1/*
2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $Id: ar5416_reset.c,v 1.6 2012/02/12 13:55:27 wiz Exp $
18 */
19#include "opt_ah.h"
20
21#include "ah.h"
22#include "ah_internal.h"
23#include "ah_devid.h"
24
25#include "ah_eeprom_v14.h"
26
27#include "ar5416/ar5416.h"
28#include "ar5416/ar5416reg.h"
29#include "ar5416/ar5416phy.h"
30
31/* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */
32#define	EEP_MINOR(_ah) \
33	(AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
34#define IS_EEP_MINOR_V2(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
35#define IS_EEP_MINOR_V3(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
36
37/* Additional Time delay to wait after activiting the Base band */
38#define BASE_ACTIVATE_DELAY	100	/* 100 usec */
39#define PLL_SETTLE_DELAY	300	/* 300 usec */
40#define RTC_PLL_SETTLE_DELAY    1000    /* 1 ms     */
41
42static void ar5416InitDMA(struct ath_hal *ah);
43static void ar5416InitBB(struct ath_hal *ah, HAL_CHANNEL *chan);
44static void ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode);
45static void ar5416InitQoS(struct ath_hal *ah);
46static void ar5416InitUserSettings(struct ath_hal *ah);
47
48static HAL_BOOL _ar5416SetTransmitPower(struct ath_hal *ah,
49	HAL_CHANNEL_INTERNAL *chan, uint16_t *rfXpdGain);
50
51#if 0
52static HAL_BOOL	ar5416ChannelChange(struct ath_hal *, HAL_CHANNEL *);
53#endif
54static void ar5416SetDeltaSlope(struct ath_hal *, HAL_CHANNEL_INTERNAL *);
55
56static HAL_BOOL ar5416SetResetPowerOn(struct ath_hal *ah);
57static HAL_BOOL ar5416SetReset(struct ath_hal *ah, int type);
58static void ar5416InitPLL(struct ath_hal *ah, HAL_CHANNEL *chan);
59static HAL_BOOL ar5416SetPowerPerRateTable(struct ath_hal *ah,
60	struct ar5416eeprom *pEepData,
61	HAL_CHANNEL_INTERNAL *chan, int16_t *ratesArray,
62	uint16_t cfgCtl, uint16_t AntennaReduction,
63	uint16_t twiceMaxRegulatoryPower,
64	uint16_t powerLimit);
65static HAL_BOOL ar5416SetPowerCalTable(struct ath_hal *ah,
66	struct ar5416eeprom *pEepData,
67	HAL_CHANNEL_INTERNAL *chan,
68	int16_t *pTxPowerIndexOffset);
69static uint16_t ar5416GetMaxEdgePower(uint16_t freq,
70	CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz);
71
72static int16_t interpolate(uint16_t target, uint16_t srcLeft,
73	uint16_t srcRight, int16_t targetLeft, int16_t targetRight);
74static void ar5416Set11nRegs(struct ath_hal *ah, HAL_CHANNEL *chan);
75static void ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah,
76	HAL_CHANNEL_INTERNAL *chan, CAL_DATA_PER_FREQ *pRawDataSet,
77	uint8_t * bChans, uint16_t availPiers,
78	uint16_t tPdGainOverlap, int16_t *pMinCalPower,
79	uint16_t * pPdGainBoundaries, uint8_t * pPDADCValues,
80	uint16_t numXpdGains);
81static HAL_BOOL getLowerUpperIndex(uint8_t target, uint8_t *pList,
82	uint16_t listSize,  uint16_t *indexL, uint16_t *indexR);
83static HAL_BOOL ar5416FillVpdTable(uint8_t pwrMin, uint8_t pwrMax,
84	uint8_t *pPwrList, uint8_t *pVpdList,
85	uint16_t numIntercepts, uint8_t *pRetVpdList);
86
87/*
88 * Places the device in and out of reset and then places sane
89 * values in the registers based on EEPROM config, initialization
90 * vectors (as determined by the mode), and station configuration
91 *
92 * bChannelChange is used to preserve DMA/PCU registers across
93 * a HW Reset during channel change.
94 */
95HAL_BOOL
96ar5416Reset(struct ath_hal *ah, HAL_OPMODE opmode,
97	HAL_CHANNEL *chan, HAL_BOOL bChannelChange, HAL_STATUS *status)
98{
99#define	N(a)	(sizeof (a) / sizeof (a[0]))
100#define	FAIL(_code)	do { ecode = _code; goto bad; } while (0)
101	struct ath_hal_5212 *ahp = AH5212(ah);
102	HAL_CHANNEL_INTERNAL *ichan;
103	uint32_t saveDefAntenna, saveLedState;
104	uint32_t macStaId1;
105	uint16_t rfXpdGain[2];
106	HAL_STATUS ecode;
107	uint32_t powerVal, rssiThrReg;
108	uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
109	int i;
110
111	OS_MARK(ah, AH_MARK_RESET, bChannelChange);
112#define	IS(_c,_f)	(((_c)->channelFlags & _f) || 0)
113	if ((IS(chan, CHANNEL_2GHZ) ^ IS(chan, CHANNEL_5GHZ)) == 0) {
114		HALDEBUG(ah, HAL_DEBUG_ANY,
115		    "%s: invalid channel %u/0x%x; not marked as 2GHz or 5GHz\n",
116		    __func__, chan->channel, chan->channelFlags);
117		FAIL(HAL_EINVAL);
118	}
119	if ((IS(chan, CHANNEL_OFDM) ^ IS(chan, CHANNEL_CCK)) == 0) {
120		HALDEBUG(ah, HAL_DEBUG_ANY,
121		    "%s: invalid channel %u/0x%x; not marked as OFDM or CCK\n",
122		    __func__, chan->channel, chan->channelFlags);
123		FAIL(HAL_EINVAL);
124	}
125#undef IS
126
127	/* Bring out of sleep mode */
128	if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
129		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
130		    __func__);
131		FAIL(HAL_EIO);
132	}
133
134	/*
135	 * Map public channel to private.
136	 */
137	ichan = ath_hal_checkchannel(ah, chan);
138	if (ichan == AH_NULL) {
139		HALDEBUG(ah, HAL_DEBUG_ANY,
140		    "%s: invalid channel %u/0x%x; no mapping\n",
141		    __func__, chan->channel, chan->channelFlags);
142		FAIL(HAL_EINVAL);
143	} else {
144		HALDEBUG(ah, HAL_DEBUG_RESET,
145		    "%s: Ch=%u Max=%d Min=%d\n",__func__,
146		    ichan->channel, ichan->maxTxPower, ichan->minTxPower);
147	}
148	switch (opmode) {
149	case HAL_M_STA:
150	case HAL_M_IBSS:
151	case HAL_M_HOSTAP:
152	case HAL_M_MONITOR:
153		break;
154	default:
155		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
156		    __func__, opmode);
157		FAIL(HAL_EINVAL);
158		break;
159	}
160	HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
161
162	/* XXX Turn on fast channel change for 5416 */
163	/*
164	 * Preserve the bmiss rssi threshold and count threshold
165	 * across resets
166	 */
167	rssiThrReg = OS_REG_READ(ah, AR_RSSI_THR);
168	/* If reg is zero, first time thru set to default val */
169	if (rssiThrReg == 0)
170		rssiThrReg = INIT_RSSI_THR;
171
172	/*
173	 * Preserve the antenna on a channel change
174	 */
175	saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
176	if (saveDefAntenna == 0)		/* XXX magic constants */
177		saveDefAntenna = 1;
178
179	/* Save hardware flag before chip reset clears the register */
180	macStaId1 = OS_REG_READ(ah, AR_STA_ID1) &
181		(AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
182
183	/* Save led state from pci config register */
184	saveLedState = OS_REG_READ(ah, AR_MAC_LED) &
185		(AR_MAC_LED_ASSOC | AR_MAC_LED_MODE |
186		 AR_MAC_LED_BLINK_THRESH_SEL | AR_MAC_LED_BLINK_SLOW);
187
188	if (!ar5416ChipReset(ah, chan)) {
189		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
190		FAIL(HAL_EIO);
191	}
192
193	/* Restore bmiss rssi & count thresholds */
194	OS_REG_WRITE(ah, AR_RSSI_THR, rssiThrReg);
195
196	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
197	if (AR_SREV_MERLIN_10_OR_LATER(ah))
198		OS_REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
199
200	if (AR_SREV_KITE(ah)) {
201		uint32_t val;
202		val = OS_REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS);
203		val &= ~AR_PHY_RIFS_INIT_DELAY;
204		OS_REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val);
205	}
206
207	AH5416(ah)->ah_writeIni(ah, (HAL_CHANNEL_INTERNAL *)chan);
208
209	/* Setup 11n MAC/Phy mode registers */
210	ar5416Set11nRegs(ah, chan);
211
212	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
213
214	HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_DAG_CTRLCCK=0x%x\n",
215		__func__, OS_REG_READ(ah,AR_PHY_DAG_CTRLCCK));
216	HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_ADC_CTL=0x%x\n",
217		__func__, OS_REG_READ(ah,AR_PHY_ADC_CTL));
218
219	/* Set the mute mask to the correct default */
220	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2)
221		OS_REG_WRITE(ah, AR_SEQ_MASK, 0x0000000F);
222
223	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_3) {
224		/* Clear reg to alllow RX_CLEAR line debug */
225		OS_REG_WRITE(ah, AR_PHY_BLUETOOTH,  0);
226	}
227	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_4) {
228#ifdef notyet
229		/* Enable burst prefetch for the data queues */
230		OS_REG_RMW_FIELD(ah, AR_D_FPCTL, ... );
231		/* Enable double-buffering */
232		OS_REG_CLR_BIT(ah, AR_TXCFG, AR_TXCFG_DBL_BUF_DIS);
233#endif
234	}
235
236	/* Set ADC/DAC select values */
237	OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
238
239	if (AH5416(ah)->ah_rx_chainmask == 0x5 ||
240	    AH5416(ah)->ah_tx_chainmask == 0x5)
241		OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
242	/* Setup Chain Masks */
243	OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
244	OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
245	OS_REG_WRITE(ah, AR_SELFGEN_MASK, AH5416(ah)->ah_tx_chainmask);
246
247	/* Setup the transmit power values. */
248	if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) {
249		HALDEBUG(ah, HAL_DEBUG_ANY,
250		    "%s: error init'ing transmit power\n", __func__);
251		FAIL(HAL_EIO);
252	}
253
254	/* Write the analog registers */
255	if (!ahp->ah_rfHal->setRfRegs(ah, ichan,
256	    IS_CHAN_2GHZ(chan) ? 2 : 1, rfXpdGain)) {
257		HALDEBUG(ah, HAL_DEBUG_ANY,
258		    "%s: ar5212SetRfRegs failed\n", __func__);
