802	 * that was written back to our cache earlier. Not checking for
1803	 * this condition can result in potential (silent) data loss.
1804	 */
1805	error = VOP_FSYNC(fvp, MNT_WAIT, fcnp->cn_thread);
1806	NFSVOPUNLOCK(fvp, 0);
1807	if (!error && tvp)
1808		error = VOP_FSYNC(tvp, MNT_WAIT, tcnp->cn_thread);
1809	if (error)
1810		goto out;
1811
1812	/*
1813	 * If the tvp exists and is in use, sillyrename it before doing the
1814	 * rename of the new file over it.
1815	 * XXX Can't sillyrename a directory.
1816	 */
1817	if (tvp && vrefcnt(tvp) > 1 && !VTONFS(tvp)->n_sillyrename &&
1818		tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1819		vput(tvp);
1820		tvp = NULL;
1821	}
1822
1823	error = nfs_renamerpc(fdvp, fvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1824	    tdvp, tvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1825	    tcnp->cn_thread);
1826
1827	if (error == 0 && NFS_ISV4(tdvp)) {
1828		/*
1829		 * For NFSv4, check to see if it is the same name and
1830		 * replace the name, if it is different.
1831		 */
1832		MALLOC(newv4, struct nfsv4node *,
1833		    sizeof (struct nfsv4node) +
1834		    tdnp->n_fhp->nfh_len + tcnp->cn_namelen - 1,
1835		    M_NFSV4NODE, M_WAITOK);
1836		mtx_lock(&tdnp->n_mtx);
1837		mtx_lock(&fnp->n_mtx);
1838		if (fnp->n_v4 != NULL && fvp->v_type == VREG &&
1839		    (fnp->n_v4->n4_namelen != tcnp->cn_namelen ||
1840		      NFSBCMP(tcnp->cn_nameptr, NFS4NODENAME(fnp->n_v4),
1841		      tcnp->cn_namelen) ||
1842		      tdnp->n_fhp->nfh_len != fnp->n_v4->n4_fhlen ||
1843		      NFSBCMP(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data,
1844			tdnp->n_fhp->nfh_len))) {
1845#ifdef notdef
1846{ char nnn[100]; int nnnl;
1847nnnl = (tcnp->cn_namelen < 100) ? tcnp->cn_namelen : 99;
1848bcopy(tcnp->cn_nameptr, nnn, nnnl);
1849nnn[nnnl] = '\0';
1850printf("ren replace=%s\n",nnn);
1851}
1852#endif
1853			FREE((caddr_t)fnp->n_v4, M_NFSV4NODE);
1854			fnp->n_v4 = newv4;
1855			newv4 = NULL;
1856			fnp->n_v4->n4_fhlen = tdnp->n_fhp->nfh_len;
1857			fnp->n_v4->n4_namelen = tcnp->cn_namelen;
1858			NFSBCOPY(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data,
1859			    tdnp->n_fhp->nfh_len);
1860			NFSBCOPY(tcnp->cn_nameptr,
1861			    NFS4NODENAME(fnp->n_v4), tcnp->cn_namelen);
1862		}
1863		mtx_unlock(&tdnp->n_mtx);
1864		mtx_unlock(&fnp->n_mtx);
1865		if (newv4 != NULL)
1866			FREE((caddr_t)newv4, M_NFSV4NODE);
1867	}
1868
1869	if (fvp->v_type == VDIR) {
1870		if (tvp != NULL && tvp->v_type == VDIR)
1871			cache_purge(tdvp);
1872		cache_purge(fdvp);
1873	}
1874
1875out:
1876	if (tdvp == tvp)
1877		vrele(tdvp);
1878	else
1879		vput(tdvp);
1880	if (tvp)
1881		vput(tvp);
1882	vrele(fdvp);
1883	vrele(fvp);
1884	/*
1885	 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1886	 */
1887	if (error == ENOENT)
1888		error = 0;
1889	return (error);
1890}
1891
1892/*
1893 * nfs file rename rpc called from nfs_remove() above
1894 */
1895static int
1896nfs_renameit(struct vnode *sdvp, struct vnode *svp, struct componentname *scnp,
1897    struct sillyrename *sp)
1898{
1899
1900	return (nfs_renamerpc(sdvp, svp, scnp->cn_nameptr, scnp->cn_namelen,
1901	    sdvp, NULL, sp->s_name, sp->s_namlen, scnp->cn_cred,
1902	    scnp->cn_thread));
1903}
1904
1905/*
1906 * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1907 */
1908static int
1909nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp, char *fnameptr,
1910    int fnamelen, struct vnode *tdvp, struct vnode *tvp, char *tnameptr,
1911    int tnamelen, struct ucred *cred, struct thread *td)
1912{
1913	struct nfsvattr fnfsva, tnfsva;
1914	struct nfsnode *fdnp = VTONFS(fdvp);
1915	struct nfsnode *tdnp = VTONFS(tdvp);
1916	int error = 0, fattrflag, tattrflag;
1917
1918	error = nfsrpc_rename(fdvp, fvp, fnameptr, fnamelen, tdvp, tvp,
1919	    tnameptr, tnamelen, cred, td, &fnfsva, &tnfsva, &fattrflag,
1920	    &tattrflag, NULL, NULL);
1921	mtx_lock(&fdnp->n_mtx);
1922	fdnp->n_flag |= NMODIFIED;
1923	if (fattrflag != 0) {
1924		mtx_unlock(&fdnp->n_mtx);
1925		(void) nfscl_loadattrcache(&fdvp, &fnfsva, NULL, NULL, 0, 1);
1926	} else {
1927		fdnp->n_attrstamp = 0;
1928		mtx_unlock(&fdnp->n_mtx);
1929		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(fdvp);
1930	}
1931	mtx_lock(&tdnp->n_mtx);
1932	tdnp->n_flag |= NMODIFIED;
1933	if (tattrflag != 0) {
1934		mtx_unlock(&tdnp->n_mtx);
1935		(void) nfscl_loadattrcache(&tdvp, &tnfsva, NULL, NULL, 0, 1);
1936	} else {
1937		tdnp->n_attrstamp = 0;
1938		mtx_unlock(&tdnp->n_mtx);
1939		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp);
1940	}
1941	if (error && NFS_ISV4(fdvp))
1942		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
1943	return (error);
1944}
1945
1946/*
1947 * nfs hard link create call
1948 */
1949static int
1950nfs_link(struct vop_link_args *ap)
1951{
1952	struct vnode *vp = ap->a_vp;
1953	struct vnode *tdvp = ap->a_tdvp;
1954	struct componentname *cnp = ap->a_cnp;
1955	struct nfsnode *np, *tdnp;
1956	struct nfsvattr nfsva, dnfsva;
1957	int error = 0, attrflag, dattrflag;
1958
1959	/*
1960	 * Push all writes to the server, so that the attribute cache
1961	 * doesn't get "out of sync" with the server.
1962	 * XXX There should be a better way!
1963	 */
1964	VOP_FSYNC(vp, MNT_WAIT, cnp->cn_thread);
1965
1966	error = nfsrpc_link(tdvp, vp, cnp->cn_nameptr, cnp->cn_namelen,
1967	    cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &attrflag,
1968	    &dattrflag, NULL);
1969	tdnp = VTONFS(tdvp);
1970	mtx_lock(&tdnp->n_mtx);
1971	tdnp->n_flag |= NMODIFIED;
1972	if (dattrflag != 0) {
1973		mtx_unlock(&tdnp->n_mtx);
1974		(void) nfscl_loadattrcache(&tdvp, &dnfsva, NULL, NULL, 0, 1);
1975	} else {
1976		tdnp->n_attrstamp = 0;
1977		mtx_unlock(&tdnp->n_mtx);
1978		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp);
1979	}
1980	if (attrflag)
1981		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1982	else {
1983		np = VTONFS(vp);
1984		mtx_lock(&np->n_mtx);
1985		np->n_attrstamp = 0;
1986		mtx_unlock(&np->n_mtx);
1987		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1988	}
1989	/*
1990	 * If negative lookup caching is enabled, I might as well
1991	 * add an entry for this node. Not necessary for correctness,
1992	 * but if negative caching is enabled, then the system
1993	 * must care about lookup caching hit rate, so...
