1/******************************************************************************
2 * xen.h
3 *
4 * Guest OS interface to Xen.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 *
24 * Copyright (c) 2004, K A Fraser
25 */
26
27#ifndef __XEN_PUBLIC_XEN_H__
28#define __XEN_PUBLIC_XEN_H__
29
30#include "xen-compat.h"
31
32#if defined(__i386__) || defined(__x86_64__)
33#include "arch-x86/xen.h"
34#elif defined(__arm__) || defined (__aarch64__)
35#include "arch-arm.h"
36#else
37#error "Unsupported architecture"
38#endif
39
40#ifndef __ASSEMBLY__
41/* Guest handles for primitive C types. */
42DEFINE_XEN_GUEST_HANDLE(char);
43__DEFINE_XEN_GUEST_HANDLE(uchar, unsigned char);
44DEFINE_XEN_GUEST_HANDLE(int);
45__DEFINE_XEN_GUEST_HANDLE(uint,  unsigned int);
46#if __XEN_INTERFACE_VERSION__ < 0x00040300
47DEFINE_XEN_GUEST_HANDLE(long);
48__DEFINE_XEN_GUEST_HANDLE(ulong, unsigned long);
49#endif
50DEFINE_XEN_GUEST_HANDLE(void);
51
52DEFINE_XEN_GUEST_HANDLE(uint64_t);
53DEFINE_XEN_GUEST_HANDLE(xen_pfn_t);
54DEFINE_XEN_GUEST_HANDLE(xen_ulong_t);
55
56/* Turn a plain number into a C unsigned (long (long)) constant. */
57#define __xen_mk_uint(x)  x ## U
58#define __xen_mk_ulong(x) x ## UL
59#ifndef __xen_mk_ullong
60# define __xen_mk_ullong(x) x ## ULL
61#endif
62#define xen_mk_uint(x)    __xen_mk_uint(x)
63#define xen_mk_ulong(x)   __xen_mk_ulong(x)
64#define xen_mk_ullong(x)  __xen_mk_ullong(x)
65
66#else
67
68/* In assembly code we cannot use C numeric constant suffixes. */
69#define xen_mk_uint(x)   x
70#define xen_mk_ulong(x)  x
71#define xen_mk_ullong(x) x
72
73#endif
74
75/*
76 * HYPERCALLS
77 */
78
79/* `incontents 100 hcalls List of hypercalls
80 * ` enum hypercall_num { // __HYPERVISOR_* => HYPERVISOR_*()
81 */
82
83#define __HYPERVISOR_set_trap_table        0
84#define __HYPERVISOR_mmu_update            1
85#define __HYPERVISOR_set_gdt               2
86#define __HYPERVISOR_stack_switch          3
87#define __HYPERVISOR_set_callbacks         4
88#define __HYPERVISOR_fpu_taskswitch        5
89#define __HYPERVISOR_sched_op_compat       6 /* compat since 0x00030101 */
90#define __HYPERVISOR_platform_op           7
91#define __HYPERVISOR_set_debugreg          8
92#define __HYPERVISOR_get_debugreg          9
93#define __HYPERVISOR_update_descriptor    10
94#define __HYPERVISOR_memory_op            12
95#define __HYPERVISOR_multicall            13
96#define __HYPERVISOR_update_va_mapping    14
97#define __HYPERVISOR_set_timer_op         15
98#define __HYPERVISOR_event_channel_op_compat 16 /* compat since 0x00030202 */
99#define __HYPERVISOR_xen_version          17
100#define __HYPERVISOR_console_io           18
101#define __HYPERVISOR_physdev_op_compat    19 /* compat since 0x00030202 */
102#define __HYPERVISOR_grant_table_op       20
103#define __HYPERVISOR_vm_assist            21
104#define __HYPERVISOR_update_va_mapping_otherdomain 22
105#define __HYPERVISOR_iret                 23 /* x86 only */
106#define __HYPERVISOR_vcpu_op              24
107#define __HYPERVISOR_set_segment_base     25 /* x86/64 only */
108#define __HYPERVISOR_mmuext_op            26
109#define __HYPERVISOR_xsm_op               27
110#define __HYPERVISOR_nmi_op               28
111#define __HYPERVISOR_sched_op             29
112#define __HYPERVISOR_callback_op          30
113#define __HYPERVISOR_xenoprof_op          31
114#define __HYPERVISOR_event_channel_op     32
115#define __HYPERVISOR_physdev_op           33
116#define __HYPERVISOR_hvm_op               34
117#define __HYPERVISOR_sysctl               35
118#define __HYPERVISOR_domctl               36
119#define __HYPERVISOR_kexec_op             37
120#define __HYPERVISOR_tmem_op              38
121#define __HYPERVISOR_xc_reserved_op       39 /* reserved for XenClient */
122#define __HYPERVISOR_xenpmu_op            40
123#define __HYPERVISOR_dm_op                41
124
125/* Architecture-specific hypercall definitions. */
126#define __HYPERVISOR_arch_0               48
127#define __HYPERVISOR_arch_1               49
128#define __HYPERVISOR_arch_2               50
129#define __HYPERVISOR_arch_3               51
130#define __HYPERVISOR_arch_4               52
131#define __HYPERVISOR_arch_5               53
132#define __HYPERVISOR_arch_6               54
133#define __HYPERVISOR_arch_7               55
134
135/* ` } */
136
137/*
138 * HYPERCALL COMPATIBILITY.
139 */
140
141/* New sched_op hypercall introduced in 0x00030101. */
142#if __XEN_INTERFACE_VERSION__ < 0x00030101
143#undef __HYPERVISOR_sched_op
144#define __HYPERVISOR_sched_op __HYPERVISOR_sched_op_compat
145#endif
146
147/* New event-channel and physdev hypercalls introduced in 0x00030202. */
148#if __XEN_INTERFACE_VERSION__ < 0x00030202
149#undef __HYPERVISOR_event_channel_op
150#define __HYPERVISOR_event_channel_op __HYPERVISOR_event_channel_op_compat
151#undef __HYPERVISOR_physdev_op
152#define __HYPERVISOR_physdev_op __HYPERVISOR_physdev_op_compat
153#endif
154
155/* New platform_op hypercall introduced in 0x00030204. */
156#if __XEN_INTERFACE_VERSION__ < 0x00030204
157#define __HYPERVISOR_dom0_op __HYPERVISOR_platform_op
158#endif
159
160/*
161 * VIRTUAL INTERRUPTS
162 *
163 * Virtual interrupts that a guest OS may receive from Xen.