259		FAIL(HAL_EIO);
260	}
261
262	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
263	if (IS_CHAN_OFDM(chan)|| IS_CHAN_HT(chan))
264		ar5416SetDeltaSlope(ah, ichan);
265
266	AH5416(ah)->ah_spurMitigate(ah, (HAL_CHANNEL_INTERNAL *)chan);
267
268	/* Setup board specific options for EEPROM version 3 */
269	if (!ah->ah_setBoardValues(ah, chan)) {
270		HALDEBUG(ah, HAL_DEBUG_ANY,
271		    "%s: error setting board options\n", __func__);
272		FAIL(HAL_EIO);
273	}
274
275	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
276
277	OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
278	OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
279		| macStaId1
280		| AR_STA_ID1_RTS_USE_DEF
281		| ahp->ah_staId1Defaults
282	);
283	ar5212SetOperatingMode(ah, opmode);
284
285	/* Set Venice BSSID mask according to current state */
286	OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
287	OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
288
289	/* Restore previous led state */
290	OS_REG_WRITE(ah, AR_MAC_LED, OS_REG_READ(ah, AR_MAC_LED) | saveLedState);
291	/* Restore previous antenna */
292	OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
293
294	/* then our BSSID */
295	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
296	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
297
298	/* Restore bmiss rssi & count thresholds */
299	OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
300
301	OS_REG_WRITE(ah, AR_ISR, ~0);		/* cleared on write */
302
303	if (!ar5212SetChannel(ah, ichan))
304		FAIL(HAL_EIO);
305
306	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
307
308	/* Set 1:1 QCU to DCU mapping for all queues */
309	for (i = 0; i < AR_NUM_DCU; i++)
310		OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
311
312	ahp->ah_intrTxqs = 0;
313	for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
314		ar5212ResetTxQueue(ah, i);
315
316	ar5416InitIMR(ah, opmode);
317	ar5212SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
318	ar5416InitQoS(ah);
319	ar5416InitUserSettings(ah);
320
321	/*
322	 * disable seq number generation in hw
323	 */
324	 OS_REG_WRITE(ah, AR_STA_ID1,
325	     OS_REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
326
327	ar5416InitDMA(ah);
328
329	/*
330	 * program OBS bus to see MAC interrupts
331	 */
332	OS_REG_WRITE(ah, AR_OBS, 8);
333
334#ifdef AR5416_INT_MITIGATION
335	OS_REG_WRITE(ah, AR_MIRT, 0);
336	OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
337	OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
338#endif
339
340	ar5416InitBB(ah, chan);
341
342	/* Setup compression registers */
343	ar5212SetCompRegs(ah);		/* XXX not needed? */
344
345	/*
346	 * 5416 baseband will check the per rate power table
347	 * and select the lower of the two
348	 */
349	ackTpcPow = 63;
350	ctsTpcPow = 63;
351	chirpTpcPow = 63;
352	powerVal = SM(ackTpcPow, AR_TPC_ACK) |
353		SM(ctsTpcPow, AR_TPC_CTS) |
354		SM(chirpTpcPow, AR_TPC_CHIRP);
355	OS_REG_WRITE(ah, AR_TPC, powerVal);
356
357	if (!ar5416InitCal(ah, chan))
358		FAIL(HAL_ESELFTEST);
359
360	AH_PRIVATE(ah)->ah_opmode = opmode;	/* record operating mode */
361
362	if (bChannelChange) {
363		if (!(ichan->privFlags & CHANNEL_DFS))
364			ichan->privFlags &= ~CHANNEL_INTERFERENCE;
365		chan->channelFlags = ichan->channelFlags;
366		chan->privFlags = ichan->privFlags;
367		chan->maxRegTxPower = ichan->maxRegTxPower;
368		chan->maxTxPower = ichan->maxTxPower;
369		chan->minTxPower = ichan->minTxPower;
370	}
371
372	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
373
374	OS_MARK(ah, AH_MARK_RESET_DONE, 0);
375
376	return AH_TRUE;
377bad:
378	OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
379	if (status != AH_NULL)
380		*status = ecode;
381	return AH_FALSE;
382#undef FAIL
383#undef N
384}
385
386#if 0
387/*
388 * This channel change evaluates whether the selected hardware can
389 * perform a synthesizer-only channel change (no reset).  If the
390 * TX is not stopped, or the RFBus cannot be granted in the given
391 * time, the function returns false as a reset is necessary
392 */
393HAL_BOOL
394ar5416ChannelChange(struct ath_hal *ah, HAL_CHANNEL *chan)
395{
396	uint32_t       ulCount;
397	uint32_t   data, synthDelay, qnum;
398	uint16_t   rfXpdGain[4];
399	struct ath_hal_5212 *ahp = AH5212(ah);
400	HAL_CHANNEL_INTERNAL *ichan;
401
402	/*
403	 * Map public channel to private.
404	 */
405	ichan = ath_hal_checkchannel(ah, chan);
406
407	/* TX must be stopped or RF Bus grant will not work */
408	for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
409		if (ar5212NumTxPending(ah, qnum)) {
410			HALDEBUG(ah, HAL_DEBUG_ANY,
411			    "%s: frames pending on queue %d\n", __func__, qnum);
412			return AH_FALSE;
413		}
414	}
415
416	/*
417	 * Kill last Baseband Rx Frame - Request analog bus grant
418	 */
419	OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST);
420	if (!ath_hal_wait(ah, AR_PHY_RFBUS_GNT, AR_PHY_RFBUS_GRANT_EN, AR_PHY_RFBUS_GRANT_EN)) {
421		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: could not kill baseband rx\n",
422		    __func__);
423		return AH_FALSE;
424	}
425
426	ar5416Set11nRegs(ah, chan);	/* NB: setup 5416-specific regs */
427
428	/* Change the synth */
429	if (!ar5212SetChannel(ah, ichan))
430		return AH_FALSE;
431
432	/* Setup the transmit power values. */
433	if (!_ar5416SetTransmitPower(ah, ichan, rfXpdGain)) {
434		HALDEBUG(ah, HAL_DEBUG_ANY,
435		    "%s: error init'ing transmit power\n", __func__);
436		return AH_FALSE;
437	}
438
439	/*
440	 * Wait for the frequency synth to settle (synth goes on
441	 * via PHY_ACTIVE_EN).  Read the phy active delay register.
442	 * Value is in 100ns increments.
443	 */
444	data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
445	if (IS_CHAN_CCK(ichan)) {
446		synthDelay = (4 * data) / 22;
447	} else {
448		synthDelay = data / 10;
449	}
450
451	OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
452
453	/* Release the RFBus Grant */
454	OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
455
456	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
457	if (IS_CHAN_OFDM(ichan)|| IS_CHAN_HT(chan)) {
458		if (ahp->ah_eeprom.ee_version >= AR_EEPROM_VER5_3 &&
459		    !IS_CHAN_B(chan))
460			ar5212SetSpurMitigation(ah, ichan);
461		ar5416SetDeltaSlope(ah, ichan);
462	}
463
464	/* XXX spur mitigation for Melin */
465
466	/* Copy over internal channel flags to public hal channel */
467
468	if (!(ichan->privFlags & CHANNEL_DFS))
469		ichan->privFlags &= ~CHANNEL_INTERFERENCE;
470	chan->channelFlags = ichan->channelFlags;
471	chan->privFlags = ichan->privFlags;
472	chan->maxRegTxPower = ichan->maxRegTxPower;
473	chan->maxTxPower = ichan->maxTxPower;
474	chan->minTxPower = ichan->minTxPower;
475	AH_PRIVATE(ah)->ah_curchan->ah_channel_time=0;
476	AH_PRIVATE(ah)->ah_curchan->ah_tsf_last = ar5212GetTsf64(ah);
477	ar5212TxEnable(ah,AH_TRUE);
478	return AH_TRUE;
479}
480#endif
481
482static void
483ar5416InitDMA(struct ath_hal *ah)
484{
485	struct ath_hal_5212 *ahp = AH5212(ah);
486
487	/*
488	 * set AHB_MODE not to do cacheline prefetches
489	 */
490	OS_REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
491
492	/*
493	 * let mac dma reads be in 128 byte chunks
494	 */
495	OS_REG_WRITE(ah, AR_TXCFG,
496		(OS_REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK) | AR_TXCFG_DMASZ_128B);
497
498	/*
499	 * let mac dma writes be in 128 byte chunks
500	 */
501	OS_REG_WRITE(ah, AR_RXCFG,
502		(OS_REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK) | AR_RXCFG_DMASZ_128B);
503
504	/*
505	 * restore TX trigger level
506	 */
507	OS_REG_WRITE(ah, AR_TXCFG,
508		(OS_REG_READ(ah, AR_TXCFG) &~ AR_FTRIG) |
509		    SM(ahp->ah_txTrigLev, AR_FTRIG));
510
511	/*
512	 * Setup receive FIFO threshold to hold off TX activities
513	 */
514	OS_REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
515
516	/*
517	 * reduce the number of usable entries in PCU TXBUF to avoid
518	 * wrap around.
519	 */
520	OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE);
521}
522
523static void
524ar5416InitBB(struct ath_hal *ah, HAL_CHANNEL *chan)
525{
526	uint32_t synthDelay;
527
528	/*
529	 * Wait for the frequency synth to settle (synth goes on
530	 * via AR_PHY_ACTIVE_EN).  Read the phy active delay register.
531	 * Value is in 100ns increments.
532	  */
533	synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
534	if (IS_CHAN_CCK(chan)) {
535		synthDelay = (4 * synthDelay) / 22;
536	} else {
537		synthDelay /= 10;
538	}
539
540	/* Turn on PLL on 5416 */
541	HALDEBUG(ah, HAL_DEBUG_RESET, "%s %s channel\n",
542	    __func__, IS_CHAN_5GHZ(chan) ? "5GHz" : "2GHz");
543	ar5416InitPLL(ah, chan);
544
545	/* Activate the PHY (includes baseband activate and synthesizer on) */
546	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
547
548	/*
549	 * If the AP starts the calibration before the base band timeout
550	 * completes  we could get rx_clear false triggering.  Add an
551	 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
552	 * does not happen.