1994	 */
1995	if (VFSTONFS(vp->v_mount)->nm_negnametimeo != 0 &&
1996	    (cnp->cn_flags & MAKEENTRY) && attrflag != 0 && error == 0) {
1997		cache_enter_time(tdvp, vp, cnp, &nfsva.na_ctime, NULL);
1998	}
1999	if (error && NFS_ISV4(vp))
2000		error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0,
2001		    (gid_t)0);
2002	return (error);
2003}
2004
2005/*
2006 * nfs symbolic link create call
2007 */
2008static int
2009nfs_symlink(struct vop_symlink_args *ap)
2010{
2011	struct vnode *dvp = ap->a_dvp;
2012	struct vattr *vap = ap->a_vap;
2013	struct componentname *cnp = ap->a_cnp;
2014	struct nfsvattr nfsva, dnfsva;
2015	struct nfsfh *nfhp;
2016	struct nfsnode *np = NULL, *dnp;
2017	struct vnode *newvp = NULL;
2018	int error = 0, attrflag, dattrflag, ret;
2019
2020	vap->va_type = VLNK;
2021	error = nfsrpc_symlink(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2022	    ap->a_target, vap, cnp->cn_cred, cnp->cn_thread, &dnfsva,
2023	    &nfsva, &nfhp, &attrflag, &dattrflag, NULL);
2024	if (nfhp) {
2025		ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread,
2026		    &np, NULL, LK_EXCLUSIVE);
2027		if (!ret)
2028			newvp = NFSTOV(np);
2029		else if (!error)
2030			error = ret;
2031	}
2032	if (newvp != NULL) {
2033		if (attrflag)
2034			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
2035			    0, 1);
2036	} else if (!error) {
2037		/*
2038		 * If we do not have an error and we could not extract the
2039		 * newvp from the response due to the request being NFSv2, we
2040		 * have to do a lookup in order to obtain a newvp to return.
2041		 */
2042		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2043		    cnp->cn_cred, cnp->cn_thread, &np);
2044		if (!error)
2045			newvp = NFSTOV(np);
2046	}
2047	if (error) {
2048		if (newvp)
2049			vput(newvp);
2050		if (NFS_ISV4(dvp))
2051			error = nfscl_maperr(cnp->cn_thread, error,
2052			    vap->va_uid, vap->va_gid);
2053	} else {
2054		*ap->a_vpp = newvp;
2055	}
2056
2057	dnp = VTONFS(dvp);
2058	mtx_lock(&dnp->n_mtx);
2059	dnp->n_flag |= NMODIFIED;
2060	if (dattrflag != 0) {
2061		mtx_unlock(&dnp->n_mtx);
2062		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2063	} else {
2064		dnp->n_attrstamp = 0;
2065		mtx_unlock(&dnp->n_mtx);
2066		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
2067	}
2068	/*
2069	 * If negative lookup caching is enabled, I might as well
2070	 * add an entry for this node. Not necessary for correctness,
2071	 * but if negative caching is enabled, then the system
2072	 * must care about lookup caching hit rate, so...
2073	 */
2074	if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 &&
2075	    (cnp->cn_flags & MAKEENTRY) && attrflag != 0 && error == 0) {
2076		cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, NULL);
2077	}
2078	return (error);
2079}
2080
2081/*
2082 * nfs make dir call
2083 */
2084static int
2085nfs_mkdir(struct vop_mkdir_args *ap)
2086{
2087	struct vnode *dvp = ap->a_dvp;
2088	struct vattr *vap = ap->a_vap;
2089	struct componentname *cnp = ap->a_cnp;
2090	struct nfsnode *np = NULL, *dnp;
2091	struct vnode *newvp = NULL;
2092	struct vattr vattr;
2093	struct nfsfh *nfhp;
2094	struct nfsvattr nfsva, dnfsva;
2095	int error = 0, attrflag, dattrflag, ret;
2096
2097	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)) != 0)
2098		return (error);
2099	vap->va_type = VDIR;
2100	error = nfsrpc_mkdir(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2101	    vap, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &nfhp,
2102	    &attrflag, &dattrflag, NULL);
2103	dnp = VTONFS(dvp);
2104	mtx_lock(&dnp->n_mtx);
2105	dnp->n_flag |= NMODIFIED;
2106	if (dattrflag != 0) {
2107		mtx_unlock(&dnp->n_mtx);
2108		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2109	} else {
2110		dnp->n_attrstamp = 0;
2111		mtx_unlock(&dnp->n_mtx);
2112		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
2113	}
2114	if (nfhp) {
2115		ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread,
2116		    &np, NULL, LK_EXCLUSIVE);
2117		if (!ret) {
2118			newvp = NFSTOV(np);
2119			if (attrflag)
2120			   (void) nfscl_loadattrcache(&newvp, &nfsva, NULL,
2121				NULL, 0, 1);
2122		} else if (!error)
2123			error = ret;
2124	}
2125	if (!error && newvp == NULL) {
2126		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2127		    cnp->cn_cred, cnp->cn_thread, &np);
2128		if (!error) {
2129			newvp = NFSTOV(np);
2130			if (newvp->v_type != VDIR)
2131				error = EEXIST;
2132		}
2133	}
2134	if (error) {
2135		if (newvp)
2136			vput(newvp);
2137		if (NFS_ISV4(dvp))
2138			error = nfscl_maperr(cnp->cn_thread, error,
2139			    vap->va_uid, vap->va_gid);
2140	} else {
2141		/*
2142		 * If negative lookup caching is enabled, I might as well
2143		 * add an entry for this node. Not necessary for correctness,
2144		 * but if negative caching is enabled, then the system
2145		 * must care about lookup caching hit rate, so...
2146		 */
2147		if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 &&
2148		    (cnp->cn_flags & MAKEENTRY) &&
2149		    attrflag != 0 && dattrflag != 0)
2150			cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime,
2151			    &dnfsva.na_ctime);
2152		*ap->a_vpp = newvp;
2153	}
2154	return (error);
2155}
2156
2157/*
2158 * nfs remove directory call
2159 */
2160static int
2161nfs_rmdir(struct vop_rmdir_args *ap)
2162{
2163	struct vnode *vp = ap->a_vp;
2164	struct vnode *dvp = ap->a_dvp;
2165	struct componentname *cnp = ap->a_cnp;
2166	struct nfsnode *dnp;
2167	struct nfsvattr dnfsva;
2168	int error, dattrflag;
2169
2170	if (dvp == vp)
2171		return (EINVAL);
2172	error = nfsrpc_rmdir(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2173	    cnp->cn_cred, cnp->cn_thread, &dnfsva, &dattrflag, NULL);
2174	dnp = VTONFS(dvp);
2175	mtx_lock(&dnp->n_mtx);
2176	dnp->n_flag |= NMODIFIED;
2177	if (dattrflag != 0) {
2178		mtx_unlock(&dnp->n_mtx);
2179		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2180	} else {
2181		dnp->n_attrstamp = 0;
2182		mtx_unlock(&dnp->n_mtx);
2183		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
2184	}
2185
2186	cache_purge(dvp);
2187	cache_purge(vp);
2188	if (error && NFS_ISV4(dvp))
2189		error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0,
2190		    (gid_t)0);
2191	/*
2192	 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2193	 */
2194	if (error == ENOENT)
2195		error = 0;
2196	return (error);
2197}
2198
2199/*
2200 * nfs readdir call
2201 */
2202static int
2203nfs_readdir(struct vop_readdir_args *ap)
2204{
2205	struct vnode *vp = ap->a_vp;
2206	struct nfsnode *np = VTONFS(vp);
2207	struct uio *uio = ap->a_uio;
2208	ssize_t tresid, left;
2209	int error = 0;
2210	struct vattr vattr;
2211
2212	if (ap->a_eofflag != NULL)
2213		*ap->a_eofflag = 0;
2214	if (vp->v_type != VDIR)
2215		return(EPERM);
2216
2217	/*
2218	 * First, check for hit on the EOF offset cache
2219	 */
2220	if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2221	    (np->n_flag & NMODIFIED) == 0) {
2222		if (VOP_GETATTR(vp, &vattr, ap->a_cred) == 0) {
2223			mtx_lock(&np->n_mtx);
2224			if ((NFS_ISV4(vp) && np->n_change == vattr.va_filerev) ||
2225			    !NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) {
2226				mtx_unlock(&np->n_mtx);
2227				NFSINCRGLOBAL(nfsstatsv1.direofcache_hits);
2228				if (ap->a_eofflag != NULL)
2229					*ap->a_eofflag = 1;
2230				return (0);
2231			} else
2232				mtx_unlock(&np->n_mtx);
2233		}
2234	}
2235
2236	/*
2237	 * NFS always guarantees that directory entries don't straddle
2238	 * DIRBLKSIZ boundaries.  As such, we need to limit the size
2239	 * to an exact multiple of DIRBLKSIZ, to avoid copying a partial
2240	 * directory entry.