164 *
165 * In the side comments, 'V.' denotes a per-VCPU VIRQ while 'G.' denotes a
166 * global VIRQ. The former can be bound once per VCPU and cannot be re-bound.
167 * The latter can be allocated only once per guest: they must initially be
168 * allocated to VCPU0 but can subsequently be re-bound.
169 */
170/* ` enum virq { */
171#define VIRQ_TIMER      0  /* V. Timebase update, and/or requested timeout.  */
172#define VIRQ_DEBUG      1  /* V. Request guest to dump debug info.           */
173#define VIRQ_CONSOLE    2  /* G. (DOM0) Bytes received on emergency console. */
174#define VIRQ_DOM_EXC    3  /* G. (DOM0) Exceptional event for some domain.   */
175#define VIRQ_TBUF       4  /* G. (DOM0) Trace buffer has records available.  */
176#define VIRQ_DEBUGGER   6  /* G. (DOM0) A domain has paused for debugging.   */
177#define VIRQ_XENOPROF   7  /* V. XenOprofile interrupt: new sample available */
178#define VIRQ_CON_RING   8  /* G. (DOM0) Bytes received on console            */
179#define VIRQ_PCPU_STATE 9  /* G. (DOM0) PCPU state changed                   */
180#define VIRQ_MEM_EVENT  10 /* G. (DOM0) A memory event has occured           */
181#define VIRQ_XC_RESERVED 11 /* G. Reserved for XenClient                     */
182#define VIRQ_ENOMEM     12 /* G. (DOM0) Low on heap memory       */
183#define VIRQ_XENPMU     13 /* V.  PMC interrupt                              */
184
185/* Architecture-specific VIRQ definitions. */
186#define VIRQ_ARCH_0    16
187#define VIRQ_ARCH_1    17
188#define VIRQ_ARCH_2    18
189#define VIRQ_ARCH_3    19
190#define VIRQ_ARCH_4    20
191#define VIRQ_ARCH_5    21
192#define VIRQ_ARCH_6    22
193#define VIRQ_ARCH_7    23
194/* ` } */
195
196#define NR_VIRQS       24
197
198/*
199 * ` enum neg_errnoval
200 * ` HYPERVISOR_mmu_update(const struct mmu_update reqs[],
201 * `                       unsigned count, unsigned *done_out,
202 * `                       unsigned foreigndom)
203 * `
204 * @reqs is an array of mmu_update_t structures ((ptr, val) pairs).
205 * @count is the length of the above array.
206 * @pdone is an output parameter indicating number of completed operations
207 * @foreigndom[15:0]: FD, the expected owner of data pages referenced in this
208 *                    hypercall invocation. Can be DOMID_SELF.
209 * @foreigndom[31:16]: PFD, the expected owner of pagetable pages referenced
210 *                     in this hypercall invocation. The value of this field
211 *                     (x) encodes the PFD as follows:
212 *                     x == 0 => PFD == DOMID_SELF
213 *                     x != 0 => PFD == x - 1
214 *
215 * Sub-commands: ptr[1:0] specifies the appropriate MMU_* command.
216 * -------------
217 * ptr[1:0] == MMU_NORMAL_PT_UPDATE:
218 * Updates an entry in a page table belonging to PFD. If updating an L1 table,
219 * and the new table entry is valid/present, the mapped frame must belong to
220 * FD. If attempting to map an I/O page then the caller assumes the privilege
221 * of the FD.
222 * FD == DOMID_IO: Permit /only/ I/O mappings, at the priv level of the caller.
223 * FD == DOMID_XEN: Map restricted areas of Xen's heap space.
224 * ptr[:2]  -- Machine address of the page-table entry to modify.
225 * val      -- Value to write.
226 *
227 * There also certain implicit requirements when using this hypercall. The
228 * pages that make up a pagetable must be mapped read-only in the guest.
229 * This prevents uncontrolled guest updates to the pagetable. Xen strictly
230 * enforces this, and will disallow any pagetable update which will end up
231 * mapping pagetable page RW, and will disallow using any writable page as a
232 * pagetable. In practice it means that when constructing a page table for a
233 * process, thread, etc, we MUST be very dilligient in following these rules:
234 *  1). Start with top-level page (PGD or in Xen language: L4). Fill out
235 *      the entries.
236 *  2). Keep on going, filling out the upper (PUD or L3), and middle (PMD
237 *      or L2).
238 *  3). Start filling out the PTE table (L1) with the PTE entries. Once
239 *  	done, make sure to set each of those entries to RO (so writeable bit
240 *  	is unset). Once that has been completed, set the PMD (L2) for this
241 *  	PTE table as RO.
242 *  4). When completed with all of the PMD (L2) entries, and all of them have
243 *  	been set to RO, make sure to set RO the PUD (L3). Do the same
244 *  	operation on PGD (L4) pagetable entries that have a PUD (L3) entry.
245 *  5). Now before you can use those pages (so setting the cr3), you MUST also
246 *      pin them so that the hypervisor can verify the entries. This is done
247 *      via the HYPERVISOR_mmuext_op(MMUEXT_PIN_L4_TABLE, guest physical frame
248 *      number of the PGD (L4)). And this point the HYPERVISOR_mmuext_op(
249 *      MMUEXT_NEW_BASEPTR, guest physical frame number of the PGD (L4)) can be
250 *      issued.
251 * For 32-bit guests, the L4 is not used (as there is less pagetables), so
252 * instead use L3.
253 * At this point the pagetables can be modified using the MMU_NORMAL_PT_UPDATE
254 * hypercall. Also if so desired the OS can also try to write to the PTE
255 * and be trapped by the hypervisor (as the PTE entry is RO).