553	 */
554	if (IS_CHAN_HALF_RATE(AH_PRIVATE(ah)->ah_curchan)) {
555		OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
556	} else if (IS_CHAN_QUARTER_RATE(AH_PRIVATE(ah)->ah_curchan)) {
557		OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
558	} else {
559		OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
560	}
561}
562
563static void
564ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode)
565{
566	struct ath_hal_5212 *ahp = AH5212(ah);
567
568	/*
569	 * Setup interrupt handling.  Note that ar5212ResetTxQueue
570	 * manipulates the secondary IMR's as queues are enabled
571	 * and disabled.  This is done with RMW ops to insure the
572	 * settings we make here are preserved.
573	 */
574        ahp->ah_maskReg = AR_IMR_TXERR | AR_IMR_TXURN
575			| AR_IMR_RXERR | AR_IMR_RXORN
576                        | AR_IMR_BCNMISC;
577
578#ifdef AR5416_INT_MITIGATION
579       	ahp->ah_maskReg |= AR_IMR_TXINTM | AR_IMR_RXINTM
580			|  AR_IMR_TXMINTR | AR_IMR_RXMINTR;
581#else
582        ahp->ah_maskReg |= AR_IMR_TXOK | AR_IMR_RXOK;
583#endif
584	if (opmode == HAL_M_HOSTAP)
585		ahp->ah_maskReg |= AR_IMR_MIB;
586	OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
587	/* Enable bus errors that are OR'd to set the HIUERR bit */
588
589#if 0
590	OS_REG_WRITE(ah, AR_IMR_S2,
591	    	OS_REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT | AR_IMR_S2_CST);
592#endif
593}
594
595static void
596ar5416InitQoS(struct ath_hal *ah)
597{
598	/* QoS support */
599	OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa);	/* XXX magic */
600	OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210);	/* XXX magic */
601
602	/* Turn on NOACK Support for QoS packets */
603	OS_REG_WRITE(ah, AR_NOACK,
604		SM(2, AR_NOACK_2BIT_VALUE) |
605		SM(5, AR_NOACK_BIT_OFFSET) |
606		SM(0, AR_NOACK_BYTE_OFFSET));
607
608    	/*
609    	 * initialize TXOP for all TIDs
610    	 */
611	OS_REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
612	OS_REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
613	OS_REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
614	OS_REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
615	OS_REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
616}
617
618static void
619ar5416InitUserSettings(struct ath_hal *ah)
620{
621	struct ath_hal_5212 *ahp = AH5212(ah);
622
623	/* Restore user-specified settings */
624	if (ahp->ah_miscMode != 0)
625		OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode);
626	if (ahp->ah_sifstime != (u_int) -1)
627		ar5212SetSifsTime(ah, ahp->ah_sifstime);
628	if (ahp->ah_slottime != (u_int) -1)
629		ar5212SetSlotTime(ah, ahp->ah_slottime);
630	if (ahp->ah_acktimeout != (u_int) -1)
631		ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
632	if (ahp->ah_ctstimeout != (u_int) -1)
633		ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
634	if (AH_PRIVATE(ah)->ah_diagreg != 0)
635		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
636#if 0 /* XXX Todo */
637	if (ahp->ah_globaltxtimeout != (u_int) -1)
638        	ar5416SetGlobalTxTimeout(ah, ahp->ah_globaltxtimeout);
639#endif
640}
641
642/*
643 * Places the hardware into reset and then pulls it out of reset
644 */
645HAL_BOOL
646ar5416ChipReset(struct ath_hal *ah, HAL_CHANNEL *chan)
647{
648	OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->channel : 0);
649	/*
650	 * Warm reset is optimistic.
651	 */
652	if (AR_SREV_MERLIN_20_OR_LATER(ah) &&
653	    ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
654		if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
655			return AH_FALSE;
656	} else {
657		if (!ar5416SetResetReg(ah, HAL_RESET_WARM))
658			return AH_FALSE;
659	}
660
661	/* Bring out of sleep mode (AGAIN) */
662	if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
663	       return AH_FALSE;
664
665	ar5416InitPLL(ah, chan);
666
667	/*
668	 * Perform warm reset before the mode/PLL/turbo registers
669	 * are changed in order to deactivate the radio.  Mode changes
670	 * with an active radio can result in corrupted shifts to the
671	 * radio device.
672	 */
673	if (chan != AH_NULL) {
674		uint32_t rfMode;
675
676		/* treat channel B as channel G , no  B mode suport in owl */
677		rfMode = (IS_CHAN_G(chan) || IS_CHAN_B(chan)) ?
678			AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
679		if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
680			/* phy mode bits for 5GHz channels require Fast Clock */
681			rfMode |= AR_PHY_MODE_DYNAMIC
682			       |  AR_PHY_MODE_DYN_CCK_DISABLE;
683		} else if (!AR_SREV_MERLIN_10_OR_LATER(ah)) {
684			rfMode |= (IS_CHAN_5GHZ(chan)) ?
685				AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
686		}
687		OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
688	}
689	return AH_TRUE;
690}
691
692/*
693 * Delta slope coefficient computation.
694 * Required for OFDM operation.
695 */
696static void
697ar5416GetDeltaSlopeValues(struct ath_hal *ah, uint32_t coef_scaled,
698                          uint32_t *coef_mantissa, uint32_t *coef_exponent)
699{
700#define COEF_SCALE_S 24
701    uint32_t coef_exp, coef_man;
702    /*
703     * ALGO -> coef_exp = 14-floor(log2(coef));
704     * floor(log2(x)) is the highest set bit position
705     */
706    for (coef_exp = 31; coef_exp > 0; coef_exp--)
707            if ((coef_scaled >> coef_exp) & 0x1)
708                    break;
709    /* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
710    HALASSERT(coef_exp);
711    coef_exp = 14 - (coef_exp - COEF_SCALE_S);
712
713    /*
714     * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
715     * The coefficient is already shifted up for scaling
716     */
717    coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
718
719    *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
720    *coef_exponent = coef_exp - 16;
721
722#undef COEF_SCALE_S
723}
724
725void
726ar5416SetDeltaSlope(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
727{
728#define INIT_CLOCKMHZSCALED	0x64000000
729	uint32_t coef_scaled, ds_coef_exp, ds_coef_man;
730	uint32_t clockMhzScaled = INIT_CLOCKMHZSCALED;
731
732	CHAN_CENTERS centers;
733
734	if (IS_CHAN_TURBO(chan))
735		clockMhzScaled *= 2;
736	/* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
737	/* scale for selected channel bandwidth */
738	if (IS_CHAN_HALF_RATE(chan)) {
739		clockMhzScaled = clockMhzScaled >> 1;
740	} else if (IS_CHAN_QUARTER_RATE(chan)) {
741		clockMhzScaled = clockMhzScaled >> 2;
742	}
743
744	/*
745	 * ALGO -> coef = 1e8/fcarrier*fclock/40;
746	 * scaled coef to provide precision for this floating calculation
747	 */
748	ar5416GetChannelCenters(ah, chan, &centers);
749	coef_scaled = clockMhzScaled / centers.synth_center;
750
751 	ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
752
753	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
754		AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
755	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
756		AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
757
758        /*
759         * For Short GI,
760         * scaled coeff is 9/10 that of normal coeff
761         */
762        coef_scaled = (9 * coef_scaled)/10;
763
764        ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
765
766        /* for short gi */
767        OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
768                AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
769        OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
770                AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
771#undef INIT_CLOCKMHZSCALED
772}
773
774/*
775 * Set a limit on the overall output power.  Used for dynamic
776 * transmit power control and the like.
777 *
778 * NB: limit is in units of 0.5 dbM.
779 */
780HAL_BOOL
781ar5416SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
782{
783	uint16_t dummyXpdGains[2];
784
785	AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
786	return _ar5416SetTransmitPower(ah, AH_PRIVATE(ah)->ah_curchan,
787			dummyXpdGains);
788}
789
790HAL_BOOL
791ar5416GetChipPowerLimits(struct ath_hal *ah, HAL_CHANNEL *chans, uint32_t nchans)
792{
793	struct ath_hal_5212 *ahp = AH5212(ah);
794	int16_t minPower, maxPower;
795	HAL_CHANNEL *chan;
796	int i;
797
798	/*
799	 * Get Pier table max and min powers.
800	 */
801	for (i = 0; i < nchans; i++) {
802		chan = &chans[i];
803		if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
804			/* NB: rf code returns 1/4 dBm units, convert */
805			chan->maxTxPower = maxPower / 2;
806			chan->minTxPower = minPower / 2;
807		} else {
808			HALDEBUG(ah, HAL_DEBUG_ANY,
809			    "%s: no min/max power for %u/0x%x\n",
810			    __func__, chan->channel, chan->channelFlags);
811			chan->maxTxPower = AR5416_MAX_RATE_POWER;
812			chan->minTxPower = 0;
813		}
814	}
815#ifdef AH_DEBUG
816	for (i=0; i<nchans; i++) {
817		HALDEBUG(ah, HAL_DEBUG_RESET,
818		    "Chan %d: MaxPow = %d MinPow = %d\n",
819		    chans[i].channel,chans[i].maxTxPower, chans[i].minTxPower);
820	}
821#endif
822	return AH_TRUE;
823}
824
825/* XXX gag, this is sick */
826typedef enum Ar5416_Rates {
827	rate6mb,  rate9mb,  rate12mb, rate18mb,
828	rate24mb, rate36mb, rate48mb, rate54mb,
829	rate1l,   rate2l,   rate2s,   rate5_5l,
830	rate5_5s, rate11l,  rate11s,  rateXr,
831	rateHt20_0, rateHt20_1, rateHt20_2, rateHt20_3,
832	rateHt20_4, rateHt20_5, rateHt20_6, rateHt20_7,
833	rateHt40_0, rateHt40_1, rateHt40_2, rateHt40_3,
834	rateHt40_4, rateHt40_5, rateHt40_6, rateHt40_7,
835	rateDupCck, rateDupOfdm, rateExtCck, rateExtOfdm,
836	Ar5416RateSize
837} AR5416_RATES;
838
839/**************************************************************
840 * ar5416SetTransmitPower
841 *
842 * Set the transmit power in the baseband for the given
843 * operating channel and mode.