2241	 */
2242	left = uio->uio_resid % DIRBLKSIZ;
2243	if (left == uio->uio_resid)
2244		return (EINVAL);
2245	uio->uio_resid -= left;
2246
2247	/*
2248	 * Call ncl_bioread() to do the real work.
2249	 */
2250	tresid = uio->uio_resid;
2251	error = ncl_bioread(vp, uio, 0, ap->a_cred);
2252
2253	if (!error && uio->uio_resid == tresid) {
2254		NFSINCRGLOBAL(nfsstatsv1.direofcache_misses);
2255		if (ap->a_eofflag != NULL)
2256			*ap->a_eofflag = 1;
2257	}
2258
2259	/* Add the partial DIRBLKSIZ (left) back in. */
2260	uio->uio_resid += left;
2261	return (error);
2262}
2263
2264/*
2265 * Readdir rpc call.
2266 * Called from below the buffer cache by ncl_doio().
2267 */
2268int
2269ncl_readdirrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
2270    struct thread *td)
2271{
2272	struct nfsvattr nfsva;
2273	nfsuint64 *cookiep, cookie;
2274	struct nfsnode *dnp = VTONFS(vp);
2275	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2276	int error = 0, eof, attrflag;
2277
2278	KASSERT(uiop->uio_iovcnt == 1 &&
2279	    (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 &&
2280	    (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0,
2281	    ("nfs readdirrpc bad uio"));
2282
2283	/*
2284	 * If there is no cookie, assume directory was stale.
2285	 */
2286	ncl_dircookie_lock(dnp);
2287	cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0);
2288	if (cookiep) {
2289		cookie = *cookiep;
2290		ncl_dircookie_unlock(dnp);
2291	} else {
2292		ncl_dircookie_unlock(dnp);
2293		return (NFSERR_BAD_COOKIE);
2294	}
2295
2296	if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp))
2297		(void)ncl_fsinfo(nmp, vp, cred, td);
2298
2299	error = nfsrpc_readdir(vp, uiop, &cookie, cred, td, &nfsva,
2300	    &attrflag, &eof, NULL);
2301	if (attrflag)
2302		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
2303
2304	if (!error) {
2305		/*
2306		 * We are now either at the end of the directory or have filled
2307		 * the block.
2308		 */
2309		if (eof)
2310			dnp->n_direofoffset = uiop->uio_offset;
2311		else {
2312			if (uiop->uio_resid > 0)
2313				printf("EEK! readdirrpc resid > 0\n");
2314			ncl_dircookie_lock(dnp);
2315			cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1);
2316			*cookiep = cookie;
2317			ncl_dircookie_unlock(dnp);
2318		}
2319	} else if (NFS_ISV4(vp)) {
2320		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2321	}
2322	return (error);
2323}
2324
2325/*
2326 * NFS V3 readdir plus RPC. Used in place of ncl_readdirrpc().
2327 */
2328int
2329ncl_readdirplusrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
2330    struct thread *td)
2331{
2332	struct nfsvattr nfsva;
2333	nfsuint64 *cookiep, cookie;
2334	struct nfsnode *dnp = VTONFS(vp);
2335	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2336	int error = 0, attrflag, eof;
2337
2338	KASSERT(uiop->uio_iovcnt == 1 &&
2339	    (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 &&
2340	    (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0,
2341	    ("nfs readdirplusrpc bad uio"));
2342
2343	/*
2344	 * If there is no cookie, assume directory was stale.
2345	 */
2346	ncl_dircookie_lock(dnp);
2347	cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0);
2348	if (cookiep) {
2349		cookie = *cookiep;
2350		ncl_dircookie_unlock(dnp);
2351	} else {
2352		ncl_dircookie_unlock(dnp);
2353		return (NFSERR_BAD_COOKIE);
2354	}
2355
2356	if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp))
2357		(void)ncl_fsinfo(nmp, vp, cred, td);
2358	error = nfsrpc_readdirplus(vp, uiop, &cookie, cred, td, &nfsva,
2359	    &attrflag, &eof, NULL);
2360	if (attrflag)
2361		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
2362
2363	if (!error) {
2364		/*
2365		 * We are now either at end of the directory or have filled the
2366		 * the block.
2367		 */
2368		if (eof)
2369			dnp->n_direofoffset = uiop->uio_offset;
2370		else {
2371			if (uiop->uio_resid > 0)
2372				printf("EEK! readdirplusrpc resid > 0\n");
2373			ncl_dircookie_lock(dnp);
2374			cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1);
2375			*cookiep = cookie;
2376			ncl_dircookie_unlock(dnp);
2377		}
2378	} else if (NFS_ISV4(vp)) {
2379		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2380	}
2381	return (error);
2382}
2383
2384/*
2385 * Silly rename. To make the NFS filesystem that is stateless look a little
2386 * more like the "ufs" a remove of an active vnode is translated to a rename
2387 * to a funny looking filename that is removed by nfs_inactive on the
2388 * nfsnode. There is the potential for another process on a different client
2389 * to create the same funny name between the nfs_lookitup() fails and the
2390 * nfs_rename() completes, but...
2391 */
2392static int
2393nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2394{
2395	struct sillyrename *sp;
2396	struct nfsnode *np;
2397	int error;
2398	short pid;
2399	unsigned int lticks;
2400
2401	cache_purge(dvp);
2402	np = VTONFS(vp);
2403	KASSERT(vp->v_type != VDIR, ("nfs: sillyrename dir"));
2404	MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
2405	    M_NEWNFSREQ, M_WAITOK);
2406	sp->s_cred = crhold(cnp->cn_cred);
2407	sp->s_dvp = dvp;
2408	VREF(dvp);
2409
2410	/*
2411	 * Fudge together a funny name.
2412	 * Changing the format of the funny name to accommodate more
2413	 * sillynames per directory.
2414	 * The name is now changed to .nfs.<ticks>.<pid>.4, where ticks is
2415	 * CPU ticks since boot.