256 *
257 * To deallocate the pages, the operations are the reverse of the steps
258 * mentioned above. The argument is MMUEXT_UNPIN_TABLE for all levels and the
259 * pagetable MUST not be in use (meaning that the cr3 is not set to it).
260 *
261 * ptr[1:0] == MMU_MACHPHYS_UPDATE:
262 * Updates an entry in the machine->pseudo-physical mapping table.
263 * ptr[:2]  -- Machine address within the frame whose mapping to modify.
264 *             The frame must belong to the FD, if one is specified.
265 * val      -- Value to write into the mapping entry.
266 *
267 * ptr[1:0] == MMU_PT_UPDATE_PRESERVE_AD:
268 * As MMU_NORMAL_PT_UPDATE above, but A/D bits currently in the PTE are ORed
269 * with those in @val.
270 *
271 * ptr[1:0] == MMU_PT_UPDATE_NO_TRANSLATE:
272 * As MMU_NORMAL_PT_UPDATE above, but @val is not translated though FD
273 * page tables.
274 *
275 * @val is usually the machine frame number along with some attributes.
276 * The attributes by default follow the architecture defined bits. Meaning that
277 * if this is a X86_64 machine and four page table layout is used, the layout
278 * of val is:
279 *  - 63 if set means No execute (NX)
280 *  - 46-13 the machine frame number
281 *  - 12 available for guest
282 *  - 11 available for guest
283 *  - 10 available for guest
284 *  - 9 available for guest
285 *  - 8 global
286 *  - 7 PAT (PSE is disabled, must use hypercall to make 4MB or 2MB pages)
287 *  - 6 dirty
288 *  - 5 accessed
289 *  - 4 page cached disabled
290 *  - 3 page write through
291 *  - 2 userspace accessible
292 *  - 1 writeable
293 *  - 0 present
294 *
295 *  The one bits that does not fit with the default layout is the PAGE_PSE
296 *  also called PAGE_PAT). The MMUEXT_[UN]MARK_SUPER arguments to the
297 *  HYPERVISOR_mmuext_op serve as mechanism to set a pagetable to be 4MB
298 *  (or 2MB) instead of using the PAGE_PSE bit.
299 *
300 *  The reason that the PAGE_PSE (bit 7) is not being utilized is due to Xen
301 *  using it as the Page Attribute Table (PAT) bit - for details on it please
302 *  refer to Intel SDM 10.12. The PAT allows to set the caching attributes of
303 *  pages instead of using MTRRs.
304 *
305 *  The PAT MSR is as follows (it is a 64-bit value, each entry is 8 bits):
306 *                    PAT4                 PAT0
307 *  +-----+-----+----+----+----+-----+----+----+
308 *  | UC  | UC- | WC | WB | UC | UC- | WC | WB |  <= Linux
309 *  +-----+-----+----+----+----+-----+----+----+
310 *  | UC  | UC- | WT | WB | UC | UC- | WT | WB |  <= BIOS (default when machine boots)
311 *  +-----+-----+----+----+----+-----+----+----+
312 *  | rsv | rsv | WP | WC | UC | UC- | WT | WB |  <= Xen
313 *  +-----+-----+----+----+----+-----+----+----+
314 *
315 *  The lookup of this index table translates to looking up
316 *  Bit 7, Bit 4, and Bit 3 of val entry:
317 *
318 *  PAT/PSE (bit 7) ... PCD (bit 4) .. PWT (bit 3).
319 *
320 *  If all bits are off, then we are using PAT0. If bit 3 turned on,
321 *  then we are using PAT1, if bit 3 and bit 4, then PAT2..
322 *
323 *  As you can see, the Linux PAT1 translates to PAT4 under Xen. Which means
324 *  that if a guest that follows Linux's PAT setup and would like to set Write
325 *  Combined on pages it MUST use PAT4 entry. Meaning that Bit 7 (PAGE_PAT) is
326 *  set. For example, under Linux it only uses PAT0, PAT1, and PAT2 for the
327 *  caching as:
328 *
329 *   WB = none (so PAT0)
330 *   WC = PWT (bit 3 on)
331 *   UC = PWT | PCD (bit 3 and 4 are on).
332 *
333 * To make it work with Xen, it needs to translate the WC bit as so:
334 *
335 *  PWT (so bit 3 on) --> PAT (so bit 7 is on) and clear bit 3
336 *
337 * And to translate back it would:
338 *
339 * PAT (bit 7 on) --> PWT (bit 3 on) and clear bit 7.
340 */
341#define MMU_NORMAL_PT_UPDATE       0 /* checked '*ptr = val'. ptr is MA.      */
342#define MMU_MACHPHYS_UPDATE        1 /* ptr = MA of frame to modify entry for */
343#define MMU_PT_UPDATE_PRESERVE_AD  2 /* atomically: *ptr = val | (*ptr&(A|D)) */
344#define MMU_PT_UPDATE_NO_TRANSLATE 3 /* checked '*ptr = val'. ptr is MA.      */
345                                     /* val never translated.                 */
346
347/*
348 * MMU EXTENDED OPERATIONS
349 *
350 * ` enum neg_errnoval
351 * ` HYPERVISOR_mmuext_op(mmuext_op_t uops[],
352 * `                      unsigned int count,
353 * `                      unsigned int *pdone,
354 * `                      unsigned int foreigndom)
355 */
356/* HYPERVISOR_mmuext_op() accepts a list of mmuext_op structures.
357 * A foreigndom (FD) can be specified (or DOMID_SELF for none).
358 * Where the FD has some effect, it is described below.
359 *
360 * cmd: MMUEXT_(UN)PIN_*_TABLE
361 * mfn: Machine frame number to be (un)pinned as a p.t. page.
362 *      The frame must belong to the FD, if one is specified.
363 *
364 * cmd: MMUEXT_NEW_BASEPTR
365 * mfn: Machine frame number of new page-table base to install in MMU.
366 *
367 * cmd: MMUEXT_NEW_USER_BASEPTR [x86/64 only]
368 * mfn: Machine frame number of new page-table base to install in MMU
369 *      when in user space.
370 *
371 * cmd: MMUEXT_TLB_FLUSH_LOCAL
372 * No additional arguments. Flushes local TLB.
