1/*
2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $Id: ar2317.c,v 1.4 2013/09/12 12:03:33 martin Exp $
18 */
19#include "opt_ah.h"
20
21#include "ah.h"
22#include "ah_devid.h"
23#include "ah_internal.h"
24
25#include "ar5212/ar5212.h"
26#include "ar5212/ar5212reg.h"
27#include "ar5212/ar5212phy.h"
28
29#include "ah_eeprom_v3.h"
30
31#define AH_5212_2317
32#include "ar5212/ar5212.ini"
33
34#define	N(a)	(sizeof(a)/sizeof(a[0]))
35
36typedef	RAW_DATA_STRUCT_2413 RAW_DATA_STRUCT_2317;
37typedef RAW_DATA_PER_CHANNEL_2413 RAW_DATA_PER_CHANNEL_2317;
38#define PWR_TABLE_SIZE_2317 PWR_TABLE_SIZE_2413
39
40struct ar2317State {
41	RF_HAL_FUNCS	base;		/* public state, must be first */
42	uint16_t	pcdacTable[PWR_TABLE_SIZE_2317];
43
44	uint32_t	Bank1Data[N(ar5212Bank1_2317)];
45	uint32_t	Bank2Data[N(ar5212Bank2_2317)];
46	uint32_t	Bank3Data[N(ar5212Bank3_2317)];
47	uint32_t	Bank6Data[N(ar5212Bank6_2317)];
48	uint32_t	Bank7Data[N(ar5212Bank7_2317)];
49
50	/*
51	 * Private state for reduced stack usage.
52	 */
53	/* filled out Vpd table for all pdGains (chanL) */
54	uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
55			    [MAX_PWR_RANGE_IN_HALF_DB];
56	/* filled out Vpd table for all pdGains (chanR) */
57	uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
58			    [MAX_PWR_RANGE_IN_HALF_DB];
59	/* filled out Vpd table for all pdGains (interpolated) */
60	uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
61			    [MAX_PWR_RANGE_IN_HALF_DB];
62};
63#define	AR2317(ah)	((struct ar2317State *) AH5212(ah)->ah_rfHal)
64
65extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
66		uint32_t numBits, uint32_t firstBit, uint32_t column);
67
68static void
69ar2317WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
70	int writes)
71{
72	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2317, modesIndex, writes);
73	HAL_INI_WRITE_ARRAY(ah, ar5212Common_2317, 1, writes);
74	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2317, freqIndex, writes);
75}
76
77/*
78 * Take the MHz channel value and set the Channel value
79 *
80 * ASSUMES: Writes enabled to analog bus
81 */
82static HAL_BOOL
83ar2317SetChannel(struct ath_hal *ah,  HAL_CHANNEL_INTERNAL *chan)
84{
85	uint32_t channelSel  = 0;
86	uint32_t bModeSynth  = 0;
87	uint32_t aModeRefSel = 0;
88	uint32_t reg32       = 0;
89
90	OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
91
92	if (chan->channel < 4800) {
93		uint32_t txctl;
94		channelSel = chan->channel - 2272 ;
95		channelSel = ath_hal_reverseBits(channelSel, 8);
96
97		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
98		if (chan->channel == 2484) {
99			/* Enable channel spreading for channel 14 */
100			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
101				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
102		} else {
103			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
104				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
105		}
106	} else if ((chan->channel % 20) == 0 && chan->channel >= 5120) {
107		channelSel = ath_hal_reverseBits(
108			((chan->channel - 4800) / 20 << 2), 8);
109		aModeRefSel = ath_hal_reverseBits(3, 2);
110	} else if ((chan->channel % 10) == 0) {
111		channelSel = ath_hal_reverseBits(
112			((chan->channel - 4800) / 10 << 1), 8);
113		aModeRefSel = ath_hal_reverseBits(2, 2);
114	} else if ((chan->channel % 5) == 0) {
115		channelSel = ath_hal_reverseBits(
116			(chan->channel - 4800) / 5, 8);
117		aModeRefSel = ath_hal_reverseBits(1, 2);
118	} else {
119		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
120		    __func__, chan->channel);
121		return AH_FALSE;
122	}
123