2416	 */
2417	pid = cnp->cn_thread->td_proc->p_pid;
2418	lticks = (unsigned int)ticks;
2419	for ( ; ; ) {
2420		sp->s_namlen = snprintf(sp->s_name, sizeof(sp->s_name),
2421				       ".nfs.%08x.%04x4.4", lticks,
2422				       pid);
2423		if (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2424				 cnp->cn_thread, NULL))
2425			break;
2426		lticks++;
2427	}
2428	error = nfs_renameit(dvp, vp, cnp, sp);
2429	if (error)
2430		goto bad;
2431	error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2432		cnp->cn_thread, &np);
2433	np->n_sillyrename = sp;
2434	return (0);
2435bad:
2436	vrele(sp->s_dvp);
2437	crfree(sp->s_cred);
2438	free((caddr_t)sp, M_NEWNFSREQ);
2439	return (error);
2440}
2441
2442/*
2443 * Look up a file name and optionally either update the file handle or
2444 * allocate an nfsnode, depending on the value of npp.
2445 * npp == NULL	--> just do the lookup
2446 * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2447 *			handled too
2448 * *npp != NULL --> update the file handle in the vnode
2449 */
2450static int
2451nfs_lookitup(struct vnode *dvp, char *name, int len, struct ucred *cred,
2452    struct thread *td, struct nfsnode **npp)
2453{
2454	struct vnode *newvp = NULL, *vp;
2455	struct nfsnode *np, *dnp = VTONFS(dvp);
2456	struct nfsfh *nfhp, *onfhp;
2457	struct nfsvattr nfsva, dnfsva;
2458	struct componentname cn;
2459	int error = 0, attrflag, dattrflag;
2460	u_int hash;
2461
2462	error = nfsrpc_lookup(dvp, name, len, cred, td, &dnfsva, &nfsva,
2463	    &nfhp, &attrflag, &dattrflag, NULL);
2464	if (dattrflag)
2465		(void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2466	if (npp && !error) {
2467		if (*npp != NULL) {
2468		    np = *npp;
2469		    vp = NFSTOV(np);
2470		    /*
2471		     * For NFSv4, check to see if it is the same name and
2472		     * replace the name, if it is different.
2473		     */
2474		    if (np->n_v4 != NULL && nfsva.na_type == VREG &&
2475			(np->n_v4->n4_namelen != len ||
2476			 NFSBCMP(name, NFS4NODENAME(np->n_v4), len) ||
2477			 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
2478			 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
2479			 dnp->n_fhp->nfh_len))) {
2480#ifdef notdef
2481{ char nnn[100]; int nnnl;
2482nnnl = (len < 100) ? len : 99;
2483bcopy(name, nnn, nnnl);
2484nnn[nnnl] = '\0';
2485printf("replace=%s\n",nnn);
2486}
2487#endif
2488			    FREE((caddr_t)np->n_v4, M_NFSV4NODE);
2489			    MALLOC(np->n_v4, struct nfsv4node *,
2490				sizeof (struct nfsv4node) +
2491				dnp->n_fhp->nfh_len + len - 1,
2492				M_NFSV4NODE, M_WAITOK);
2493			    np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
2494			    np->n_v4->n4_namelen = len;
2495			    NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
2496				dnp->n_fhp->nfh_len);
2497			    NFSBCOPY(name, NFS4NODENAME(np->n_v4), len);
2498		    }
2499		    hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len,
2500			FNV1_32_INIT);
2501		    onfhp = np->n_fhp;
2502		    /*
2503		     * Rehash node for new file handle.
2504		     */
2505		    vfs_hash_rehash(vp, hash);
2506		    np->n_fhp = nfhp;
2507		    if (onfhp != NULL)
2508			FREE((caddr_t)onfhp, M_NFSFH);
2509		    newvp = NFSTOV(np);
2510		} else if (NFS_CMPFH(dnp, nfhp->nfh_fh, nfhp->nfh_len)) {
2511		    FREE((caddr_t)nfhp, M_NFSFH);
2512		    VREF(dvp);
2513		    newvp = dvp;
2514		} else {
2515		    cn.cn_nameptr = name;
2516		    cn.cn_namelen = len;
2517		    error = nfscl_nget(dvp->v_mount, dvp, nfhp, &cn, td,
2518			&np, NULL, LK_EXCLUSIVE);
2519		    if (error)
2520			return (error);
2521		    newvp = NFSTOV(np);
2522		}
2523		if (!attrflag && *npp == NULL) {
2524			if (newvp == dvp)
2525				vrele(newvp);
2526			else
2527				vput(newvp);
2528			return (ENOENT);
2529		}
2530		if (attrflag)
2531			(void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
2532			    0, 1);
2533	}
2534	if (npp && *npp == NULL) {
2535		if (error) {
2536			if (newvp) {
2537				if (newvp == dvp)
2538					vrele(newvp);
2539				else
2540					vput(newvp);
2541			}
2542		} else
2543			*npp = np;
2544	}
2545	if (error && NFS_ISV4(dvp))
2546		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2547	return (error);
2548}
2549
2550/*
2551 * Nfs Version 3 and 4 commit rpc
2552 */
2553int
2554ncl_commit(struct vnode *vp, u_quad_t offset, int cnt, struct ucred *cred,
2555   struct thread *td)
2556{
2557	struct nfsvattr nfsva;
2558	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2559	int error, attrflag;
2560
2561	mtx_lock(&nmp->nm_mtx);
2562	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) {
2563		mtx_unlock(&nmp->nm_mtx);
2564		return (0);
2565	}
2566	mtx_unlock(&nmp->nm_mtx);
2567	error = nfsrpc_commit(vp, offset, cnt, cred, td, &nfsva,
2568	    &attrflag, NULL);
2569	if (attrflag != 0)
2570		(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL,
2571		    0, 1);
2572	if (error != 0 && NFS_ISV4(vp))
2573		error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2574	return (error);
2575}
2576
2577/*
2578 * Strategy routine.
2579 * For async requests when nfsiod(s) are running, queue the request by
2580 * calling ncl_asyncio(), otherwise just all ncl_doio() to do the
2581 * request.
2582 */
2583static int
2584nfs_strategy(struct vop_strategy_args *ap)
2585{
2586	struct buf *bp = ap->a_bp;
2587	struct ucred *cr;
2588
2589	KASSERT(!(bp->b_flags & B_DONE),
2590	    ("nfs_strategy: buffer %p unexpectedly marked B_DONE", bp));
2591	BUF_ASSERT_HELD(bp);
2592
2593	if (bp->b_iocmd == BIO_READ)
2594		cr = bp->b_rcred;
2595	else
2596		cr = bp->b_wcred;
2597
2598	/*
2599	 * If the op is asynchronous and an i/o daemon is waiting
2600	 * queue the request, wake it up and wait for completion
2601	 * otherwise just do it ourselves.
2602	 */
2603	if ((bp->b_flags & B_ASYNC) == 0 ||
2604	    ncl_asyncio(VFSTONFS(ap->a_vp->v_mount), bp, NOCRED, curthread))
2605		(void) ncl_doio(ap->a_vp, bp, cr, curthread, 1);
2606	return (0);
2607}
2608
2609/*
2610 * fsync vnode op. Just call ncl_flush() with commit == 1.
2611 */
2612/* ARGSUSED */
2613static int
2614nfs_fsync(struct vop_fsync_args *ap)
2615{
2616
2617	if (ap->a_vp->v_type != VREG) {
2618		/*
2619		 * For NFS, metadata is changed synchronously on the server,
2620		 * so there is nothing to flush. Also, ncl_flush() clears
2621		 * the NMODIFIED flag and that shouldn't be done here for
2622		 * directories.
2623		 */
2624		return (0);
2625	}
2626	return (ncl_flush(ap->a_vp, ap->a_waitfor, NULL, ap->a_td, 1, 0));
2627}
2628
2629/*
2630 * Flush all the blocks associated with a vnode.
2631 * 	Walk through the buffer pool and push any dirty pages
2632 *	associated with the vnode.
2633 * If the called_from_renewthread argument is TRUE, it has been called
2634 * from the NFSv4 renew thread and, as such, cannot block indefinitely
2635 * waiting for a buffer write to complete.