373 *
374 * cmd: MMUEXT_INVLPG_LOCAL
375 * linear_addr: Linear address to be flushed from the local TLB.
376 *
377 * cmd: MMUEXT_TLB_FLUSH_MULTI
378 * vcpumask: Pointer to bitmap of VCPUs to be flushed.
379 *
380 * cmd: MMUEXT_INVLPG_MULTI
381 * linear_addr: Linear address to be flushed.
382 * vcpumask: Pointer to bitmap of VCPUs to be flushed.
383 *
384 * cmd: MMUEXT_TLB_FLUSH_ALL
385 * No additional arguments. Flushes all VCPUs' TLBs.
386 *
387 * cmd: MMUEXT_INVLPG_ALL
388 * linear_addr: Linear address to be flushed from all VCPUs' TLBs.
389 *
390 * cmd: MMUEXT_FLUSH_CACHE
391 * No additional arguments. Writes back and flushes cache contents.
392 *
393 * cmd: MMUEXT_FLUSH_CACHE_GLOBAL
394 * No additional arguments. Writes back and flushes cache contents
395 * on all CPUs in the system.
396 *
397 * cmd: MMUEXT_SET_LDT
398 * linear_addr: Linear address of LDT base (NB. must be page-aligned).
399 * nr_ents: Number of entries in LDT.
400 *
401 * cmd: MMUEXT_CLEAR_PAGE
402 * mfn: Machine frame number to be cleared.
403 *
404 * cmd: MMUEXT_COPY_PAGE
405 * mfn: Machine frame number of the destination page.
406 * src_mfn: Machine frame number of the source page.
407 *
408 * cmd: MMUEXT_[UN]MARK_SUPER
409 * mfn: Machine frame number of head of superpage to be [un]marked.
410 */
411/* ` enum mmuext_cmd { */
412#define MMUEXT_PIN_L1_TABLE      0
413#define MMUEXT_PIN_L2_TABLE      1
414#define MMUEXT_PIN_L3_TABLE      2
415#define MMUEXT_PIN_L4_TABLE      3
416#define MMUEXT_UNPIN_TABLE       4
417#define MMUEXT_NEW_BASEPTR       5
418#define MMUEXT_TLB_FLUSH_LOCAL   6
419#define MMUEXT_INVLPG_LOCAL      7
420#define MMUEXT_TLB_FLUSH_MULTI   8
421#define MMUEXT_INVLPG_MULTI      9
422#define MMUEXT_TLB_FLUSH_ALL    10
423#define MMUEXT_INVLPG_ALL       11
424#define MMUEXT_FLUSH_CACHE      12
425#define MMUEXT_SET_LDT          13
426#define MMUEXT_NEW_USER_BASEPTR 15
427#define MMUEXT_CLEAR_PAGE       16
428#define MMUEXT_COPY_PAGE        17
429#define MMUEXT_FLUSH_CACHE_GLOBAL 18
430#define MMUEXT_MARK_SUPER       19
431#define MMUEXT_UNMARK_SUPER     20
432/* ` } */
433
434#ifndef __ASSEMBLY__
435struct mmuext_op {
436    unsigned int cmd; /* => enum mmuext_cmd */
437    union {
438        /* [UN]PIN_TABLE, NEW_BASEPTR, NEW_USER_BASEPTR
439         * CLEAR_PAGE, COPY_PAGE, [UN]MARK_SUPER */
440        xen_pfn_t     mfn;
441        /* INVLPG_LOCAL, INVLPG_ALL, SET_LDT */
442        unsigned long linear_addr;
443    } arg1;
444    union {
445        /* SET_LDT */
446        unsigned int nr_ents;
447        /* TLB_FLUSH_MULTI, INVLPG_MULTI */
448#if __XEN_INTERFACE_VERSION__ >= 0x00030205
449        XEN_GUEST_HANDLE(const_void) vcpumask;
450#else
451        const void *vcpumask;
452#endif
453        /* COPY_PAGE */
454        xen_pfn_t src_mfn;
455    } arg2;
456};
457typedef struct mmuext_op mmuext_op_t;
458DEFINE_XEN_GUEST_HANDLE(mmuext_op_t);
459#endif
460
461/*
462 * ` enum neg_errnoval
463 * ` HYPERVISOR_update_va_mapping(unsigned long va, u64 val,
464 * `                              enum uvm_flags flags)
465 * `
466 * ` enum neg_errnoval
467 * ` HYPERVISOR_update_va_mapping_otherdomain(unsigned long va, u64 val,
468 * `                                          enum uvm_flags flags,
469 * `                                          domid_t domid)
470 * `
471 * ` @va: The virtual address whose mapping we want to change
472 * ` @val: The new page table entry, must contain a machine address
473 * ` @flags: Control TLB flushes
474 */
475/* These are passed as 'flags' to update_va_mapping. They can be ORed. */
476/* When specifying UVMF_MULTI, also OR in a pointer to a CPU bitmap.   */
477/* UVMF_LOCAL is merely UVMF_MULTI with a NULL bitmap pointer.         */
478/* ` enum uvm_flags { */
479#define UVMF_NONE           (xen_mk_ulong(0)<<0) /* No flushing at all.   */
480#define UVMF_TLB_FLUSH      (xen_mk_ulong(1)<<0) /* Flush entire TLB(s).  */
481#define UVMF_INVLPG         (xen_mk_ulong(2)<<0) /* Flush only one entry. */
482#define UVMF_FLUSHTYPE_MASK (xen_mk_ulong(3)<<0)
483#define UVMF_MULTI          (xen_mk_ulong(0)<<2) /* Flush subset of TLBs. */
484#define UVMF_LOCAL          (xen_mk_ulong(0)<<2) /* Flush local TLB.      */
485#define UVMF_ALL            (xen_mk_ulong(1)<<2) /* Flush all TLBs.       */
486/* ` } */
487
488/*
489 * Commands to HYPERVISOR_console_io().
490 */
491#define CONSOLEIO_write         0
492#define CONSOLEIO_read          1
493
494/*
495 * Commands to HYPERVISOR_vm_assist().
