1/*
2 * Argon2 source code package
3 *
4 * Written by Daniel Dinu and Dmitry Khovratovich, 2015
5 *
6 * This work is licensed under a Creative Commons CC0 1.0 License/Waiver.
7 *
8 * You should have received a copy of the CC0 Public Domain Dedication along
9 * with
10 * this software. If not, see
11 * <http://creativecommons.org/publicdomain/zero/1.0/>.
12 */
13
14#include <stdint.h>
15#include <stdlib.h>
16#include <string.h>
17
18#include "argon2-core.h"
19#include "argon2.h"
20#include "blamka-round-ref.h"
21#include "private/common.h"
22
23static void
24fill_block(const block *prev_block, const block *ref_block, block *next_block)
25{
26    block    blockR, block_tmp;
27    unsigned i;
28
29    copy_block(&blockR, ref_block);
30    xor_block(&blockR, prev_block);
31    copy_block(&block_tmp, &blockR);
32    /* Now blockR = ref_block + prev_block and bloc_tmp = ref_block + prev_block
33       Apply Blake2 on columns of 64-bit words: (0,1,...,15), then
34       (16,17,..31)... finally (112,113,...127) */
35    for (i = 0; i < 8; ++i) {
36        BLAKE2_ROUND_NOMSG(
37            blockR.v[16 * i], blockR.v[16 * i + 1], blockR.v[16 * i + 2],
38            blockR.v[16 * i + 3], blockR.v[16 * i + 4], blockR.v[16 * i + 5],
39            blockR.v[16 * i + 6], blockR.v[16 * i + 7], blockR.v[16 * i + 8],
40            blockR.v[16 * i + 9], blockR.v[16 * i + 10], blockR.v[16 * i + 11],
41            blockR.v[16 * i + 12], blockR.v[16 * i + 13], blockR.v[16 * i + 14],
42            blockR.v[16 * i + 15]);
43    }
44
45    /* Apply Blake2 on rows of 64-bit words: (0,1,16,17,...112,113), then
46       (2,3,18,19,...,114,115).. finally (14,15,30,31,...,126,127) */
47    for (i = 0; i < 8; i++) {
48        BLAKE2_ROUND_NOMSG(
49            blockR.v[2 * i], blockR.v[2 * i + 1], blockR.v[2 * i + 16],
50            blockR.v[2 * i + 17], blockR.v[2 * i + 32], blockR.v[2 * i + 33],
51            blockR.v[2 * i + 48], blockR.v[2 * i + 49], blockR.v[2 * i + 64],
52            blockR.v[2 * i + 65], blockR.v[2 * i + 80], blockR.v[2 * i + 81],
53            blockR.v[2 * i + 96], blockR.v[2 * i + 97], blockR.v[2 * i + 112],
54            blockR.v[2 * i + 113]);
55    }
56
57    copy_block(next_block, &block_tmp);
58    xor_block(next_block, &blockR);
59}
60
61static void
62fill_block_with_xor(const block *prev_block, const block *ref_block,
63                    block *next_block)
64{
65    block    blockR, block_tmp;
66    unsigned i;
67
68    copy_block(&blockR, ref_block);
69    xor_block(&blockR, prev_block);
70    copy_block(&block_tmp, &blockR);
71    xor_block(&block_tmp,
72              next_block); /* Saving the next block contents for XOR over */
73    /* Now blockR = ref_block + prev_block and bloc_tmp = ref_block + prev_block
74     * + next_block */
75    /* Apply Blake2 on columns of 64-bit words: (0,1,...,15) , then
76       (16,17,..31)... finally (112,113,...127) */
77    for (i = 0; i < 8; ++i) {
78        BLAKE2_ROUND_NOMSG(
79            blockR.v[16 * i], blockR.v[16 * i + 1], blockR.v[16 * i + 2],
80            blockR.v[16 * i + 3], blockR.v[16 * i + 4], blockR.v[16 * i + 5],
81            blockR.v[16 * i + 6], blockR.v[16 * i + 7], blockR.v[16 * i + 8],
82            blockR.v[16 * i + 9], blockR.v[16 * i + 10], blockR.v[16 * i + 11],
83            blockR.v[16 * i + 12], blockR.v[16 * i + 13], blockR.v[16 * i + 14],
84            blockR.v[16 * i + 15]);
85    }
86
87    /* Apply Blake2 on rows of 64-bit words: (0,1,16,17,...112,113), then
88       (2,3,18,19,...,114,115).. finally (14,15,30,31,...,126,127) */
89    for (i = 0; i < 8; i++) {
90        BLAKE2_ROUND_NOMSG(
91            blockR.v[2 * i], blockR.v[2 * i + 1], blockR.v[2 * i + 16],
92            blockR.v[2 * i + 17], blockR.v[2 * i + 32], blockR.v[2 * i + 33],
93            blockR.v[2 * i + 48], blockR.v[2 * i + 49], blockR.v[2 * i + 64],
94            blockR.v[2 * i + 65], blockR.v[2 * i + 80], blockR.v[2 * i + 81],
95            blockR.v[2 * i + 96], blockR.v[2 * i + 97], blockR.v[2 * i + 112],
96            blockR.v[2 * i + 113]);
97    }
98
99    copy_block(next_block, &block_tmp);
100    xor_block(next_block, &blockR);
101}
102
103/*
104 * Generate pseudo-random values to reference blocks in the segment and puts
105 * them into the array
106 * @param instance Pointer to the current instance
107 * @param position Pointer to the current position
108 * @param pseudo_rands Pointer to the array of 64-bit values
109 * @pre pseudo_rands must point to @a instance->segment_length allocated values
110 */
111static void