2636 */
2637int
2638ncl_flush(struct vnode *vp, int waitfor, struct ucred *cred, struct thread *td,
2639    int commit, int called_from_renewthread)
2640{
2641	struct nfsnode *np = VTONFS(vp);
2642	struct buf *bp;
2643	int i;
2644	struct buf *nbp;
2645	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2646	int error = 0, slptimeo = 0, slpflag = 0, retv, bvecpos;
2647	int passone = 1, trycnt = 0;
2648	u_quad_t off, endoff, toff;
2649	struct ucred* wcred = NULL;
2650	struct buf **bvec = NULL;
2651	struct bufobj *bo;
2652#ifndef NFS_COMMITBVECSIZ
2653#define	NFS_COMMITBVECSIZ	20
2654#endif
2655	struct buf *bvec_on_stack[NFS_COMMITBVECSIZ];
2656	int bvecsize = 0, bveccount;
2657
2658	if (called_from_renewthread != 0)
2659		slptimeo = hz;
2660	if (nmp->nm_flag & NFSMNT_INT)
2661		slpflag = PCATCH;
2662	if (!commit)
2663		passone = 0;
2664	bo = &vp->v_bufobj;
2665	/*
2666	 * A b_flags == (B_DELWRI | B_NEEDCOMMIT) block has been written to the
2667	 * server, but has not been committed to stable storage on the server
2668	 * yet. On the first pass, the byte range is worked out and the commit
2669	 * rpc is done. On the second pass, ncl_writebp() is called to do the
2670	 * job.
2671	 */
2672again:
2673	off = (u_quad_t)-1;
2674	endoff = 0;
2675	bvecpos = 0;
2676	if (NFS_ISV34(vp) && commit) {
2677		if (bvec != NULL && bvec != bvec_on_stack)
2678			free(bvec, M_TEMP);
2679		/*
2680		 * Count up how many buffers waiting for a commit.
2681		 */
2682		bveccount = 0;
2683		BO_LOCK(bo);
2684		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2685			if (!BUF_ISLOCKED(bp) &&
2686			    (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT))
2687				== (B_DELWRI | B_NEEDCOMMIT))
2688				bveccount++;
2689		}
2690		/*
2691		 * Allocate space to remember the list of bufs to commit.  It is
2692		 * important to use M_NOWAIT here to avoid a race with nfs_write.
2693		 * If we can't get memory (for whatever reason), we will end up
2694		 * committing the buffers one-by-one in the loop below.
2695		 */
2696		if (bveccount > NFS_COMMITBVECSIZ) {
2697			/*
2698			 * Release the vnode interlock to avoid a lock
2699			 * order reversal.
2700			 */
2701			BO_UNLOCK(bo);
2702			bvec = (struct buf **)
2703				malloc(bveccount * sizeof(struct buf *),
2704				       M_TEMP, M_NOWAIT);
2705			BO_LOCK(bo);
2706			if (bvec == NULL) {
2707				bvec = bvec_on_stack;
2708				bvecsize = NFS_COMMITBVECSIZ;
2709			} else
2710				bvecsize = bveccount;
2711		} else {
2712			bvec = bvec_on_stack;
2713			bvecsize = NFS_COMMITBVECSIZ;
2714		}
2715		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2716			if (bvecpos >= bvecsize)
2717				break;
2718			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2719				nbp = TAILQ_NEXT(bp, b_bobufs);
2720				continue;
2721			}
2722			if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
2723			    (B_DELWRI | B_NEEDCOMMIT)) {
2724				BUF_UNLOCK(bp);
2725				nbp = TAILQ_NEXT(bp, b_bobufs);
2726				continue;
2727			}
2728			BO_UNLOCK(bo);
2729			bremfree(bp);
2730			/*
2731			 * Work out if all buffers are using the same cred
2732			 * so we can deal with them all with one commit.
2733			 *
2734			 * NOTE: we are not clearing B_DONE here, so we have
2735			 * to do it later on in this routine if we intend to
2736			 * initiate I/O on the bp.
2737			 *
2738			 * Note: to avoid loopback deadlocks, we do not
2739			 * assign b_runningbufspace.
2740			 */
2741			if (wcred == NULL)
2742				wcred = bp->b_wcred;
2743			else if (wcred != bp->b_wcred)
2744				wcred = NOCRED;
2745			vfs_busy_pages(bp, 1);
2746
2747			BO_LOCK(bo);
2748			/*
2749			 * bp is protected by being locked, but nbp is not
2750			 * and vfs_busy_pages() may sleep.  We have to
2751			 * recalculate nbp.
2752			 */
2753			nbp = TAILQ_NEXT(bp, b_bobufs);
2754
2755			/*
2756			 * A list of these buffers is kept so that the
2757			 * second loop knows which buffers have actually
2758			 * been committed. This is necessary, since there
2759			 * may be a race between the commit rpc and new
2760			 * uncommitted writes on the file.
2761			 */
2762			bvec[bvecpos++] = bp;
2763			toff = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
2764				bp->b_dirtyoff;
2765			if (toff < off)
2766				off = toff;
2767			toff += (u_quad_t)(bp->b_dirtyend - bp->b_dirtyoff);
2768			if (toff > endoff)
2769				endoff = toff;
2770		}
2771		BO_UNLOCK(bo);
2772	}
2773	if (bvecpos > 0) {
2774		/*
2775		 * Commit data on the server, as required.
2776		 * If all bufs are using the same wcred, then use that with
2777		 * one call for all of them, otherwise commit each one
2778		 * separately.
2779		 */
2780		if (wcred != NOCRED)
2781			retv = ncl_commit(vp, off, (int)(endoff - off),
2782					  wcred, td);
2783		else {
2784			retv = 0;
2785			for (i = 0; i < bvecpos; i++) {
2786				off_t off, size;
2787				bp = bvec[i];
2788				off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
2789					bp->b_dirtyoff;
2790				size = (u_quad_t)(bp->b_dirtyend
2791						  - bp->b_dirtyoff);
2792				retv = ncl_commit(vp, off, (int)size,
2793						  bp->b_wcred, td);
2794				if (retv) break;
2795			}
2796		}
2797
2798		if (retv == NFSERR_STALEWRITEVERF)
2799			ncl_clearcommit(vp->v_mount);
2800
2801		/*
2802		 * Now, either mark the blocks I/O done or mark the
2803		 * blocks dirty, depending on whether the commit
2804		 * succeeded.
2805		 */
2806		for (i = 0; i < bvecpos; i++) {
2807			bp = bvec[i];
2808			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
2809			if (retv) {
2810				/*
2811				 * Error, leave B_DELWRI intact
2812				 */
2813				vfs_unbusy_pages(bp);
2814				brelse(bp);
2815			} else {
2816				/*
2817				 * Success, remove B_DELWRI ( bundirty() ).
2818				 *
2819				 * b_dirtyoff/b_dirtyend seem to be NFS
2820				 * specific.  We should probably move that
2821				 * into bundirty(). XXX
2822				 */
2823				bufobj_wref(bo);
2824				bp->b_flags |= B_ASYNC;
2825				bundirty(bp);
2826				bp->b_flags &= ~B_DONE;
2827				bp->b_ioflags &= ~BIO_ERROR;
2828				bp->b_dirtyoff = bp->b_dirtyend = 0;
2829				bufdone(bp);
2830			}
2831		}
2832	}
2833
2834	/*
2835	 * Start/do any write(s) that are required.
2836	 */
2837loop:
2838	BO_LOCK(bo);
2839	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2840		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2841			if (waitfor != MNT_WAIT || passone)
2842				continue;
2843
2844			error = BUF_TIMELOCK(bp,
2845			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2846			    BO_LOCKPTR(bo), "nfsfsync", slpflag, slptimeo);
2847			if (error == 0) {
2848				BUF_UNLOCK(bp);
2849				goto loop;
2850			}
2851			if (error == ENOLCK) {
2852				error = 0;
2853				goto loop;
2854			}
2855			if (called_from_renewthread != 0) {
2856				/*
2857				 * Return EIO so the flush will be retried
2858				 * later.