496 */
497#define VMASST_CMD_enable                0
498#define VMASST_CMD_disable               1
499
500/* x86/32 guests: simulate full 4GB segment limits. */
501#define VMASST_TYPE_4gb_segments         0
502
503/* x86/32 guests: trap (vector 15) whenever above vmassist is used. */
504#define VMASST_TYPE_4gb_segments_notify  1
505
506/*
507 * x86 guests: support writes to bottom-level PTEs.
508 * NB1. Page-directory entries cannot be written.
509 * NB2. Guest must continue to remove all writable mappings of PTEs.
510 */
511#define VMASST_TYPE_writable_pagetables  2
512
513/* x86/PAE guests: support PDPTs above 4GB. */
514#define VMASST_TYPE_pae_extended_cr3     3
515
516/*
517 * x86 guests: Sane behaviour for virtual iopl
518 *  - virtual iopl updated from do_iret() hypercalls.
519 *  - virtual iopl reported in bounce frames.
520 *  - guest kernels assumed to be level 0 for the purpose of iopl checks.
521 */
522#define VMASST_TYPE_architectural_iopl   4
523
524/*
525 * All guests: activate update indicator in vcpu_runstate_info
526 * Enable setting the XEN_RUNSTATE_UPDATE flag in guest memory mapped
527 * vcpu_runstate_info during updates of the runstate information.
528 */
529#define VMASST_TYPE_runstate_update_flag 5
530
531/*
532 * x86/64 guests: strictly hide M2P from user mode.
533 * This allows the guest to control respective hypervisor behavior:
534 * - when not set, L4 tables get created with the respective slot blank,
535 *   and whenever the L4 table gets used as a kernel one the missing
536 *   mapping gets inserted,
537 * - when set, L4 tables get created with the respective slot initialized
538 *   as before, and whenever the L4 table gets used as a user one the
539 *   mapping gets zapped.
540 */
541#define VMASST_TYPE_m2p_strict           32
542
543#if __XEN_INTERFACE_VERSION__ < 0x00040600
544#define MAX_VMASST_TYPE                  3
545#endif
546
547/* Domain ids >= DOMID_FIRST_RESERVED cannot be used for ordinary domains. */
548#define DOMID_FIRST_RESERVED xen_mk_uint(0x7FF0)
549
550/* DOMID_SELF is used in certain contexts to refer to oneself. */
551#define DOMID_SELF           xen_mk_uint(0x7FF0)
552
553/*
554 * DOMID_IO is used to restrict page-table updates to mapping I/O memory.
555 * Although no Foreign Domain need be specified to map I/O pages, DOMID_IO
556 * is useful to ensure that no mappings to the OS's own heap are accidentally
557 * installed. (e.g., in Linux this could cause havoc as reference counts
558 * aren't adjusted on the I/O-mapping code path).
559 * This only makes sense as HYPERVISOR_mmu_update()'s and
560 * HYPERVISOR_update_va_mapping_otherdomain()'s "foreigndom" argument. For
561 * HYPERVISOR_mmu_update() context it can be specified by any calling domain,
562 * otherwise it's only permitted if the caller is privileged.
563 */
564#define DOMID_IO             xen_mk_uint(0x7FF1)
565
566/*
567 * DOMID_XEN is used to allow privileged domains to map restricted parts of
568 * Xen's heap space (e.g., the machine_to_phys table).
569 * This only makes sense as
570 * - HYPERVISOR_mmu_update()'s, HYPERVISOR_mmuext_op()'s, or
571 *   HYPERVISOR_update_va_mapping_otherdomain()'s "foreigndom" argument,
572 * - with XENMAPSPACE_gmfn_foreign,
573 * and is only permitted if the caller is privileged.
574 */
575#define DOMID_XEN            xen_mk_uint(0x7FF2)
576
577/*
578 * DOMID_COW is used as the owner of sharable pages */
579#define DOMID_COW            xen_mk_uint(0x7FF3)
580
581/* DOMID_INVALID is used to identify pages with unknown owner. */
582#define DOMID_INVALID        xen_mk_uint(0x7FF4)
583
584/* Idle domain. */
585#define DOMID_IDLE           xen_mk_uint(0x7FFF)
586
587#ifndef __ASSEMBLY__
588
589typedef uint16_t domid_t;
590
591/*
592 * Send an array of these to HYPERVISOR_mmu_update().
593 * NB. The fields are natural pointer/address size for this architecture.
594 */
595struct mmu_update {
596    uint64_t ptr;       /* Machine address of PTE. */
597    uint64_t val;       /* New contents of PTE.    */
598};
599typedef struct mmu_update mmu_update_t;
600DEFINE_XEN_GUEST_HANDLE(mmu_update_t);
601
602/*
603 * ` enum neg_errnoval
604 * ` HYPERVISOR_multicall(multicall_entry_t call_list[],
605 * `                      uint32_t nr_calls);
606 *
607 * NB. The fields are logically the natural register size for this
608 * architecture. In cases where xen_ulong_t is larger than this then
609 * any unused bits in the upper portion must be zero.
610 */
611struct multicall_entry {
612    xen_ulong_t op, result;
613    xen_ulong_t args[6];
614};
615typedef struct multicall_entry multicall_entry_t;
616DEFINE_XEN_GUEST_HANDLE(multicall_entry_t);
617
618#if __XEN_INTERFACE_VERSION__ < 0x00040400
619/*
620 * Event channel endpoints per domain (when using the 2-level ABI):
621 *  1024 if a long is 32 bits; 4096 if a long is 64 bits.
622 */
623#define NR_EVENT_CHANNELS EVTCHN_2L_NR_CHANNELS
624#endif
625
626struct vcpu_time_info {
627    /*
628     * Updates to the following values are preceded and followed by an
629     * increment of 'version'. The guest can therefore detect updates by
630     * looking for changes to 'version'. If the least-significant bit of
631     * the version number is set then an update is in progress and the guest
632     * must wait to read a consistent set of values.
633     * The correct way to interact with the version number is similar to
634     * Linux's seqlock: see the implementations of read_seqbegin/read_seqretry.