844 */
845static HAL_BOOL
846_ar5416SetTransmitPower(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t *rfXpdGain)
847{
848#define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
849#define N(a)            (sizeof (a) / sizeof (a[0]))
850
851    MODAL_EEP_HEADER	*pModal;
852    struct ath_hal_5212 *ahp = AH5212(ah);
853    int16_t		ratesArray[Ar5416RateSize];
854    int16_t		txPowerIndexOffset = 0;
855    uint8_t		ht40PowerIncForPdadc = 2;
856    int			i;
857
858    uint16_t		cfgCtl;
859    uint16_t		powerLimit;
860    uint16_t		twiceAntennaReduction;
861    uint16_t		twiceMaxRegulatoryPower;
862    int16_t		maxPower;
863    HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
864    struct ar5416eeprom	*pEepData = &ee->ee_base;
865
866    HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
867
868    /* Setup info for the actual eeprom */
869    ath_hal_memzero(ratesArray, sizeof(ratesArray));
870    cfgCtl = ath_hal_getctl(ah, (HAL_CHANNEL *)chan);
871    powerLimit = chan->maxRegTxPower * 2;
872    twiceAntennaReduction = chan->antennaMax;
873    twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
874    pModal = &pEepData->modalHeader[IS_CHAN_2GHZ(chan)];
875    HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
876	__func__,chan->channel, cfgCtl );
877
878    if (IS_EEP_MINOR_V2(ah)) {
879        ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
880    }
881
882    if (!ar5416SetPowerPerRateTable(ah, pEepData,  chan,
883                                    &ratesArray[0],cfgCtl,
884                                    twiceAntennaReduction,
885				    twiceMaxRegulatoryPower, powerLimit)) {
886        HALDEBUG(ah, HAL_DEBUG_ANY,
887	    "%s: unable to set tx power per rate table\n", __func__);
888        return AH_FALSE;
889    }
890
891    if (!ar5416SetPowerCalTable(ah,  pEepData, chan, &txPowerIndexOffset)) {
892        HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
893	    __func__);
894        return AH_FALSE;
895    }
896
897    maxPower = AH_MAX(ratesArray[rate6mb], ratesArray[rateHt20_0]);
898
899    if (IS_CHAN_2GHZ(chan)) {
900        maxPower = AH_MAX(maxPower, ratesArray[rate1l]);
901    }
902
903    if (IS_CHAN_HT40(chan)) {
904        maxPower = AH_MAX(maxPower, ratesArray[rateHt40_0]);
905    }
906
907    ahp->ah_tx6PowerInHalfDbm = maxPower;
908    AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
909    ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
910
911    /*
912     * txPowerIndexOffset is set by the SetPowerTable() call -
913     *  adjust the rate table (0 offset if rates EEPROM not loaded)
914     */
915    for (i = 0; i < N(ratesArray); i++) {
916        ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
917        if (ratesArray[i] > AR5416_MAX_RATE_POWER)
918            ratesArray[i] = AR5416_MAX_RATE_POWER;
919    }
920
921#ifdef AH_EEPROM_DUMP
922    ar5416PrintPowerPerRate(ah, ratesArray);
923#endif
924
925    /* Write the OFDM power per rate set */
926    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
927        POW_SM(ratesArray[rate18mb], 24)
928          | POW_SM(ratesArray[rate12mb], 16)
929          | POW_SM(ratesArray[rate9mb], 8)
930          | POW_SM(ratesArray[rate6mb], 0)
931    );
932    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
933        POW_SM(ratesArray[rate54mb], 24)
934          | POW_SM(ratesArray[rate48mb], 16)
935          | POW_SM(ratesArray[rate36mb], 8)
936          | POW_SM(ratesArray[rate24mb], 0)
937    );
938
939    if (IS_CHAN_2GHZ(chan)) {
940        /* Write the CCK power per rate set */
941        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
942            POW_SM(ratesArray[rate2s], 24)
943              | POW_SM(ratesArray[rate2l],  16)
944              | POW_SM(ratesArray[rateXr],  8) /* XR target power */
945              | POW_SM(ratesArray[rate1l],   0)
946        );
947        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
948            POW_SM(ratesArray[rate11s], 24)
949              | POW_SM(ratesArray[rate11l], 16)
950              | POW_SM(ratesArray[rate5_5s], 8)
951              | POW_SM(ratesArray[rate5_5l], 0)
952        );
953    HALDEBUG(ah, HAL_DEBUG_RESET,
954	"%s AR_PHY_POWER_TX_RATE3=0x%x AR_PHY_POWER_TX_RATE4=0x%x\n",
955	    __func__, OS_REG_READ(ah,AR_PHY_POWER_TX_RATE3),
956	    OS_REG_READ(ah,AR_PHY_POWER_TX_RATE4));
957    }
958
959    /* Write the HT20 power per rate set */
960    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
961        POW_SM(ratesArray[rateHt20_3], 24)
962          | POW_SM(ratesArray[rateHt20_2], 16)
963          | POW_SM(ratesArray[rateHt20_1], 8)
964          | POW_SM(ratesArray[rateHt20_0], 0)
965    );
966    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
967        POW_SM(ratesArray[rateHt20_7], 24)
968          | POW_SM(ratesArray[rateHt20_6], 16)
969          | POW_SM(ratesArray[rateHt20_5], 8)
970          | POW_SM(ratesArray[rateHt20_4], 0)
971    );
972
973    if (IS_CHAN_HT40(chan)) {
974        /* Write the HT40 power per rate set */
975	/* Correct PAR difference between HT40 and HT20/LEGACY */
976        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
977            POW_SM(ratesArray[rateHt40_3] + ht40PowerIncForPdadc, 24)
978              | POW_SM(ratesArray[rateHt40_2] + ht40PowerIncForPdadc, 16)
979              | POW_SM(ratesArray[rateHt40_1] + ht40PowerIncForPdadc, 8)
980              | POW_SM(ratesArray[rateHt40_0] + ht40PowerIncForPdadc, 0)
981        );
982        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
983            POW_SM(ratesArray[rateHt40_7] + ht40PowerIncForPdadc, 24)
984              | POW_SM(ratesArray[rateHt40_6] + ht40PowerIncForPdadc, 16)
985              | POW_SM(ratesArray[rateHt40_5] + ht40PowerIncForPdadc, 8)
986              | POW_SM(ratesArray[rateHt40_4] + ht40PowerIncForPdadc, 0)
987        );
988        /* Write the Dup/Ext 40 power per rate set */
989        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
990            POW_SM(ratesArray[rateExtOfdm], 24)
991              | POW_SM(ratesArray[rateExtCck], 16)
992              | POW_SM(ratesArray[rateDupOfdm], 8)
993              | POW_SM(ratesArray[rateDupCck], 0)
994        );
995    }
996
997    /* Write the Power subtraction for dynamic chain changing, for per-packet powertx */
998    OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
999        POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1000          | POW_SM(pModal->pwrDecreaseFor2Chain, 0)
1001    );
1002    return AH_TRUE;
1003#undef POW_SM
1004#undef N
1005}
1006
1007HAL_BOOL
1008ar5416SetTransmitPower(struct ath_hal *ah, HAL_CHANNEL *chan,
1009	uint16_t *rfXpdGain)
1010{
1011	return _ar5416SetTransmitPower(ah, ath_hal_checkchannel(ah, chan),
1012	    rfXpdGain);
1013}
1014
1015/*
1016 * Exported call to check for a recent gain reading and return
1017 * the current state of the thermal calibration gain engine.
1018 */
1019HAL_RFGAIN
1020ar5416GetRfgain(struct ath_hal *ah)
1021{
1022	return HAL_RFGAIN_INACTIVE;
1023}
1024
1025/*
1026 * Places all of hardware into reset
1027 */
1028HAL_BOOL
1029ar5416Disable(struct ath_hal *ah)
1030{
1031	if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
1032		return AH_FALSE;
1033	return ar5416SetResetReg(ah, HAL_RESET_COLD);
1034}
1035
1036/*
1037 * Places the PHY and Radio chips into reset.  A full reset
1038 * must be called to leave this state.  The PCI/MAC/PCU are
1039 * not placed into reset as we must receive interrupt to
1040 * re-enable the hardware.
1041 */
1042HAL_BOOL
1043ar5416PhyDisable(struct ath_hal *ah)
1044{
1045	return ar5416SetResetReg(ah, HAL_RESET_WARM);
1046}
1047
1048/*
1049 * Write the given reset bit mask into the reset register
1050 */
1051HAL_BOOL
1052ar5416SetResetReg(struct ath_hal *ah, uint32_t type)
1053{
1054	switch (type) {
1055	case HAL_RESET_POWER_ON:
1056		return ar5416SetResetPowerOn(ah);
1057	case HAL_RESET_WARM:
1058	case HAL_RESET_COLD:
1059		return ar5416SetReset(ah, type);
1060	default:
1061		HALASSERT(AH_FALSE);
1062		return AH_FALSE;
1063	}
1064}
1065
1066static HAL_BOOL
1067ar5416SetResetPowerOn(struct ath_hal *ah)
1068{
1069    /* Power On Reset (Hard Reset) */
1070
1071    /*
1072     * Set force wake
1073     *
1074     * If the MAC was running, previously calling
1075     * reset will wake up the MAC but it may go back to sleep
1076     * before we can start polling.
1077     * Set force wake  stops that
1078     * This must be called before initiating a hard reset.