124	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
125			(1 << 12) | 0x1;
126	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
127
128	reg32 >>= 8;
129	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
130
131	AH_PRIVATE(ah)->ah_curchan = chan;
132	return AH_TRUE;
133}
134
135/*
136 * Reads EEPROM header info from device structure and programs
137 * all rf registers
138 *
139 * REQUIRES: Access to the analog rf device
140 */
141static HAL_BOOL
142ar2317SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain)
143{
144#define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
145	int i;								    \
146	for (i = 0; i < N(ar5212Bank##_ix##_2317); i++)			    \
147		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2317[i][_col];\
148} while (0)
149	struct ath_hal_5212 *ahp = AH5212(ah);
150	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
151	uint16_t ob2GHz = 0, db2GHz = 0;
152	struct ar2317State *priv = AR2317(ah);
153	int regWrites = 0;
154
155	HALDEBUG(ah, HAL_DEBUG_RFPARAM,
156	    "%s: chan 0x%x flag 0x%x modesIndex 0x%x\n",
157	    __func__, chan->channel, chan->channelFlags, modesIndex);
158
159	HALASSERT(priv);
160
161	/* Setup rf parameters */
162	switch (chan->channelFlags & CHANNEL_ALL) {
163	case CHANNEL_B:
164		ob2GHz = ee->ee_obFor24;
165		db2GHz = ee->ee_dbFor24;
166		break;
167	case CHANNEL_G:
168	case CHANNEL_108G:
169		ob2GHz = ee->ee_obFor24g;
170		db2GHz = ee->ee_dbFor24g;
171		break;
172	default:
173		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
174		    __func__, chan->channelFlags);
175		return AH_FALSE;
176	}
177
178	/* Bank 1 Write */
179	RF_BANK_SETUP(priv, 1, 1);
180
181	/* Bank 2 Write */
182	RF_BANK_SETUP(priv, 2, modesIndex);
183
184	/* Bank 3 Write */
185	RF_BANK_SETUP(priv, 3, modesIndex);
186
187	/* Bank 6 Write */
188	RF_BANK_SETUP(priv, 6, modesIndex);
189
190	ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz,   3, 193, 0);
191	ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz,   3, 190, 0);
192
193	/* Bank 7 Setup */
194	RF_BANK_SETUP(priv, 7, modesIndex);
195
196	/* Write Analog registers */
197	HAL_INI_WRITE_BANK(ah, ar5212Bank1_2317, priv->Bank1Data, regWrites);
198	HAL_INI_WRITE_BANK(ah, ar5212Bank2_2317, priv->Bank2Data, regWrites);
199	HAL_INI_WRITE_BANK(ah, ar5212Bank3_2317, priv->Bank3Data, regWrites);
200	HAL_INI_WRITE_BANK(ah, ar5212Bank6_2317, priv->Bank6Data, regWrites);
201	HAL_INI_WRITE_BANK(ah, ar5212Bank7_2317, priv->Bank7Data, regWrites);
202	/* Now that we have reprogrammed rfgain value, clear the flag. */
203	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
204
205	return AH_TRUE;
206#undef	RF_BANK_SETUP
207}
208
209/*
210 * Return a reference to the requested RF Bank.
211 */
212static uint32_t *
213ar2317GetRfBank(struct ath_hal *ah, int bank)
214{
215	struct ar2317State *priv = AR2317(ah);
216
217	HALASSERT(priv != AH_NULL);
218	switch (bank) {
219	case 1: return priv->Bank1Data;
220	case 2: return priv->Bank2Data;
221	case 3: return priv->Bank3Data;
222	case 6: return priv->Bank6Data;
223	case 7: return priv->Bank7Data;
224	}
225	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
226	    __func__, bank);
227	return AH_NULL;
228}
229
230/*
231 * Return indices surrounding the value in sorted integer lists.
232 *
233 * NB: the input list is assumed to be sorted in ascending order
234 */
235static void
236GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
237                          uint32_t *vlo, uint32_t *vhi)
238{
239	int16_t target = v;
240	const int16_t *ep = lp+listSize;
241	const int16_t *tp;
242
243	/*
244	 * Check first and last elements for out-of-bounds conditions.