2859				 */
2860				error = EIO;
2861				goto done;
2862			}
2863			if (newnfs_sigintr(nmp, td)) {
2864				error = EINTR;
2865				goto done;
2866			}
2867			if (slpflag == PCATCH) {
2868				slpflag = 0;
2869				slptimeo = 2 * hz;
2870			}
2871			goto loop;
2872		}
2873		if ((bp->b_flags & B_DELWRI) == 0)
2874			panic("nfs_fsync: not dirty");
2875		if ((passone || !commit) && (bp->b_flags & B_NEEDCOMMIT)) {
2876			BUF_UNLOCK(bp);
2877			continue;
2878		}
2879		BO_UNLOCK(bo);
2880		bremfree(bp);
2881		if (passone || !commit)
2882		    bp->b_flags |= B_ASYNC;
2883		else
2884		    bp->b_flags |= B_ASYNC;
2885		bwrite(bp);
2886		if (newnfs_sigintr(nmp, td)) {
2887			error = EINTR;
2888			goto done;
2889		}
2890		goto loop;
2891	}
2892	if (passone) {
2893		passone = 0;
2894		BO_UNLOCK(bo);
2895		goto again;
2896	}
2897	if (waitfor == MNT_WAIT) {
2898		while (bo->bo_numoutput) {
2899			error = bufobj_wwait(bo, slpflag, slptimeo);
2900			if (error) {
2901			    BO_UNLOCK(bo);
2902			    if (called_from_renewthread != 0) {
2903				/*
2904				 * Return EIO so that the flush will be
2905				 * retried later.
2906				 */
2907				error = EIO;
2908				goto done;
2909			    }
2910			    error = newnfs_sigintr(nmp, td);
2911			    if (error)
2912				goto done;
2913			    if (slpflag == PCATCH) {
2914				slpflag = 0;
2915				slptimeo = 2 * hz;
2916			    }
2917			    BO_LOCK(bo);
2918			}
2919		}
2920		if (bo->bo_dirty.bv_cnt != 0 && commit) {
2921			BO_UNLOCK(bo);
2922			goto loop;
2923		}
2924		/*
2925		 * Wait for all the async IO requests to drain
2926		 */
2927		BO_UNLOCK(bo);
2928		mtx_lock(&np->n_mtx);
2929		while (np->n_directio_asyncwr > 0) {
2930			np->n_flag |= NFSYNCWAIT;
2931			error = newnfs_msleep(td, &np->n_directio_asyncwr,
2932			    &np->n_mtx, slpflag | (PRIBIO + 1),
2933			    "nfsfsync", 0);
2934			if (error) {
2935				if (newnfs_sigintr(nmp, td)) {
2936					mtx_unlock(&np->n_mtx);
2937					error = EINTR;
2938					goto done;
2939				}
2940			}
2941		}
2942		mtx_unlock(&np->n_mtx);
2943	} else
2944		BO_UNLOCK(bo);
2945	if (NFSHASPNFS(nmp)) {
2946		nfscl_layoutcommit(vp, td);
2947		/*
2948		 * Invalidate the attribute cache, since writes to a DS
2949		 * won't update the size attribute.
2950		 */
2951		mtx_lock(&np->n_mtx);
2952		np->n_attrstamp = 0;
2953	} else
2954		mtx_lock(&np->n_mtx);
2955	if (np->n_flag & NWRITEERR) {
2956		error = np->n_error;
2957		np->n_flag &= ~NWRITEERR;
2958	}
2959  	if (commit && bo->bo_dirty.bv_cnt == 0 &&
2960	    bo->bo_numoutput == 0 && np->n_directio_asyncwr == 0)
2961  		np->n_flag &= ~NMODIFIED;
2962	mtx_unlock(&np->n_mtx);
2963done:
2964	if (bvec != NULL && bvec != bvec_on_stack)
2965		free(bvec, M_TEMP);
2966	if (error == 0 && commit != 0 && waitfor == MNT_WAIT &&
2967	    (bo->bo_dirty.bv_cnt != 0 || bo->bo_numoutput != 0 ||
2968	     np->n_directio_asyncwr != 0) && trycnt++ < 5) {
2969		/* try, try again... */
2970		passone = 1;
2971		wcred = NULL;
2972		bvec = NULL;
2973		bvecsize = 0;
2974printf("try%d\n", trycnt);
2975		goto again;
2976	}
2977	return (error);
2978}
2979
2980/*
2981 * NFS advisory byte-level locks.
2982 */
2983static int
2984nfs_advlock(struct vop_advlock_args *ap)
2985{
2986	struct vnode *vp = ap->a_vp;
2987	struct ucred *cred;
2988	struct nfsnode *np = VTONFS(ap->a_vp);
2989	struct proc *p = (struct proc *)ap->a_id;
2990	struct thread *td = curthread;	/* XXX */
2991	struct vattr va;
2992	int ret, error = EOPNOTSUPP;
2993	u_quad_t size;
2994
2995	if (NFS_ISV4(vp) && (ap->a_flags & (F_POSIX | F_FLOCK)) != 0) {
2996		if (vp->v_type != VREG)
2997			return (EINVAL);
2998		if ((ap->a_flags & F_POSIX) != 0)
2999			cred = p->p_ucred;
3000		else
3001			cred = td->td_ucred;
3002		NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY);
3003		if (vp->v_iflag & VI_DOOMED) {
3004			NFSVOPUNLOCK(vp, 0);
3005			return (EBADF);
3006		}
3007
3008		/*
3009		 * If this is unlocking a write locked region, flush and
3010		 * commit them before unlocking. This is required by
3011		 * RFC3530 Sec. 9.3.2.
3012		 */
3013		if (ap->a_op == F_UNLCK &&
3014		    nfscl_checkwritelocked(vp, ap->a_fl, cred, td, ap->a_id,
3015		    ap->a_flags))
3016			(void) ncl_flush(vp, MNT_WAIT, cred, td, 1, 0);
3017
3018		/*
3019		 * Loop around doing the lock op, while a blocking lock
3020		 * must wait for the lock op to succeed.
3021		 */
3022		do {
3023			ret = nfsrpc_advlock(vp, np->n_size, ap->a_op,
3024			    ap->a_fl, 0, cred, td, ap->a_id, ap->a_flags);
3025			if (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) &&
3026			    ap->a_op == F_SETLK) {
3027				NFSVOPUNLOCK(vp, 0);
3028				error = nfs_catnap(PZERO | PCATCH, ret,
3029				    "ncladvl");
3030				if (error)
3031					return (EINTR);
3032				NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY);
3033				if (vp->v_iflag & VI_DOOMED) {
3034					NFSVOPUNLOCK(vp, 0);
3035					return (EBADF);
3036				}
3037			}
3038		} while (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) &&
3039		     ap->a_op == F_SETLK);
3040		if (ret == NFSERR_DENIED) {
3041			NFSVOPUNLOCK(vp, 0);
3042			return (EAGAIN);
3043		} else if (ret == EINVAL || ret == EBADF || ret == EINTR) {
3044			NFSVOPUNLOCK(vp, 0);
3045			return (ret);
3046		} else if (ret != 0) {
3047			NFSVOPUNLOCK(vp, 0);
3048			return (EACCES);
3049		}
3050
3051		/*
3052		 * Now, if we just got a lock, invalidate data in the buffer
3053		 * cache, as required, so that the coherency conforms with
3054		 * RFC3530 Sec. 9.3.2.