1079     */
1080    OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1081            AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1082
1083    /*
1084     * RTC reset and clear
1085     */
1086    OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
1087    OS_REG_WRITE(ah, AR_RTC_RESET, 0);
1088    OS_DELAY(20);
1089    OS_REG_WRITE(ah, AR_RC, 0);
1090
1091    OS_REG_WRITE(ah, AR_RTC_RESET, 1);
1092
1093    /*
1094     * Poll till RTC is ON
1095     */
1096    if (!ath_hal_wait(ah, AR_RTC_STATUS, AR_RTC_PM_STATUS_M, AR_RTC_STATUS_ON)) {
1097        HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC not waking up\n", __func__);
1098        return AH_FALSE;
1099    }
1100
1101    return ar5416SetReset(ah, HAL_RESET_COLD);
1102}
1103
1104static HAL_BOOL
1105ar5416SetReset(struct ath_hal *ah, int type)
1106{
1107    uint32_t tmpReg;
1108
1109    /*
1110     * Force wake
1111     */
1112    OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1113	AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1114
1115    /*
1116     * Reset AHB
1117     */
1118    tmpReg = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE);
1119    if (tmpReg & (AR_INTR_SYNC_LOCAL_TIMEOUT|AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1120	OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1121	OS_REG_WRITE(ah, AR_RC, AR_RC_AHB|AR_RC_HOSTIF);
1122    } else {
1123	OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
1124    }
1125
1126    /*
1127     * Set Mac(BB,Phy) Warm Reset
1128     */
1129    switch (type) {
1130    case HAL_RESET_WARM:
1131            OS_REG_WRITE(ah, AR_RTC_RC, AR_RTC_RC_MAC_WARM);
1132            break;
1133    case HAL_RESET_COLD:
1134            OS_REG_WRITE(ah, AR_RTC_RC, AR_RTC_RC_MAC_WARM|AR_RTC_RC_MAC_COLD);
1135            break;
1136    default:
1137            HALASSERT(AH_FALSE);
1138            break;
1139    }
1140
1141    /*
1142     * Clear resets and force wakeup
1143     */
1144    OS_REG_WRITE(ah, AR_RTC_RC, 0);
1145    if (!ath_hal_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0)) {
1146        HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC stuck in MAC reset\n", __func__);
1147        return AH_FALSE;
1148    }
1149
1150    /* Clear AHB reset */
1151    OS_REG_WRITE(ah, AR_RC, 0);
1152
1153   /* Set register and descriptor swapping on
1154    * Bigendian platforms on cold reset
1155    */
1156    if (type == HAL_RESET_COLD) {
1157#ifdef __BIG_ENDIAN__
1158    		uint32_t	mask;
1159
1160		HALDEBUG(ah, HAL_DEBUG_RESET,
1161		    "%s Applying descriptor swap\n", __func__);
1162
1163		mask = INIT_CONFIG_STATUS | AR_CFG_SWRD | AR_CFG_SWRG;
1164#ifndef AH_NEED_DESC_SWAP
1165		mask |= AR_CFG_SWTD;
1166#endif
1167		OS_REG_WRITE(ah, AR_CFG, LE_READ_4(&mask));
1168#else
1169		OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
1170#endif
1171	}
1172
1173    ar5416InitPLL(ah, AH_NULL);
1174
1175    return AH_TRUE;
1176}
1177
1178#ifndef IS_5GHZ_FAST_CLOCK_EN
1179#define	IS_5GHZ_FAST_CLOCK_EN(ah, chan)	AH_FALSE
1180#endif
1181
1182static void
1183ar5416InitPLL(struct ath_hal *ah, HAL_CHANNEL *chan)
1184{
1185	uint32_t pll;
1186
1187	if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1188		pll = SM(0x5, AR_RTC_SOWL_PLL_REFDIV);
1189
1190		if (chan != AH_NULL && IS_CHAN_HALF_RATE(chan)) {
1191			pll |= SM(0x1, AR_RTC_SOWL_PLL_CLKSEL);
1192		} else if (chan && IS_CHAN_QUARTER_RATE(chan)) {
1193			pll |= SM(0x2, AR_RTC_SOWL_PLL_CLKSEL);
1194		}
1195		if (AR_SREV_MERLIN_20(ah) &&
1196		    chan != AH_NULL && IS_CHAN_5GHZ(chan)) {
1197			pll |= SM(0x28, AR_RTC_SOWL_PLL_DIV);
1198
1199			/*
1200			 * PLL WAR for Merlin 2.0/2.1
1201			 * When doing fast clock, set PLL to 0x142c
1202			 * Else, set PLL to 0x2850 to prevent reset-to-reset variation
1203			 */
1204			if (AR_SREV_MERLIN_20(ah)) {
1205				if (IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
1206					pll = 0x142c;
1207				} else {
1208					pll = 0x2850;
1209				}
1210			}
1211		} else {
1212			pll |= SM(0x2c, AR_RTC_SOWL_PLL_DIV);
1213		}
1214	} else if (AR_SREV_SOWL_10_OR_LATER(ah)) {
1215		pll = SM(0x5, AR_RTC_SOWL_PLL_REFDIV);
1216
1217		if (chan != AH_NULL && IS_CHAN_HALF_RATE(chan)) {
1218			pll |= SM(0x1, AR_RTC_SOWL_PLL_CLKSEL);
1219		} else if (chan && IS_CHAN_QUARTER_RATE(chan)) {
1220			pll |= SM(0x2, AR_RTC_SOWL_PLL_CLKSEL);
1221		}
1222		if (chan != AH_NULL && IS_CHAN_5GHZ(chan)) {
1223			pll |= SM(0x50, AR_RTC_SOWL_PLL_DIV);
1224		} else {
1225			pll |= SM(0x58, AR_RTC_SOWL_PLL_DIV);
1226		}
1227	} else {
1228		pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1229
1230		if (chan != AH_NULL && IS_CHAN_HALF_RATE(chan)) {
1231			pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1232		} else if (chan != AH_NULL && IS_CHAN_QUARTER_RATE(chan)) {
1233			pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1234		}
1235		if (chan != AH_NULL && IS_CHAN_5GHZ(chan)) {
1236			pll |= SM(0xa, AR_RTC_PLL_DIV);
1237		} else {
1238			pll |= SM(0xb, AR_RTC_PLL_DIV);
1239		}
1240	}
1241	OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1242
1243	/* TODO:
1244	* For multi-band owl, switch between bands by reiniting the PLL.
1245	*/
1246
1247	OS_DELAY(RTC_PLL_SETTLE_DELAY);
1248
1249	OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_SLEEP_DERIVED_CLK);
1250}
1251
1252/*
1253 * Read EEPROM header info and program the device for correct operation
1254 * given the channel value.
1255 */
1256HAL_BOOL
1257ar5416SetBoardValues(struct ath_hal *ah, HAL_CHANNEL *_chan)
1258{
1259    HAL_CHANNEL_INTERNAL *chan;
1260    const HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
1261    const struct ar5416eeprom *eep = &ee->ee_base;
1262    const MODAL_EEP_HEADER *pModal;
1263    int			i, regChainOffset;
1264    uint8_t		txRxAttenLocal;    /* workaround for eeprom versions <= 14.2 */
1265
1266    HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
1267
1268    chan = ath_hal_checkchannel(ah, _chan);
1269    pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
1270
1271    txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;    /* workaround for eeprom versions <= 14.2 */
1272
1273    OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
1274    for (i = 0; i < AR5416_MAX_CHAINS; i++) {
1275	   if (AR_SREV_MERLIN(ah)) {
1276		if (i >= 2) break;
1277	   }
1278       	   if (AR_SREV_OWL_20_OR_LATER(ah) &&
1279            (AH5416(ah)->ah_rx_chainmask == 0x5 ||
1280	     AH5416(ah)->ah_tx_chainmask == 0x5) && i != 0) {
1281            /* Regs are swapped from chain 2 to 1 for 5416 2_0 with
1282             * only chains 0 and 2 populated
1283             */
1284            regChainOffset = (i == 1) ? 0x2000 : 0x1000;
1285        } else {
1286            regChainOffset = i * 0x1000;
1287        }
1288
1289        OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, pModal->antCtrlChain[i]);
1290        OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4 + regChainOffset,
1291        	(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4 + regChainOffset) &
1292        	~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
1293        	SM(pModal->iqCalICh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
1294        	SM(pModal->iqCalQCh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
1295
1296        /*
1297         * Large signal upgrade.
1298	 * XXX update
1299         */
1300
1301        if ((i == 0) || AR_SREV_OWL_20_OR_LATER(ah)) {
1302            OS_REG_WRITE(ah, AR_PHY_RXGAIN + regChainOffset,
1303		(OS_REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) & ~AR_PHY_RXGAIN_TXRX_ATTEN) |
1304			SM(IS_EEP_MINOR_V3(ah)  ? pModal->txRxAttenCh[i] : txRxAttenLocal,
1305				AR_PHY_RXGAIN_TXRX_ATTEN));
1306
1307            OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1308	    	(OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) & ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
1309			SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
1310        }
1311    }
1312
1313    OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
1314    OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
1315    OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_PGA, pModal->pgaDesiredSize);
1316    OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
1317        SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
1318        | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
1319        | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
1320        | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1321
1322    OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
1323
1324    if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1325	OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1326	    pModal->thresh62);
1327	OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
1328	    pModal->thresh62);
1329    } else {
1330	OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
1331	    pModal->thresh62);
1332	OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA_THRESH62,
1333	    pModal->thresh62);
1334    }
1335
1336    /* Minor Version Specific application */
1337    if (IS_EEP_MINOR_V2(ah)) {
1338        OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,  AR_PHY_TX_FRAME_TO_DATA_START, pModal->txFrameToDataStart);
1339        OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,  AR_PHY_TX_FRAME_TO_PA_ON, pModal->txFrameToPaOn);
1340    }
1341
1342    if (IS_EEP_MINOR_V3(ah)) {
1343	if (IS_CHAN_HT40(chan)) {
1344		/* Overwrite switch settling with HT40 value */
1345		OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
1346	}
1347
1348        if ((AR_SREV_OWL_20_OR_LATER(ah)) &&
1349            (  AH5416(ah)->ah_rx_chainmask == 0x5 || AH5416(ah)->ah_tx_chainmask == 0x5)){
1350            /* Reg Offsets are swapped for logical mapping */
1351		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
1352			SM(pModal->bswMargin[2], AR_PHY_GAIN_2GHZ_BSW_MARGIN));
1353		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
1354			SM(pModal->bswAtten[2], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
1355		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
1356			SM(pModal->bswMargin[1], AR_PHY_GAIN_2GHZ_BSW_MARGIN));
1357		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
1358			SM(pModal->bswAtten[1], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
1359        } else {
1360		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
1361			SM(pModal->bswMargin[1], AR_PHY_GAIN_2GHZ_BSW_MARGIN));
1362		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
1363			SM(pModal->bswAtten[1], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
1364		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
1365			SM(pModal->bswMargin[2],AR_PHY_GAIN_2GHZ_BSW_MARGIN));
1366		OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
1367			SM(pModal->bswAtten[2], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
1368        }
1369        OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_BSW_MARGIN, pModal->bswMargin[0]);
1370        OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_BSW_ATTEN, pModal->bswAtten[0]);
1371    }
1372    return AH_TRUE;
1373}
1374
1375/*
1376 * Helper functions common for AP/CB/XB
1377 */
1378
1379/*
1380 * ar5416SetPowerPerRateTable
1381 *
1382 * Sets the transmit power in the baseband for the given
1383 * operating channel and mode.