245	 */
246	if (target < lp[0]) {
247		*vlo = *vhi = 0;
248		return;
249	}
250	if (target >= ep[-1]) {
251		*vlo = *vhi = listSize - 1;
252		return;
253	}
254
255	/* look for value being near or between 2 values in list */
256	for (tp = lp; tp < ep; tp++) {
257		/*
258		 * If value is close to the current value of the list
259		 * then target is not between values, it is one of the values
260		 */
261		if (*tp == target) {
262			*vlo = *vhi = tp - (const int16_t *) lp;
263			return;
264		}
265		/*
266		 * Look for value being between current value and next value
267		 * if so return these 2 values
268		 */
269		if (target < tp[1]) {
270			*vlo = tp - (const int16_t *) lp;
271			*vhi = *vlo + 1;
272			return;
273		}
274	}
275}
276
277/*
278 * Fill the Vpdlist for indices Pmax-Pmin
279 */
280static HAL_BOOL
281ar2317FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
282		   const int16_t *pwrList, const int16_t *VpdList,
283		   uint16_t numIntercepts, uint16_t retVpdList[][64])
284{
285	uint16_t ii, kk;
286	int16_t currPwr = (int16_t)(2*Pmin);
287	/* since Pmin is pwr*2 and pwrList is 4*pwr */
288	uint32_t  idxL = 0, idxR = 0;
289
290	ii = 0;
291
292	if (numIntercepts < 2)
293		return AH_FALSE;
294
295	while (ii <= (uint16_t)(Pmax - Pmin)) {
296		GetLowerUpperIndex(currPwr, pwrList, numIntercepts,
297					 &(idxL), &(idxR));
298		if (idxR < 1)
299			idxR = 1;			/* extrapolate below */
300		if (idxL == (uint32_t)(numIntercepts - 1))
301			idxL = numIntercepts - 2;	/* extrapolate above */
302		if (pwrList[idxL] == pwrList[idxR])
303			kk = VpdList[idxL];
304		else
305			kk = (uint16_t)
306				(((currPwr - pwrList[idxL])*VpdList[idxR]+
307				  (pwrList[idxR] - currPwr)*VpdList[idxL])/
308				 (pwrList[idxR] - pwrList[idxL]));
309		retVpdList[pdGainIdx][ii] = kk;
310		ii++;
311		currPwr += 2;				/* half dB steps */
312	}
313
314	return AH_TRUE;
315}
316
317/*
318 * Returns interpolated or the scaled up interpolated value
319 */
320static int16_t
321interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
322	int16_t targetLeft, int16_t targetRight)
323{
324	int16_t rv;
325
326	if (srcRight != srcLeft) {
327		rv = ((target - srcLeft)*targetRight +
328		      (srcRight - target)*targetLeft) / (srcRight - srcLeft);
329	} else {
330		rv = targetLeft;
331	}
332	return rv;
333}
334
335/*
336 * Uses the data points read from EEPROM to reconstruct the pdadc power table
337 * Called by ar2317SetPowerTable()
338 */
339static int
340ar2317getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
341		const RAW_DATA_STRUCT_2317 *pRawDataset,
342		uint16_t pdGainOverlap_t2,
343		int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[],
344		uint16_t pPdGainValues[], uint16_t pPDADCValues[])
345{
346	struct ar2317State *priv = AR2317(ah);
347#define	VpdTable_L	priv->vpdTable_L
348#define	VpdTable_R	priv->vpdTable_R
349#define	VpdTable_I	priv->vpdTable_I
350	/* XXX excessive stack usage? */
351	uint32_t ii, jj, kk;
352	int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
353	uint32_t idxL = 0, idxR = 0;
354	uint32_t numPdGainsUsed = 0;
355	/*
356	 * If desired to support -ve power levels in future, just
357	 * change pwr_I_0 to signed 5-bits.