3055		 */
3056		if (ap->a_op == F_SETLK) {
3057			if ((np->n_flag & NMODIFIED) == 0) {
3058				np->n_attrstamp = 0;
3059				KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
3060				ret = VOP_GETATTR(vp, &va, cred);
3061			}
3062			if ((np->n_flag & NMODIFIED) || ret ||
3063			    np->n_change != va.va_filerev) {
3064				(void) ncl_vinvalbuf(vp, V_SAVE, td, 1);
3065				np->n_attrstamp = 0;
3066				KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
3067				ret = VOP_GETATTR(vp, &va, cred);
3068				if (!ret) {
3069					np->n_mtime = va.va_mtime;
3070					np->n_change = va.va_filerev;
3071				}
3072			}
3073			/* Mark that a file lock has been acquired. */
3074			mtx_lock(&np->n_mtx);
3075			np->n_flag |= NHASBEENLOCKED;
3076			mtx_unlock(&np->n_mtx);
3077		}
3078		NFSVOPUNLOCK(vp, 0);
3079		return (0);
3080	} else if (!NFS_ISV4(vp)) {
3081		error = NFSVOPLOCK(vp, LK_SHARED);
3082		if (error)
3083			return (error);
3084		if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) {
3085			size = VTONFS(vp)->n_size;
3086			NFSVOPUNLOCK(vp, 0);
3087			error = lf_advlock(ap, &(vp->v_lockf), size);
3088		} else {
3089			if (nfs_advlock_p != NULL)
3090				error = nfs_advlock_p(ap);
3091			else {
3092				NFSVOPUNLOCK(vp, 0);
3093				error = ENOLCK;
3094			}
3095		}
3096		if (error == 0 && ap->a_op == F_SETLK) {
3097			error = NFSVOPLOCK(vp, LK_SHARED);
3098			if (error == 0) {
3099				/* Mark that a file lock has been acquired. */
3100				mtx_lock(&np->n_mtx);
3101				np->n_flag |= NHASBEENLOCKED;
3102				mtx_unlock(&np->n_mtx);
3103				NFSVOPUNLOCK(vp, 0);
3104			}
3105		}
3106	}
3107	return (error);
3108}
3109
3110/*
3111 * NFS advisory byte-level locks.
3112 */
3113static int
3114nfs_advlockasync(struct vop_advlockasync_args *ap)
3115{
3116	struct vnode *vp = ap->a_vp;
3117	u_quad_t size;
3118	int error;
3119
3120	if (NFS_ISV4(vp))
3121		return (EOPNOTSUPP);
3122	error = NFSVOPLOCK(vp, LK_SHARED);
3123	if (error)
3124		return (error);
3125	if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) {
3126		size = VTONFS(vp)->n_size;
3127		NFSVOPUNLOCK(vp, 0);
3128		error = lf_advlockasync(ap, &(vp->v_lockf), size);
3129	} else {
3130		NFSVOPUNLOCK(vp, 0);
3131		error = EOPNOTSUPP;
3132	}
3133	return (error);
3134}
3135
3136/*
3137 * Print out the contents of an nfsnode.
3138 */
3139static int
3140nfs_print(struct vop_print_args *ap)
3141{
3142	struct vnode *vp = ap->a_vp;
3143	struct nfsnode *np = VTONFS(vp);
3144
3145	printf("\tfileid %ld fsid 0x%x", np->n_vattr.na_fileid,
3146	    np->n_vattr.na_fsid);
3147	if (vp->v_type == VFIFO)
3148		fifo_printinfo(vp);
3149	printf("\n");
3150	return (0);
3151}
3152
3153/*
3154 * This is the "real" nfs::bwrite(struct buf*).
3155 * We set B_CACHE if this is a VMIO buffer.
3156 */
3157int
3158ncl_writebp(struct buf *bp, int force __unused, struct thread *td)
3159{
3160	int s;
3161	int oldflags = bp->b_flags;
3162#if 0
3163	int retv = 1;
3164	off_t off;
3165#endif
3166
3167	BUF_ASSERT_HELD(bp);
3168
3169	if (bp->b_flags & B_INVAL) {
3170		brelse(bp);
3171		return(0);
3172	}
3173
3174	bp->b_flags |= B_CACHE;
3175
3176	/*
3177	 * Undirty the bp.  We will redirty it later if the I/O fails.
3178	 */
3179
3180	s = splbio();
3181	bundirty(bp);
3182	bp->b_flags &= ~B_DONE;
3183	bp->b_ioflags &= ~BIO_ERROR;
3184	bp->b_iocmd = BIO_WRITE;
3185
3186	bufobj_wref(bp->b_bufobj);
3187	curthread->td_ru.ru_oublock++;
3188	splx(s);
3189
3190	/*
3191	 * Note: to avoid loopback deadlocks, we do not
3192	 * assign b_runningbufspace.
3193	 */
3194	vfs_busy_pages(bp, 1);
3195
3196	BUF_KERNPROC(bp);
3197	bp->b_iooffset = dbtob(bp->b_blkno);
3198	bstrategy(bp);
3199
3200	if( (oldflags & B_ASYNC) == 0) {
3201		int rtval = bufwait(bp);
3202
3203		if (oldflags & B_DELWRI) {
3204			s = splbio();
3205			reassignbuf(bp);
3206			splx(s);
3207		}
3208		brelse(bp);
3209		return (rtval);
3210	}
3211
3212	return (0);
3213}
3214
3215/*
3216 * nfs special file access vnode op.
3217 * Essentially just get vattr and then imitate iaccess() since the device is
3218 * local to the client.
3219 */
3220static int
3221nfsspec_access(struct vop_access_args *ap)
3222{
3223	struct vattr *vap;
3224	struct ucred *cred = ap->a_cred;
3225	struct vnode *vp = ap->a_vp;
3226	accmode_t accmode = ap->a_accmode;
3227	struct vattr vattr;
3228	int error;
3229
3230	/*
3231	 * Disallow write attempts on filesystems mounted read-only;
3232	 * unless the file is a socket, fifo, or a block or character
3233	 * device resident on the filesystem.
3234	 */
3235	if ((accmode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
3236		switch (vp->v_type) {
3237		case VREG:
3238		case VDIR:
3239		case VLNK:
3240			return (EROFS);
3241		default:
3242			break;
3243		}
3244	}
3245	vap = &vattr;
3246	error = VOP_GETATTR(vp, vap, cred);
3247	if (error)
3248		goto out;
3249	error  = vaccess(vp->v_type, vap->va_mode, vap->va_uid, vap->va_gid,
3250	    accmode, cred, NULL);
3251out:
3252	return error;
3253}
3254
3255/*
3256 * Read wrapper for fifos.
3257 */
3258static int
3259nfsfifo_read(struct vop_read_args *ap)
3260{
3261	struct nfsnode *np = VTONFS(ap->a_vp);
3262	int error;
3263
3264	/*
3265	 * Set access flag.
3266	 */
3267	mtx_lock(&np->n_mtx);
3268	np->n_flag |= NACC;
3269	vfs_timestamp(&np->n_atim);
3270	mtx_unlock(&np->n_mtx);
3271	error = fifo_specops.vop_read(ap);
3272	return error;
3273}
3274
3275/*
3276 * Write wrapper for fifos.
3277 */
3278static int
3279nfsfifo_write(struct vop_write_args *ap)
3280{
3281	struct nfsnode *np = VTONFS(ap->a_vp);
3282
3283	/*
3284	 * Set update flag.
3285	 */
3286	mtx_lock(&np->n_mtx);
3287	np->n_flag |= NUPD;
3288	vfs_timestamp(&np->n_mtim);
3289	mtx_unlock(&np->n_mtx);
3290	return(fifo_specops.vop_write(ap));
3291}
3292
3293/*
3294 * Close wrapper for fifos.
3295 *
3296 * Update the times on the nfsnode then do fifo close.