635     */
636    uint32_t version;
637    uint32_t pad0;
638    uint64_t tsc_timestamp;   /* TSC at last update of time vals.  */
639    uint64_t system_time;     /* Time, in nanosecs, since boot.    */
640    /*
641     * Current system time:
642     *   system_time +
643     *   ((((tsc - tsc_timestamp) << tsc_shift) * tsc_to_system_mul) >> 32)
644     * CPU frequency (Hz):
645     *   ((10^9 << 32) / tsc_to_system_mul) >> tsc_shift
646     */
647    uint32_t tsc_to_system_mul;
648    int8_t   tsc_shift;
649#if __XEN_INTERFACE_VERSION__ > 0x040600
650    uint8_t  flags;
651    uint8_t  pad1[2];
652#else
653    int8_t   pad1[3];
654#endif
655}; /* 32 bytes */
656typedef struct vcpu_time_info vcpu_time_info_t;
657
658#define XEN_PVCLOCK_TSC_STABLE_BIT     (1 << 0)
659#define XEN_PVCLOCK_GUEST_STOPPED      (1 << 1)
660
661struct vcpu_info {
662    /*
663     * 'evtchn_upcall_pending' is written non-zero by Xen to indicate
664     * a pending notification for a particular VCPU. It is then cleared
665     * by the guest OS /before/ checking for pending work, thus avoiding
666     * a set-and-check race. Note that the mask is only accessed by Xen
667     * on the CPU that is currently hosting the VCPU. This means that the
668     * pending and mask flags can be updated by the guest without special
669     * synchronisation (i.e., no need for the x86 LOCK prefix).
670     * This may seem suboptimal because if the pending flag is set by
671     * a different CPU then an IPI may be scheduled even when the mask
672     * is set. However, note:
673     *  1. The task of 'interrupt holdoff' is covered by the per-event-
674     *     channel mask bits. A 'noisy' event that is continually being
675     *     triggered can be masked at source at this very precise
676     *     granularity.
677     *  2. The main purpose of the per-VCPU mask is therefore to restrict
678     *     reentrant execution: whether for concurrency control, or to
679     *     prevent unbounded stack usage. Whatever the purpose, we expect
680     *     that the mask will be asserted only for short periods at a time,
681     *     and so the likelihood of a 'spurious' IPI is suitably small.
682     * The mask is read before making an event upcall to the guest: a
683     * non-zero mask therefore guarantees that the VCPU will not receive
684     * an upcall activation. The mask is cleared when the VCPU requests
685     * to block: this avoids wakeup-waiting races.
686     */
687    uint8_t evtchn_upcall_pending;
688#ifdef XEN_HAVE_PV_UPCALL_MASK
689    uint8_t evtchn_upcall_mask;
690#else /* XEN_HAVE_PV_UPCALL_MASK */
691    uint8_t pad0;
692#endif /* XEN_HAVE_PV_UPCALL_MASK */
693    xen_ulong_t evtchn_pending_sel;
694    struct arch_vcpu_info arch;
695    struct vcpu_time_info time;
696}; /* 64 bytes (x86) */
697#ifndef __XEN__
698typedef struct vcpu_info vcpu_info_t;
699#endif
700
701/*
702 * `incontents 200 startofday_shared Start-of-day shared data structure
703 * Xen/kernel shared data -- pointer provided in start_info.
704 *
705 * This structure is defined to be both smaller than a page, and the
706 * only data on the shared page, but may vary in actual size even within
707 * compatible Xen versions; guests should not rely on the size
708 * of this structure remaining constant.
709 */
710struct shared_info {
711    struct vcpu_info vcpu_info[XEN_LEGACY_MAX_VCPUS];
712
713    /*
714     * A domain can create "event channels" on which it can send and receive
715     * asynchronous event notifications. There are three classes of event that
716     * are delivered by this mechanism:
717     *  1. Bi-directional inter- and intra-domain connections. Domains must
718     *     arrange out-of-band to set up a connection (usually by allocating
719     *     an unbound 'listener' port and avertising that via a storage service
720     *     such as xenstore).
721     *  2. Physical interrupts. A domain with suitable hardware-access
722     *     privileges can bind an event-channel port to a physical interrupt
723     *     source.
724     *  3. Virtual interrupts ('events'). A domain can bind an event-channel
725     *     port to a virtual interrupt source, such as the virtual-timer
726     *     device or the emergency console.
727     *
728     * Event channels are addressed by a "port index". Each channel is
729     * associated with two bits of information:
730     *  1. PENDING -- notifies the domain that there is a pending notification
731     *     to be processed. This bit is cleared by the guest.
732     *  2. MASK -- if this bit is clear then a 0->1 transition of PENDING
733     *     will cause an asynchronous upcall to be scheduled. This bit is only
734     *     updated by the guest. It is read-only within Xen. If a channel
735     *     becomes pending while the channel is masked then the 'edge' is lost
736     *     (i.e., when the channel is unmasked, the guest must manually handle
737     *     pending notifications as no upcall will be scheduled by Xen).
738     *
739     * To expedite scanning of pending notifications, any 0->1 pending
740     * transition on an unmasked channel causes a corresponding bit in a
741     * per-vcpu selector word to be set. Each bit in the selector covers a
742     * 'C long' in the PENDING bitfield array.
743     */
744    xen_ulong_t evtchn_pending[sizeof(xen_ulong_t) * 8];
745    xen_ulong_t evtchn_mask[sizeof(xen_ulong_t) * 8];
746
747    /*
748     * Wallclock time: updated only by control software. Guests should base
749     * their gettimeofday() syscall on this wallclock-base value.
750     */
751    uint32_t wc_version;      /* Version counter: see vcpu_time_info_t. */
752    uint32_t wc_sec;          /* Secs  00:00:00 UTC, Jan 1, 1970.  */
753    uint32_t wc_nsec;         /* Nsecs 00:00:00 UTC, Jan 1, 1970.  */
754#if !defined(__i386__)
755    uint32_t wc_sec_hi;
756# define xen_wc_sec_hi wc_sec_hi
757#elif !defined(__XEN__) && !defined(__XEN_TOOLS__)
758# define xen_wc_sec_hi arch.wc_sec_hi
759#endif
760
761    struct arch_shared_info arch;
762
763};
764#ifndef __XEN__
765typedef struct shared_info shared_info_t;
766#endif
767
768/*
769 * `incontents 200 startofday Start-of-day memory layout
770 *
771 *  1. The domain is started within contiguous virtual-memory region.