112generate_addresses(const argon2_instance_t *instance,
113                   const argon2_position_t *position, uint64_t *pseudo_rands)
114{
115    block    zero_block, input_block, address_block, tmp_block;
116    uint32_t i;
117
118    init_block_value(&zero_block, 0);
119    init_block_value(&input_block, 0);
120
121    if (instance != NULL && position != NULL) {
122        input_block.v[0] = position->pass;
123        input_block.v[1] = position->lane;
124        input_block.v[2] = position->slice;
125        input_block.v[3] = instance->memory_blocks;
126        input_block.v[4] = instance->passes;
127        input_block.v[5] = instance->type;
128
129        for (i = 0; i < instance->segment_length; ++i) {
130            if (i % ARGON2_ADDRESSES_IN_BLOCK == 0) {
131                input_block.v[6]++;
132                init_block_value(&tmp_block, 0);
133                init_block_value(&address_block, 0);
134                fill_block_with_xor(&zero_block, &input_block, &tmp_block);
135                fill_block_with_xor(&zero_block, &tmp_block, &address_block);
136            }
137
138            pseudo_rands[i] = address_block.v[i % ARGON2_ADDRESSES_IN_BLOCK];
139        }
140    }
141}
142
143void
144fill_segment_ref(const argon2_instance_t *instance, argon2_position_t position)
145{
146    block    *ref_block = NULL, *curr_block = NULL;
147    /* Pseudo-random values that determine the reference block position */
148    uint64_t *pseudo_rands = NULL;
149    uint64_t  pseudo_rand, ref_index, ref_lane;
150    uint32_t  prev_offset, curr_offset;
151    uint32_t  starting_index;
152    uint32_t  i;
153    int       data_independent_addressing = 1;
154
155    if (instance == NULL) {
156        return;
157    }
158
159    if (instance->type == Argon2_id &&
160        (position.pass != 0 || position.slice >= ARGON2_SYNC_POINTS / 2)) {
161        data_independent_addressing = 0;
162    }
163
164    pseudo_rands = instance->pseudo_rands;
165
166    if (data_independent_addressing) {
167        generate_addresses(instance, &position, pseudo_rands);
168    }
169
170    starting_index = 0;
171
172    if ((0 == position.pass) && (0 == position.slice)) {
173        starting_index = 2; /* we have already generated the first two blocks */
174    }
175
176    /* Offset of the current block */
177    curr_offset = position.lane * instance->lane_length +
178                  position.slice * instance->segment_length + starting_index;
179
180    if (0 == curr_offset % instance->lane_length) {
181        /* Last block in this lane */
182        prev_offset = curr_offset + instance->lane_length - 1;
183    } else {
184        /* Previous block */
185        prev_offset = curr_offset - 1;
186    }
187
188    for (i = starting_index; i < instance->segment_length;
189         ++i, ++curr_offset, ++prev_offset) {
190        /*1.1 Rotating prev_offset if needed */
191        if (curr_offset % instance->lane_length == 1) {
192            prev_offset = curr_offset - 1;
193        }
194
195        /* 1.2 Computing the index of the reference block */
196        /* 1.2.1 Taking pseudo-random value from the previous block */
197        if (data_independent_addressing) {
198#pragma warning(push)
199#pragma warning(disable : 6385)
200            pseudo_rand = pseudo_rands[i];
201#pragma warning(pop)
202        } else {
203            pseudo_rand = instance->region->memory[prev_offset].v[0];
204        }
205
206        /* 1.2.2 Computing the lane of the reference block */
207        ref_lane = ((pseudo_rand >> 32)) % instance->lanes;
208
209        if ((position.pass == 0) && (position.slice == 0)) {
210            /* Can not reference other lanes yet */
211            ref_lane = position.lane;
212        }
213
214        /* 1.2.3 Computing the number of possible reference block within the
215         * lane.
216         */
217        position.index = i;
218        ref_index = index_alpha(instance, &position, pseudo_rand & 0xFFFFFFFF,
219                                ref_lane == position.lane);
220
221        /* 2 Creating a new block */
222        ref_block = instance->region->memory +
223                    instance->lane_length * ref_lane + ref_index;
224        curr_block = instance->region->memory + curr_offset;
225        if (position.pass != 0) {
226            fill_block_with_xor(instance->region->memory + prev_offset,
227                                ref_block, curr_block);
228        } else {
229            fill_block(instance->region->memory + prev_offset, ref_block,
230                       curr_block);
231        }
232    }
233}
234