1384 */
1385static HAL_BOOL
1386ar5416SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
1387                           HAL_CHANNEL_INTERNAL *chan,
1388                           int16_t *ratesArray, uint16_t cfgCtl,
1389                           uint16_t AntennaReduction,
1390                           uint16_t twiceMaxRegulatoryPower,
1391                           uint16_t powerLimit)
1392{
1393#define	N(a)	(sizeof(a)/sizeof(a[0]))
1394/* Local defines to distinguish between extension and control CTL's */
1395#define EXT_ADDITIVE (0x8000)
1396#define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
1397#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
1398#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
1399
1400	uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1401	int i;
1402	int16_t  twiceLargestAntenna;
1403	CAL_CTL_DATA *rep;
1404	CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
1405	CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
1406	CAL_TARGET_POWER_HT  targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
1407	int16_t scaledPower, minCtlPower;
1408
1409#define SUB_NUM_CTL_MODES_AT_5G_40 2   /* excluding HT40, EXT-OFDM */
1410#define SUB_NUM_CTL_MODES_AT_2G_40 3   /* excluding HT40, EXT-OFDM, EXT-CCK */
1411	static const uint16_t ctlModesFor11a[] = {
1412	   CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
1413	};
1414	static const uint16_t ctlModesFor11g[] = {
1415	   CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
1416	};
1417	const uint16_t *pCtlMode;
1418	uint16_t numCtlModes, ctlMode, freq;
1419	CHAN_CENTERS centers;
1420
1421	ar5416GetChannelCenters(ah,  chan, &centers);
1422
1423	/* Compute TxPower reduction due to Antenna Gain */
1424
1425	twiceLargestAntenna = AH_MAX(AH_MAX(pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[0],
1426					pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[1]),
1427					pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
1428#if 0
1429	/* Turn it back on if we need to calculate per chain antenna gain reduction */
1430	/* Use only if the expected gain > 6dbi */
1431	/* Chain 0 is always used */
1432	twiceLargestAntenna = pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[0];
1433
1434	/* Look at antenna gains of Chains 1 and 2 if the TX mask is set */
1435	if (ahp->ah_tx_chainmask & 0x2)
1436		twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
1437			pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
1438
1439	if (ahp->ah_tx_chainmask & 0x4)
1440		twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
1441			pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
1442#endif
1443	twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
1444
1445	/* XXX setup for 5212 use (really used?) */
1446	ath_hal_eepromSet(ah,
1447	    IS_CHAN_2GHZ(chan) ? AR_EEP_ANTGAINMAX_2 : AR_EEP_ANTGAINMAX_5,
1448	    twiceLargestAntenna);
1449
1450	/*
1451	 * scaledPower is the minimum of the user input power level and
1452	 * the regulatory allowed power level
1453	 */
1454	scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
1455
1456	/* Reduce scaled Power by number of chains active to get to per chain tx power level */
1457	/* TODO: better value than these? */
1458	switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
1459	case 1:
1460		break;
1461	case 2:
1462		scaledPower -= pEepData->modalHeader[IS_CHAN_2GHZ(chan)].pwrDecreaseFor2Chain;
1463		break;
1464	case 3:
1465		scaledPower -= pEepData->modalHeader[IS_CHAN_2GHZ(chan)].pwrDecreaseFor3Chain;
1466		break;
1467	default:
1468		return AH_FALSE; /* Unsupported number of chains */
1469	}
1470
1471	scaledPower = AH_MAX(0, scaledPower);
1472
1473	/* Get target powers from EEPROM - our baseline for TX Power */
1474	if (IS_CHAN_2GHZ(chan)) {
1475		/* Setup for CTL modes */
1476		numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
1477		pCtlMode = ctlModesFor11g;
1478
1479		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
1480				AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
1481		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
1482				AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
1483		ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT20,
1484				AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
1485
1486		if (IS_CHAN_HT40(chan)) {
1487			numCtlModes = N(ctlModesFor11g);    /* All 2G CTL's */
1488
1489			ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT40,
1490				AR5416_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
1491			/* Get target powers for extension channels */
1492			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
1493				AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
1494			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
1495				AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
1496		}
1497	} else {
1498		/* Setup for CTL modes */
1499		numCtlModes = N(ctlModesFor11a) - SUB_NUM_CTL_MODES_AT_5G_40; /* CTL_11A, CTL_5GHT20 */
1500		pCtlMode = ctlModesFor11a;
1501
1502		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower5G,
1503				AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
1504		ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower5GHT20,
1505				AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
1506
1507		if (IS_CHAN_HT40(chan)) {
1508			numCtlModes = N(ctlModesFor11a); /* All 5G CTL's */
1509
1510			ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower5GHT40,
1511				AR5416_NUM_5G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
1512			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower5G,
1513				AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
1514		}
1515	}
1516
1517	/*
1518	 * For MIMO, need to apply regulatory caps individually across dynamically
1519	 * running modes: CCK, OFDM, HT20, HT40
1520	 *
1521	 * The outer loop walks through each possible applicable runtime mode.
1522	 * The inner loop walks through each ctlIndex entry in EEPROM.
1523	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
1524	 *
1525	 */
1526	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1527
1528		HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1529								 (pCtlMode[ctlMode] == CTL_2GHT40);
1530		if (isHt40CtlMode) {
1531			freq = centers.ctl_center;
1532		} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
1533			freq = centers.ext_center;
1534		} else {
1535			freq = centers.ctl_center;
1536		}
1537
1538		/* walk through each CTL index stored in EEPROM */
1539		for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1540			uint16_t twiceMinEdgePower;
1541
1542			/* compare test group from regulatory channel list with test mode from pCtlMode list */
1543			if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
1544				(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1545				 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1546				rep = &(pEepData->ctlData[i]);
1547				twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
1548							rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
1549							IS_CHAN_2GHZ(chan));
1550				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1551					/* Find the minimum of all CTL edge powers that apply to this channel */
1552					twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
1553				} else {
1554					/* specific */
1555					twiceMaxEdgePower = twiceMinEdgePower;
1556					break;
1557				}
1558			}
1559		}
1560		minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
1561		/* Apply ctl mode to correct target power set */
1562		switch(pCtlMode[ctlMode]) {
1563		case CTL_11B:
1564			for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
1565				targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
1566			}
1567			break;
1568		case CTL_11A:
1569		case CTL_11G:
1570			for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
1571				targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
1572			}
1573			break;
1574		case CTL_5GHT20:
1575		case CTL_2GHT20:
1576			for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
1577				targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
1578			}
1579			break;
1580		case CTL_11B_EXT:
1581			targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
1582			break;
1583		case CTL_11A_EXT:
1584		case CTL_11G_EXT:
1585			targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
1586			break;
1587		case CTL_5GHT40:
1588		case CTL_2GHT40:
1589			for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
1590				targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
1591			}
1592			break;
1593		default:
1594			return AH_FALSE;
1595			break;
1596		}
1597	} /* end ctl mode checking */
1598
1599	/* Set rates Array from collected data */
1600	ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = ratesArray[rate18mb] = ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
1601	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1602	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1603	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1604	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1605
1606	for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
1607		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1608	}
1609
1610	if (IS_CHAN_2GHZ(chan)) {
1611		ratesArray[rate1l]  = targetPowerCck.tPow2x[0];
1612		ratesArray[rate2s] = ratesArray[rate2l]  = targetPowerCck.tPow2x[1];
1613		ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
1614		ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
1615	}
1616	if (IS_CHAN_HT40(chan)) {
1617		for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
1618			ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
1619		}
1620		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1621		ratesArray[rateDupCck]  = targetPowerHt40.tPow2x[0];
1622		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1623		if (IS_CHAN_2GHZ(chan)) {
1624			ratesArray[rateExtCck]  = targetPowerCckExt.tPow2x[0];
1625		}
1626	}
1627	return AH_TRUE;
1628#undef EXT_ADDITIVE
1629#undef CTL_11A_EXT
1630#undef CTL_11G_EXT
1631#undef CTL_11B_EXT
1632#undef SUB_NUM_CTL_MODES_AT_5G_40
1633#undef SUB_NUM_CTL_MODES_AT_2G_40
1634#undef N
1635}
1636
1637/**************************************************************************
1638 * fbin2freq
1639 *
1640 * Get channel value from binary representation held in eeprom
1641 * RETURNS: the frequency in MHz
1642 */
1643static uint16_t
1644fbin2freq(uint8_t fbin, HAL_BOOL is2GHz)
1645{
1646    /*
1647     * Reserved value 0xFF provides an empty definition both as
1648     * an fbin and as a frequency - do not convert
1649     */
1650    if (fbin == AR5416_BCHAN_UNUSED) {
1651        return fbin;
1652    }
1653
1654    return (uint16_t)((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
1655}
1656
1657/*
1658 * ar5416GetMaxEdgePower
1659 *
1660 * Find the maximum conformance test limit for the given channel and CTL info
1661 */
1662static uint16_t
1663ar5416GetMaxEdgePower(uint16_t freq, CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz)
1664{
1665    uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1666    int      i;
1667
1668    /* Get the edge power */
1669    for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED) ; i++) {
1670        /*
1671         * If there's an exact channel match or an inband flag set
1672         * on the lower channel use the given rdEdgePower
1673         */
1674        if (freq == fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
1675            twiceMaxEdgePower = MS(pRdEdgesPower[i].tPowerFlag, CAL_CTL_EDGES_POWER);
1676            break;
1677        } else if ((i > 0) && (freq < fbin2freq(pRdEdgesPower[i].bChannel, is2GHz))) {
1678            if (fbin2freq(pRdEdgesPower[i - 1].bChannel, is2GHz) < freq && (pRdEdgesPower[i - 1].tPowerFlag & CAL_CTL_EDGES_FLAG) != 0) {
1679                twiceMaxEdgePower = MS(pRdEdgesPower[i - 1].tPowerFlag, CAL_CTL_EDGES_POWER);
1680            }
1681            /* Leave loop - no more affecting edges possible in this monotonic increasing list */
1682            break;
1683        }
1684    }
1685    HALASSERT(twiceMaxEdgePower > 0);
1686    return twiceMaxEdgePower;
1687}
1688
1689/**************************************************************
1690 * ar5416GetTargetPowers
1691 *
1692 * Return the rates of target power for the given target power table
1693 * channel, and number of channels
1694 */
1695void
1696ar5416GetTargetPowers(struct ath_hal *ah,  HAL_CHANNEL_INTERNAL *chan,
1697                      CAL_TARGET_POWER_HT *powInfo, uint16_t numChannels,
1698                      CAL_TARGET_POWER_HT *pNewPower, uint16_t numRates,
1699                      HAL_BOOL isHt40Target)
1700{
1701    uint16_t clo, chi;
1702    int i;
1703    int matchIndex = -1, lowIndex = -1;
1704    uint16_t freq;
1705    CHAN_CENTERS centers;
1706
1707    ar5416GetChannelCenters(ah,  chan, &centers);
1708    freq = isHt40Target ? centers.synth_center : centers.ctl_center;
1709
1710    /* Copy the target powers into the temp channel list */
1711    if (freq <= fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
1712        matchIndex = 0;
1713    } else {
1714        for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
1715            if (freq == fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) {
1716                matchIndex = i;
1717                break;
1718            } else if ((freq < fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) &&
1719                       (freq > fbin2freq(powInfo[i - 1].bChannel, IS_CHAN_2GHZ(chan))))
1720            {
1721                lowIndex = i - 1;
1722                break;
1723            }
1724        }
1725        if ((matchIndex == -1) && (lowIndex == -1)) {
1726            HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IS_CHAN_2GHZ(chan)));
1727            matchIndex = i - 1;
1728        }
1729    }
1730
1731    if (matchIndex != -1) {
1732        OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
1733    } else {
1734        HALASSERT(lowIndex != -1);
1735        /*
1736         * Get the lower and upper channels, target powers,
1737         * and interpolate between them.