772 *  2. The contiguous region ends on an aligned 4MB boundary.
773 *  3. This the order of bootstrap elements in the initial virtual region:
774 *      a. relocated kernel image
775 *      b. initial ram disk              [mod_start, mod_len]
776 *         (may be omitted)
777 *      c. list of allocated page frames [mfn_list, nr_pages]
778 *         (unless relocated due to XEN_ELFNOTE_INIT_P2M)
779 *      d. start_info_t structure        [register rSI (x86)]
780 *         in case of dom0 this page contains the console info, too
781 *      e. unless dom0: xenstore ring page
782 *      f. unless dom0: console ring page
783 *      g. bootstrap page tables         [pt_base and CR3 (x86)]
784 *      h. bootstrap stack               [register ESP (x86)]
785 *  4. Bootstrap elements are packed together, but each is 4kB-aligned.
786 *  5. The list of page frames forms a contiguous 'pseudo-physical' memory
787 *     layout for the domain. In particular, the bootstrap virtual-memory
788 *     region is a 1:1 mapping to the first section of the pseudo-physical map.
789 *  6. All bootstrap elements are mapped read-writable for the guest OS. The
790 *     only exception is the bootstrap page table, which is mapped read-only.
791 *  7. There is guaranteed to be at least 512kB padding after the final
792 *     bootstrap element. If necessary, the bootstrap virtual region is
793 *     extended by an extra 4MB to ensure this.
794 *
795 * Note: Prior to 25833:bb85bbccb1c9. ("x86/32-on-64 adjust Dom0 initial page
796 * table layout") a bug caused the pt_base (3.g above) and cr3 to not point
797 * to the start of the guest page tables (it was offset by two pages).
798 * This only manifested itself on 32-on-64 dom0 kernels and not 32-on-64 domU
799 * or 64-bit kernels of any colour. The page tables for a 32-on-64 dom0 got
800 * allocated in the order: 'first L1','first L2', 'first L3', so the offset
801 * to the page table base is by two pages back. The initial domain if it is
802 * 32-bit and runs under a 64-bit hypervisor should _NOT_ use two of the
803 * pages preceding pt_base and mark them as reserved/unused.
804 */
805#ifdef XEN_HAVE_PV_GUEST_ENTRY
806struct start_info {
807    /* THE FOLLOWING ARE FILLED IN BOTH ON INITIAL BOOT AND ON RESUME.    */
808    char magic[32];             /* "xen-<version>-<platform>".            */
809    unsigned long nr_pages;     /* Total pages allocated to this domain.  */
810    unsigned long shared_info;  /* MACHINE address of shared info struct. */
811    uint32_t flags;             /* SIF_xxx flags.                         */
812    xen_pfn_t store_mfn;        /* MACHINE page number of shared page.    */
813    uint32_t store_evtchn;      /* Event channel for store communication. */
814    union {
815        struct {
816            xen_pfn_t mfn;      /* MACHINE page number of console page.   */
817            uint32_t  evtchn;   /* Event channel for console page.        */
818        } domU;
819        struct {
820            uint32_t info_off;  /* Offset of console_info struct.         */
821            uint32_t info_size; /* Size of console_info struct from start.*/
822        } dom0;
823    } console;
824    /* THE FOLLOWING ARE ONLY FILLED IN ON INITIAL BOOT (NOT RESUME).     */
825    unsigned long pt_base;      /* VIRTUAL address of page directory.     */
826    unsigned long nr_pt_frames; /* Number of bootstrap p.t. frames.       */
827    unsigned long mfn_list;     /* VIRTUAL address of page-frame list.    */
828    unsigned long mod_start;    /* VIRTUAL address of pre-loaded module   */
829                                /* (PFN of pre-loaded module if           */
830                                /*  SIF_MOD_START_PFN set in flags).      */
831    unsigned long mod_len;      /* Size (bytes) of pre-loaded module.     */
832#define MAX_GUEST_CMDLINE 1024
833    int8_t cmd_line[MAX_GUEST_CMDLINE];
834    /* The pfn range here covers both page table and p->m table frames.   */
835    unsigned long first_p2m_pfn;/* 1st pfn forming initial P->M table.    */
836    unsigned long nr_p2m_frames;/* # of pfns forming initial P->M table.  */
837};
838typedef struct start_info start_info_t;
839
840/* New console union for dom0 introduced in 0x00030203. */
841#if __XEN_INTERFACE_VERSION__ < 0x00030203
842#define console_mfn    console.domU.mfn
843#define console_evtchn console.domU.evtchn
844#endif
845#endif /* XEN_HAVE_PV_GUEST_ENTRY */
846
847/* These flags are passed in the 'flags' field of start_info_t. */
848#define SIF_PRIVILEGED    (1<<0)  /* Is the domain privileged? */
849#define SIF_INITDOMAIN    (1<<1)  /* Is this the initial control domain? */
850#define SIF_MULTIBOOT_MOD (1<<2)  /* Is mod_start a multiboot module? */
851#define SIF_MOD_START_PFN (1<<3)  /* Is mod_start a PFN? */
852#define SIF_VIRT_P2M_4TOOLS (1<<4) /* Do Xen tools understand a virt. mapped */
853                                   /* P->M making the 3 level tree obsolete? */
854#define SIF_PM_MASK       (0xFF<<8) /* reserve 1 byte for xen-pm options */
855
856/*
857 * A multiboot module is a package containing modules very similar to a
858 * multiboot module array. The only differences are:
859 * - the array of module descriptors is by convention simply at the beginning
860 *   of the multiboot module,
861 * - addresses in the module descriptors are based on the beginning of the
862 *   multiboot module,
863 * - the number of modules is determined by a termination descriptor that has
864 *   mod_start == 0.