3297 */
3298static int
3299nfsfifo_close(struct vop_close_args *ap)
3300{
3301	struct vnode *vp = ap->a_vp;
3302	struct nfsnode *np = VTONFS(vp);
3303	struct vattr vattr;
3304	struct timespec ts;
3305
3306	mtx_lock(&np->n_mtx);
3307	if (np->n_flag & (NACC | NUPD)) {
3308		vfs_timestamp(&ts);
3309		if (np->n_flag & NACC)
3310			np->n_atim = ts;
3311		if (np->n_flag & NUPD)
3312			np->n_mtim = ts;
3313		np->n_flag |= NCHG;
3314		if (vrefcnt(vp) == 1 &&
3315		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3316			VATTR_NULL(&vattr);
3317			if (np->n_flag & NACC)
3318				vattr.va_atime = np->n_atim;
3319			if (np->n_flag & NUPD)
3320				vattr.va_mtime = np->n_mtim;
3321			mtx_unlock(&np->n_mtx);
3322			(void)VOP_SETATTR(vp, &vattr, ap->a_cred);
3323			goto out;
3324		}
3325	}
3326	mtx_unlock(&np->n_mtx);
3327out:
3328	return (fifo_specops.vop_close(ap));
3329}
3330
3331/*
3332 * Just call ncl_writebp() with the force argument set to 1.
3333 *
3334 * NOTE: B_DONE may or may not be set in a_bp on call.
3335 */
3336static int
3337nfs_bwrite(struct buf *bp)
3338{
3339
3340	return (ncl_writebp(bp, 1, curthread));
3341}
3342
3343struct buf_ops buf_ops_newnfs = {
3344	.bop_name	=	"buf_ops_nfs",
3345	.bop_write	=	nfs_bwrite,
3346	.bop_strategy	=	bufstrategy,
3347	.bop_sync	=	bufsync,
3348	.bop_bdflush	=	bufbdflush,
3349};
3350
3351static int
3352nfs_getacl(struct vop_getacl_args *ap)
3353{
3354	int error;
3355
3356	if (ap->a_type != ACL_TYPE_NFS4)
3357		return (EOPNOTSUPP);
3358	error = nfsrpc_getacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp,
3359	    NULL);
3360	if (error > NFSERR_STALE) {
3361		(void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0);
3362		error = EPERM;
3363	}
3364	return (error);
3365}
3366
3367static int
3368nfs_setacl(struct vop_setacl_args *ap)
3369{
3370	int error;
3371
3372	if (ap->a_type != ACL_TYPE_NFS4)
3373		return (EOPNOTSUPP);
3374	error = nfsrpc_setacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp,
3375	    NULL);
3376	if (error > NFSERR_STALE) {
3377		(void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0);
3378		error = EPERM;
3379	}
3380	return (error);
3381}
3382
3383/*
3384 * Return POSIX pathconf information applicable to nfs filesystems.
3385 */
3386static int
3387nfs_pathconf(struct vop_pathconf_args *ap)
3388{
3389	struct nfsv3_pathconf pc;
3390	struct nfsvattr nfsva;
3391	struct vnode *vp = ap->a_vp;
3392	struct thread *td = curthread;
3393	int attrflag, error;
3394
3395	if ((NFS_ISV34(vp) && (ap->a_name == _PC_LINK_MAX ||
3396	    ap->a_name == _PC_NAME_MAX || ap->a_name == _PC_CHOWN_RESTRICTED ||
3397	    ap->a_name == _PC_NO_TRUNC)) ||
3398	    (NFS_ISV4(vp) && ap->a_name == _PC_ACL_NFS4)) {
3399		/*
3400		 * Since only the above 4 a_names are returned by the NFSv3
3401		 * Pathconf RPC, there is no point in doing it for others.
3402		 * For NFSv4, the Pathconf RPC (actually a Getattr Op.) can
3403		 * be used for _PC_NFS4_ACL as well.
3404		 */
3405		error = nfsrpc_pathconf(vp, &pc, td->td_ucred, td, &nfsva,
3406		    &attrflag, NULL);
3407		if (attrflag != 0)
3408			(void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0,
3409			    1);
3410		if (error != 0)
3411			return (error);
3412	} else {
3413		/*
3414		 * For NFSv2 (or NFSv3 when not one of the above 4 a_names),
3415		 * just fake them.
3416		 */
3417		pc.pc_linkmax = LINK_MAX;
3418		pc.pc_namemax = NFS_MAXNAMLEN;
3419		pc.pc_notrunc = 1;
3420		pc.pc_chownrestricted = 1;
3421		pc.pc_caseinsensitive = 0;
3422		pc.pc_casepreserving = 1;
3423		error = 0;
3424	}
3425	switch (ap->a_name) {
3426	case _PC_LINK_MAX:
3427		*ap->a_retval = pc.pc_linkmax;
3428		break;
3429	case _PC_NAME_MAX:
3430		*ap->a_retval = pc.pc_namemax;
3431		break;
3432	case _PC_PATH_MAX:
3433		*ap->a_retval = PATH_MAX;
3434		break;
3435	case _PC_PIPE_BUF:
3436		*ap->a_retval = PIPE_BUF;
3437		break;
3438	case _PC_CHOWN_RESTRICTED:
3439		*ap->a_retval = pc.pc_chownrestricted;
3440		break;
3441	case _PC_NO_TRUNC:
3442		*ap->a_retval = pc.pc_notrunc;
3443		break;
3444	case _PC_ACL_EXTENDED:
3445		*ap->a_retval = 0;
3446		break;
3447	case _PC_ACL_NFS4:
3448		if (NFS_ISV4(vp) && nfsrv_useacl != 0 && attrflag != 0 &&
3449		    NFSISSET_ATTRBIT(&nfsva.na_suppattr, NFSATTRBIT_ACL))
3450			*ap->a_retval = 1;
3451		else
3452			*ap->a_retval = 0;
3453		break;
3454	case _PC_ACL_PATH_MAX:
3455		if (NFS_ISV4(vp))
3456			*ap->a_retval = ACL_MAX_ENTRIES;
3457		else
3458			*ap->a_retval = 3;
3459		break;
3460	case _PC_MAC_PRESENT:
3461		*ap->a_retval = 0;
3462		break;
3463	case _PC_ASYNC_IO:
3464		/* _PC_ASYNC_IO should have been handled by upper layers. */
3465		KASSERT(0, ("_PC_ASYNC_IO should not get here"));
3466		error = EINVAL;
3467		break;
3468	case _PC_PRIO_IO:
3469		*ap->a_retval = 0;
3470		break;
3471	case _PC_SYNC_IO:
3472		*ap->a_retval = 0;
3473		break;
3474	case _PC_ALLOC_SIZE_MIN:
3475		*ap->a_retval = vp->v_mount->mnt_stat.f_bsize;
3476		break;
3477	case _PC_FILESIZEBITS:
3478		if (NFS_ISV34(vp))
3479			*ap->a_retval = 64;
3480		else
3481			*ap->a_retval = 32;
3482		break;
3483	case _PC_REC_INCR_XFER_SIZE:
3484		*ap->a_retval = vp->v_mount->mnt_stat.f_iosize;
3485		break;
3486	case _PC_REC_MAX_XFER_SIZE:
3487		*ap->a_retval = -1; /* means ``unlimited'' */
3488		break;
3489	case _PC_REC_MIN_XFER_SIZE:
3490		*ap->a_retval = vp->v_mount->mnt_stat.f_iosize;
3491		break;
3492	case _PC_REC_XFER_ALIGN:
3493		*ap->a_retval = PAGE_SIZE;
3494		break;
3495	case _PC_SYMLINK_MAX:
3496		*ap->a_retval = NFS_MAXPATHLEN;
3497		break;
3498
3499	default:
3500		error = EINVAL;
3501		break;
3502	}
3503	return (error);
3504}
3505
3506