1738         */
1739        clo = fbin2freq(powInfo[lowIndex].bChannel, IS_CHAN_2GHZ(chan));
1740        chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IS_CHAN_2GHZ(chan));
1741
1742        for (i = 0; i < numRates; i++) {
1743            pNewPower->tPow2x[i] = (uint8_t)interpolate(freq, clo, chi,
1744                                   powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
1745        }
1746    }
1747}
1748/**************************************************************
1749 * ar5416GetTargetPowersLeg
1750 *
1751 * Return the four rates of target power for the given target power table
1752 * channel, and number of channels
1753 */
1754void
1755ar5416GetTargetPowersLeg(struct ath_hal *ah,
1756                         HAL_CHANNEL_INTERNAL *chan,
1757                         CAL_TARGET_POWER_LEG *powInfo, uint16_t numChannels,
1758                         CAL_TARGET_POWER_LEG *pNewPower, uint16_t numRates,
1759			 HAL_BOOL isExtTarget)
1760{
1761    uint16_t clo, chi;
1762    int i;
1763    int matchIndex = -1, lowIndex = -1;
1764    uint16_t freq;
1765    CHAN_CENTERS centers;
1766
1767    ar5416GetChannelCenters(ah,  chan, &centers);
1768    freq = (isExtTarget) ? centers.ext_center :centers.ctl_center;
1769
1770    /* Copy the target powers into the temp channel list */
1771    if (freq <= fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
1772        matchIndex = 0;
1773    } else {
1774        for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
1775            if (freq == fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) {
1776                matchIndex = i;
1777                break;
1778            } else if ((freq < fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) &&
1779                       (freq > fbin2freq(powInfo[i - 1].bChannel, IS_CHAN_2GHZ(chan))))
1780            {
1781                lowIndex = i - 1;
1782                break;
1783            }
1784        }
1785        if ((matchIndex == -1) && (lowIndex == -1)) {
1786            HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IS_CHAN_2GHZ(chan)));
1787            matchIndex = i - 1;
1788        }
1789    }
1790
1791    if (matchIndex != -1) {
1792        OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
1793    } else {
1794        HALASSERT(lowIndex != -1);
1795        /*
1796         * Get the lower and upper channels, target powers,
1797         * and interpolate between them.
1798         */
1799        clo = fbin2freq(powInfo[lowIndex].bChannel, IS_CHAN_2GHZ(chan));
1800        chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IS_CHAN_2GHZ(chan));
1801
1802        for (i = 0; i < numRates; i++) {
1803            pNewPower->tPow2x[i] = (uint8_t)interpolate(freq, clo, chi,
1804                                   powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
1805        }
1806    }
1807}
1808
1809/**************************************************************
1810 * ar5416SetPowerCalTable
1811 *
1812 * Pull the PDADC piers from cal data and interpolate them across the given
1813 * points as well as from the nearest pier(s) to get a power detector
1814 * linear voltage to power level table.
1815 */
1816static HAL_BOOL
1817ar5416SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom *pEepData, HAL_CHANNEL_INTERNAL *chan, int16_t *pTxPowerIndexOffset)
1818{
1819    CAL_DATA_PER_FREQ *pRawDataset;
1820    uint8_t  *pCalBChans = AH_NULL;
1821    uint16_t pdGainOverlap_t2;
1822    static uint8_t  pdadcValues[AR5416_NUM_PDADC_VALUES];
1823    uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
1824    uint16_t numPiers, i, j;
1825    int16_t  tMinCalPower;
1826    uint16_t numXpdGain, xpdMask;
1827    uint16_t xpdGainValues[AR5416_NUM_PD_GAINS];
1828    uint32_t reg32, regOffset, regChainOffset;
1829
1830    ath_hal_memzero(xpdGainValues, sizeof(xpdGainValues));
1831
1832    xpdMask = pEepData->modalHeader[IS_CHAN_2GHZ(chan)].xpdGain;
1833
1834    if (IS_EEP_MINOR_V2(ah)) {
1835        pdGainOverlap_t2 = pEepData->modalHeader[IS_CHAN_2GHZ(chan)].pdGainOverlap;
1836    } else {
1837    	pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
1838    }
1839
1840    if (IS_CHAN_2GHZ(chan)) {
1841        pCalBChans = pEepData->calFreqPier2G;
1842        numPiers = AR5416_NUM_2G_CAL_PIERS;
1843    } else {
1844        pCalBChans = pEepData->calFreqPier5G;
1845        numPiers = AR5416_NUM_5G_CAL_PIERS;
1846    }
1847
1848    numXpdGain = 0;
1849    /* Calculate the value of xpdgains from the xpdGain Mask */
1850    for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
1851        if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
1852            if (numXpdGain >= AR5416_NUM_PD_GAINS) {
1853                HALASSERT(0);
1854                break;
1855            }
1856            xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
1857            numXpdGain++;
1858        }
1859    }
1860
1861    /* Write the detector gain biases and their number */
1862    OS_REG_WRITE(ah, AR_PHY_TPCRG1, (OS_REG_READ(ah, AR_PHY_TPCRG1) &
1863    	~(AR_PHY_TPCRG1_NUM_PD_GAIN | AR_PHY_TPCRG1_PD_GAIN_1 | AR_PHY_TPCRG1_PD_GAIN_2 | AR_PHY_TPCRG1_PD_GAIN_3)) |
1864	SM(numXpdGain - 1, AR_PHY_TPCRG1_NUM_PD_GAIN) | SM(xpdGainValues[0], AR_PHY_TPCRG1_PD_GAIN_1 ) |
1865	SM(xpdGainValues[1], AR_PHY_TPCRG1_PD_GAIN_2) | SM(xpdGainValues[2],  AR_PHY_TPCRG1_PD_GAIN_3));
1866
1867    for (i = 0; i < AR5416_MAX_CHAINS; i++) {
1868
1869            if (AR_SREV_OWL_20_OR_LATER(ah) &&
1870            ( AH5416(ah)->ah_rx_chainmask == 0x5 || AH5416(ah)->ah_tx_chainmask == 0x5) && (i != 0)) {
1871            /* Regs are swapped from chain 2 to 1 for 5416 2_0 with
1872             * only chains 0 and 2 populated
1873             */
1874            regChainOffset = (i == 1) ? 0x2000 : 0x1000;
1875        } else {
1876            regChainOffset = i * 0x1000;
1877        }
1878
1879        if (pEepData->baseEepHeader.txMask & (1 << i)) {
1880            if (IS_CHAN_2GHZ(chan)) {
1881                pRawDataset = pEepData->calPierData2G[i];
1882            } else {
1883                pRawDataset = pEepData->calPierData5G[i];
1884            }
1885
1886            ar5416GetGainBoundariesAndPdadcs(ah,  chan, pRawDataset,
1887                                             pCalBChans, numPiers,
1888                                             pdGainOverlap_t2,
1889                                             &tMinCalPower, gainBoundaries,
1890                                             pdadcValues, numXpdGain);
1891
1892            if ((i == 0) || AR_SREV_OWL_20_OR_LATER(ah)) {
1893                /*
1894                 * Note the pdadc table may not start at 0 dBm power, could be
1895                 * negative or greater than 0.  Need to offset the power
1896                 * values by the amount of minPower for griffin
1897                 */
1898
1899                OS_REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
1900                     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
1901                     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)  |
1902                     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)  |
1903                     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)  |
1904                     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
1905            }
1906
1907            /* Write the power values into the baseband power table */
1908            regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
1909
1910            for (j = 0; j < 32; j++) {
1911                reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0)  |
1912                    ((pdadcValues[4*j + 1] & 0xFF) << 8)  |
1913                    ((pdadcValues[4*j + 2] & 0xFF) << 16) |
1914                    ((pdadcValues[4*j + 3] & 0xFF) << 24) ;
1915                OS_REG_WRITE(ah, regOffset, reg32);
1916
1917#ifdef PDADC_DUMP
1918		ath_hal_printf(ah, "PDADC: Chain %d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d |\n",
1919			       i,
1920			       4*j, pdadcValues[4*j],
1921			       4*j+1, pdadcValues[4*j + 1],
1922			       4*j+2, pdadcValues[4*j + 2],
1923			       4*j+3, pdadcValues[4*j + 3]);
1924#endif
1925                regOffset += 4;
1926            }
1927        }
1928    }
1929    *pTxPowerIndexOffset = 0;
1930
1931    return AH_TRUE;
1932}
1933
1934/**************************************************************
1935 * ar5416GetGainBoundariesAndPdadcs
1936 *
1937 * Uses the data points read from EEPROM to reconstruct the pdadc power table
1938 * Called by ar5416SetPowerCalTable only.