865 *
866 * This permits to both build it statically and reference it in a configuration
867 * file, and let the PV guest easily rebase the addresses to virtual addresses
868 * and at the same time count the number of modules.
869 */
870struct xen_multiboot_mod_list
871{
872    /* Address of first byte of the module */
873    uint32_t mod_start;
874    /* Address of last byte of the module (inclusive) */
875    uint32_t mod_end;
876    /* Address of zero-terminated command line */
877    uint32_t cmdline;
878    /* Unused, must be zero */
879    uint32_t pad;
880};
881/*
882 * `incontents 200 startofday_dom0_console Dom0_console
883 *
884 * The console structure in start_info.console.dom0
885 *
886 * This structure includes a variety of information required to
887 * have a working VGA/VESA console.
888 */
889typedef struct dom0_vga_console_info {
890    uint8_t video_type; /* DOM0_VGA_CONSOLE_??? */
891#define XEN_VGATYPE_TEXT_MODE_3 0x03
892#define XEN_VGATYPE_VESA_LFB    0x23
893#define XEN_VGATYPE_EFI_LFB     0x70
894
895    union {
896        struct {
897            /* Font height, in pixels. */
898            uint16_t font_height;
899            /* Cursor location (column, row). */
900            uint16_t cursor_x, cursor_y;
901            /* Number of rows and columns (dimensions in characters). */
902            uint16_t rows, columns;
903        } text_mode_3;
904
905        struct {
906            /* Width and height, in pixels. */
907            uint16_t width, height;
908            /* Bytes per scan line. */
909            uint16_t bytes_per_line;
910            /* Bits per pixel. */
911            uint16_t bits_per_pixel;
912            /* LFB physical address, and size (in units of 64kB). */
913            uint32_t lfb_base;
914            uint32_t lfb_size;
915            /* RGB mask offsets and sizes, as defined by VBE 1.2+ */
916            uint8_t  red_pos, red_size;
917            uint8_t  green_pos, green_size;
918            uint8_t  blue_pos, blue_size;
919            uint8_t  rsvd_pos, rsvd_size;
920#if __XEN_INTERFACE_VERSION__ >= 0x00030206
921            /* VESA capabilities (offset 0xa, VESA command 0x4f00). */
922            uint32_t gbl_caps;
923            /* Mode attributes (offset 0x0, VESA command 0x4f01). */
924            uint16_t mode_attrs;
925	    /* high 32 bits of lfb_base */
926	    uint32_t ext_lfb_base;
927#endif
928        } vesa_lfb;
929    } u;
930} dom0_vga_console_info_t;
931#define xen_vga_console_info dom0_vga_console_info
932#define xen_vga_console_info_t dom0_vga_console_info_t
933
934typedef uint8_t xen_domain_handle_t[16];
935
936__DEFINE_XEN_GUEST_HANDLE(uint8,  uint8_t);
937__DEFINE_XEN_GUEST_HANDLE(uint16, uint16_t);
938__DEFINE_XEN_GUEST_HANDLE(uint32, uint32_t);
939__DEFINE_XEN_GUEST_HANDLE(uint64, uint64_t);
940
941typedef struct {
942    uint8_t a[16];
943} xen_uuid_t;
944
945/*
946 * XEN_DEFINE_UUID(0x00112233, 0x4455, 0x6677, 0x8899,
947 *                 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff)
948 * will construct UUID 00112233-4455-6677-8899-aabbccddeeff presented as
949 * {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88,
950 * 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff};
951 *
952 * NB: This is compatible with Linux kernel and with libuuid, but it is not
953 * compatible with Microsoft, as they use mixed-endian encoding (some
954 * components are little-endian, some are big-endian).
955 */
956#define XEN_DEFINE_UUID_(a, b, c, d, e1, e2, e3, e4, e5, e6)            \
957    {{((a) >> 24) & 0xFF, ((a) >> 16) & 0xFF,                           \
958      ((a) >>  8) & 0xFF, ((a) >>  0) & 0xFF,                           \
959      ((b) >>  8) & 0xFF, ((b) >>  0) & 0xFF,                           \
960      ((c) >>  8) & 0xFF, ((c) >>  0) & 0xFF,                           \
961      ((d) >>  8) & 0xFF, ((d) >>  0) & 0xFF,                           \
962                e1, e2, e3, e4, e5, e6}}
963
964#if defined(__STDC_VERSION__) ? __STDC_VERSION__ >= 199901L : defined(__GNUC__)
965#define XEN_DEFINE_UUID(a, b, c, d, e1, e2, e3, e4, e5, e6)             \
966    ((xen_uuid_t)XEN_DEFINE_UUID_(a, b, c, d, e1, e2, e3, e4, e5, e6))
967#else
968#define XEN_DEFINE_UUID(a, b, c, d, e1, e2, e3, e4, e5, e6)             \
969    XEN_DEFINE_UUID_(a, b, c, d, e1, e2, e3, e4, e5, e6)
970#endif /* __STDC_VERSION__ / __GNUC__ */
971
972#endif /* !__ASSEMBLY__ */
973
974/* Default definitions for macros used by domctl/sysctl. */
975#if defined(__XEN__) || defined(__XEN_TOOLS__)
976
977#ifndef int64_aligned_t
978#define int64_aligned_t int64_t
979#endif
980#ifndef uint64_aligned_t
981#define uint64_aligned_t uint64_t
982#endif
983#ifndef XEN_GUEST_HANDLE_64
984#define XEN_GUEST_HANDLE_64(name) XEN_GUEST_HANDLE(name)
985#endif
986
987#ifndef __ASSEMBLY__
988struct xenctl_bitmap {
989    XEN_GUEST_HANDLE_64(uint8) bitmap;
990    uint32_t nr_bits;
991};
992#endif
993
994#endif /* defined(__XEN__) || defined(__XEN_TOOLS__) */
995
996#endif /* __XEN_PUBLIC_XEN_H__ */
997
998/*
999 * Local variables:
1000 * mode: C
1001 * c-file-style: "BSD"
1002 * c-basic-offset: 4
1003 * tab-width: 4
1004 * indent-tabs-mode: nil
1005 * End:
1006 */
1007