1939 */
1940static void
1941ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah,
1942                                 HAL_CHANNEL_INTERNAL *chan, CAL_DATA_PER_FREQ *pRawDataSet,
1943                                 uint8_t * bChans,  uint16_t availPiers,
1944                                 uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
1945                                 uint8_t * pPDADCValues, uint16_t numXpdGains)
1946{
1947
1948    int       i, j, k;
1949    int16_t   ss;         /* potentially -ve index for taking care of pdGainOverlap */
1950    uint16_t  idxL = 0, idxR = 0, numPiers; /* Pier indexes */
1951
1952    /* filled out Vpd table for all pdGains (chanL) */
1953    static uint8_t   vpdTableL[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
1954
1955    /* filled out Vpd table for all pdGains (chanR) */
1956    static uint8_t   vpdTableR[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
1957
1958    /* filled out Vpd table for all pdGains (interpolated) */
1959    static uint8_t   vpdTableI[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
1960
1961    uint8_t   *pVpdL, *pVpdR, *pPwrL, *pPwrR;
1962    uint8_t   minPwrT4[AR5416_NUM_PD_GAINS];
1963    uint8_t   maxPwrT4[AR5416_NUM_PD_GAINS];
1964    int16_t   vpdStep;
1965    int16_t   tmpVal;
1966    uint16_t  sizeCurrVpdTable, maxIndex, tgtIndex;
1967    HAL_BOOL    match;
1968    int16_t  minDelta = 0;
1969    CHAN_CENTERS centers;
1970
1971    ar5416GetChannelCenters(ah, chan, &centers);
1972
1973    /* Trim numPiers for the number of populated channel Piers */
1974    for (numPiers = 0; numPiers < availPiers; numPiers++) {
1975        if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
1976            break;
1977        }
1978    }
1979
1980    /* Find pier indexes around the current channel */
1981    match = getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
1982			bChans, numPiers, &idxL, &idxR);
1983
1984    if (match) {
1985        /* Directly fill both vpd tables from the matching index */
1986        for (i = 0; i < numXpdGains; i++) {
1987            minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
1988            maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
1989            ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pRawDataSet[idxL].pwrPdg[i],
1990                               pRawDataSet[idxL].vpdPdg[i], AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
1991        }
1992    } else {
1993        for (i = 0; i < numXpdGains; i++) {
1994            pVpdL = pRawDataSet[idxL].vpdPdg[i];
1995            pPwrL = pRawDataSet[idxL].pwrPdg[i];
1996            pVpdR = pRawDataSet[idxR].vpdPdg[i];
1997            pPwrR = pRawDataSet[idxR].pwrPdg[i];
1998
1999            /* Start Vpd interpolation from the max of the minimum powers */
2000            minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
2001
2002            /* End Vpd interpolation from the min of the max powers */
2003            maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
2004            HALASSERT(maxPwrT4[i] > minPwrT4[i]);
2005
2006            /* Fill pier Vpds */
2007            ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL, AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
2008            ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR, AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
2009
2010            /* Interpolate the final vpd */
2011            for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
2012                vpdTableI[i][j] = (uint8_t)(interpolate((uint16_t)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
2013                    bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
2014            }
2015        }
2016    }
2017    *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
2018
2019    k = 0; /* index for the final table */
2020    for (i = 0; i < numXpdGains; i++) {
2021        if (i == (numXpdGains - 1)) {
2022            pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
2023        } else {
2024            pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
2025        }
2026
2027        pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
2028
2029	/* NB: only applies to owl 1.0 */
2030        if ((i == 0) && !AR_SREV_OWL_20_OR_LATER(ah) ) {
2031	    /*
2032             * fix the gain delta, but get a delta that can be applied to min to
2033             * keep the upper power values accurate, don't think max needs to
2034             * be adjusted because should not be at that area of the table?
2035	     */
2036            minDelta = pPdGainBoundaries[0] - 23;
2037            pPdGainBoundaries[0] = 23;
2038        }
2039        else {
2040            minDelta = 0;
2041        }
2042
2043        /* Find starting index for this pdGain */
2044        if (i == 0) {
2045            ss = 0; /* for the first pdGain, start from index 0 */
2046        } else {
2047	    /* need overlap entries extrapolated below. */
2048            ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
2049        }
2050        vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
2051        vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
2052        /*
2053         *-ve ss indicates need to extrapolate data below for this pdGain
2054         */
2055        while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2056            tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
2057            pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
2058            ss++;
2059        }
2060
2061        sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
2062        tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
2063        maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
2064
2065        while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2066            pPDADCValues[k++] = vpdTableI[i][ss++];
2067        }
2068
2069        vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
2070        vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
2071        /*
2072         * for last gain, pdGainBoundary == Pmax_t2, so will
2073         * have to extrapolate
2074         */
2075        if (tgtIndex > maxIndex) {  /* need to extrapolate above */
2076            while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2077                tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
2078                          (ss - maxIndex +1) * vpdStep));
2079                pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
2080                ss++;
2081            }
2082        }               /* extrapolated above */
2083    }                   /* for all pdGainUsed */
2084
2085    /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
2086    while (i < AR5416_PD_GAINS_IN_MASK) {
2087        pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
2088        i++;
2089    }
2090
2091    while (k < AR5416_NUM_PDADC_VALUES) {
2092        pPDADCValues[k] = pPDADCValues[k-1];
2093        k++;
2094    }
2095    return;
2096}
2097
2098/**************************************************************
2099 * getLowerUppderIndex
2100 *
2101 * Return indices surrounding the value in sorted integer lists.
2102 * Requirement: the input list must be monotonically increasing
2103 *     and populated up to the list size
2104 * Returns: match is set if an index in the array matches exactly
2105 *     or a the target is before or after the range of the array.
2106 */
2107HAL_BOOL
2108getLowerUpperIndex(uint8_t target, uint8_t *pList, uint16_t listSize,
2109                   uint16_t *indexL, uint16_t *indexR)
2110{
2111    uint16_t i;
2112
2113    /*
2114     * Check first and last elements for beyond ordered array cases.
2115     */
2116    if (target <= pList[0]) {
2117        *indexL = *indexR = 0;
2118        return AH_TRUE;
2119    }
2120    if (target >= pList[listSize-1]) {
2121        *indexL = *indexR = (uint16_t)(listSize - 1);
2122        return AH_TRUE;
2123    }
2124
2125    /* look for value being near or between 2 values in list */
2126    for (i = 0; i < listSize - 1; i++) {
2127        /*
2128         * If value is close to the current value of the list
2129         * then target is not between values, it is one of the values
2130         */
2131        if (pList[i] == target) {
2132            *indexL = *indexR = i;
2133            return AH_TRUE;
2134        }
2135        /*
2136         * Look for value being between current value and next value
2137         * if so return these 2 values
2138         */
2139        if (target < pList[i + 1]) {
2140            *indexL = i;
2141            *indexR = (uint16_t)(i + 1);
2142            return AH_FALSE;
2143        }
2144    }
2145    HALASSERT(0);
2146    return AH_FALSE;
2147}
2148
2149/**************************************************************
2150 * ar5416FillVpdTable
2151 *
2152 * Fill the Vpdlist for indices Pmax-Pmin
2153 * Note: pwrMin, pwrMax and Vpdlist are all in dBm * 4
2154 */
2155static HAL_BOOL
2156ar5416FillVpdTable(uint8_t pwrMin, uint8_t pwrMax, uint8_t *pPwrList,
2157                   uint8_t *pVpdList, uint16_t numIntercepts, uint8_t *pRetVpdList)
2158{
2159    uint16_t  i, k;
2160    uint8_t   currPwr = pwrMin;
2161    uint16_t  idxL = 0, idxR = 0;
2162
2163    HALASSERT(pwrMax > pwrMin);
2164    for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
2165        getLowerUpperIndex(currPwr, pPwrList, numIntercepts,
2166                           &(idxL), &(idxR));
2167        if (idxR < 1)
2168            idxR = 1;           /* extrapolate below */
2169        if (idxL == numIntercepts - 1)
2170            idxL = (uint16_t)(numIntercepts - 2);   /* extrapolate above */
2171        if (pPwrList[idxL] == pPwrList[idxR])
2172            k = pVpdList[idxL];
2173        else
2174            k = (uint16_t)( ((currPwr - pPwrList[idxL]) * pVpdList[idxR] + (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
2175                  (pPwrList[idxR] - pPwrList[idxL]) );
2176        HALASSERT(k < 256);
2177        pRetVpdList[i] = (uint8_t)k;
2178        currPwr += 2;               /* half dB steps */
2179    }
2180
2181    return AH_TRUE;
2182}
2183
2184/**************************************************************************
2185 * interpolate
2186 *
2187 * Returns signed interpolated or the scaled up interpolated value
2188 */
2189static int16_t
2190interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
2191            int16_t targetLeft, int16_t targetRight)
2192{
2193    int16_t rv;
2194
2195    if (srcRight == srcLeft) {
2196        rv = targetLeft;
2197    } else {
2198        rv = (int16_t)( ((target - srcLeft) * targetRight +
2199              (srcRight - target) * targetLeft) / (srcRight - srcLeft) );
2200    }
2201    return rv;
2202}
2203
2204static void
2205ar5416Set11nRegs(struct ath_hal *ah, HAL_CHANNEL *chan)
2206{
2207	uint32_t phymode;
2208	HAL_HT_MACMODE macmode;		/* MAC - 20/40 mode */
2209
2210	if (!IS_CHAN_HT(chan))
2211		return;
2212
2213	/* Enable 11n HT, 20 MHz */
2214	phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
2215		| AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH;
2216
2217	/* Configure baseband for dynamic 20/40 operation */
2218	if (IS_CHAN_HT40(chan)) {
2219		phymode |= AR_PHY_FC_DYN2040_EN | AR_PHY_FC_SHORT_GI_40;
2220
2221		/* Configure control (primary) channel at +-10MHz */
2222		if ((chan->channelFlags & CHANNEL_HT40PLUS))
2223			phymode |= AR_PHY_FC_DYN2040_PRI_CH;
2224#if 0
2225		/* Configure 20/25 spacing */
2226		if (ht->ht_extprotspacing == HAL_HT_EXTPROTSPACING_25)
2227			phymode |= AR_PHY_FC_DYN2040_EXT_CH;
2228#endif
2229		macmode = HAL_HT_MACMODE_2040;
2230	} else
2231		macmode = HAL_HT_MACMODE_20;
2232	OS_REG_WRITE(ah, AR_PHY_TURBO, phymode);
2233
2234	/* Configure MAC for 20/40 operation */
2235	ar5416Set11nMac2040(ah, macmode);
2236
2237	/* global transmit timeout (25 TUs default)*/
2238	/* XXX - put this elsewhere??? */
2239	OS_REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S) ;
2240
2241	/* carrier sense timeout */
2242	OS_REG_SET_BIT(ah, AR_GTTM, AR_GTTM_CST_USEC);
2243	OS_REG_WRITE(ah, AR_CST, 1 << AR_CST_TIMEOUT_LIMIT_S);
2244}
2245
2246void
2247ar5416GetChannelCenters(struct ath_hal *ah,
2248	HAL_CHANNEL_INTERNAL *chan, CHAN_CENTERS *centers)
2249{
2250	centers->ctl_center = chan->channel;
2251	centers->synth_center = chan->channel;
2252	/*
2253	 * In 20/40 phy mode, the center frequency is
2254	 * "between" the control and extension channels.
2255	 */
2256	if (chan->channelFlags & CHANNEL_HT40PLUS) {
2257		centers->synth_center += HT40_CHANNEL_CENTER_SHIFT;
2258		centers->ext_center =
2259		    centers->synth_center + HT40_CHANNEL_CENTER_SHIFT;
2260	} else if (chan->channelFlags & CHANNEL_HT40MINUS) {
2261		centers->synth_center -= HT40_CHANNEL_CENTER_SHIFT;
2262		centers->ext_center =
2263		    centers->synth_center - HT40_CHANNEL_CENTER_SHIFT;
2264	} else {
2265		centers->ext_center = chan->channel;
2266	}
2267}
2268