358	 */
359	int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
360	/* to accomodate -ve power levels later on. */
361	int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
362	/* to accomodate -ve power levels later on */
363	uint16_t numVpd = 0;
364	uint16_t Vpd_step;
365	int16_t tmpVal ;
366	uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
367
368	/* Get upper lower index */
369	GetLowerUpperIndex(channel, pRawDataset->pChannels,
370				 pRawDataset->numChannels, &(idxL), &(idxR));
371
372	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
373		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
374		/* work backwards 'cause highest pdGain for lowest power */
375		numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
376		if (numVpd > 0) {
377			pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
378			Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
379			if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
380				Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
381			}
382			Pmin_t2[numPdGainsUsed] = (int16_t)
383				(Pmin_t2[numPdGainsUsed] / 2);
384			Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
385			if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
386				Pmax_t2[numPdGainsUsed] =
387					pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
388			Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
389			ar2317FillVpdTable(
390					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
391					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
392					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
393					   );
394			ar2317FillVpdTable(
395					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
396					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
397					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
398					   );
399			for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
400				VpdTable_I[numPdGainsUsed][kk] =
401					interpolate_signed(
402							   channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
403							   (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
404			}
405			/* fill VpdTable_I for this pdGain */
406			numPdGainsUsed++;
407		}
408		/* if this pdGain is used */
409	}
410
411	*pMinCalPower = Pmin_t2[0];
412	kk = 0; /* index for the final table */
413	for (ii = 0; ii < numPdGainsUsed; ii++) {
414		if (ii == (numPdGainsUsed - 1))
415			pPdGainBoundaries[ii] = Pmax_t2[ii] +
416				PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
417		else
418			pPdGainBoundaries[ii] = (uint16_t)
419				((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
420		if (pPdGainBoundaries[ii] > 63) {
421			HALDEBUG(ah, HAL_DEBUG_ANY,
422			    "%s: clamp pPdGainBoundaries[%d] %d\n",
423			   __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
424			pPdGainBoundaries[ii] = 63;
425		}
426
427		/* Find starting index for this pdGain */
428		if (ii == 0)
429			ss = 0; /* for the first pdGain, start from index 0 */
430		else
431			ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
432				pdGainOverlap_t2;
433		Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
434		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
435		/*
436		 *-ve ss indicates need to extrapolate data below for this pdGain
437		 */
438		while (ss < 0) {
439			tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
440			pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
441			ss++;
442		}
443
444		sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
445		tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
446		maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
447
448		while (ss < (int16_t)maxIndex)
449			pPDADCValues[kk++] = VpdTable_I[ii][ss++];
450
451		Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
452				       VpdTable_I[ii][sizeCurrVpdTable-2]);
453		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
454		/*
455		 * for last gain, pdGainBoundary == Pmax_t2, so will
456		 * have to extrapolate
457		 */
458		if (tgtIndex > maxIndex) {	/* need to extrapolate above */
459			while(ss < (int16_t)tgtIndex) {
460				tmpVal = (uint16_t)
461					(VpdTable_I[ii][sizeCurrVpdTable-1] +
462					 (ss-maxIndex)*Vpd_step);
463				pPDADCValues[kk++] = (tmpVal > 127) ?
464					127 : tmpVal;
465				ss++;
466			}
467		}				/* extrapolated above */
468	}					/* for all pdGainUsed */
469
470	while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
471		pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
472		ii++;
473	}
474	while (kk < 128) {
475		pPDADCValues[kk] = pPDADCValues[kk-1];
476		kk++;
477	}
478
479	return numPdGainsUsed;
480#undef VpdTable_L
481#undef VpdTable_R
482#undef VpdTable_I
483}
484
485static HAL_BOOL
486ar2317SetPowerTable(struct ath_hal *ah,
487	int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan,
488	uint16_t *rfXpdGain)
489{
490	struct ath_hal_5212 *ahp = AH5212(ah);
491	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
492	const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL;
493	uint16_t pdGainOverlap_t2;
494	int16_t minCalPower2317_t2;
495	uint16_t *pdadcValues = ahp->ah_pcdacTable;
496	uint16_t gainBoundaries[4];
497	uint32_t reg32, regoffset;
498	int i, numPdGainsUsed;
499#ifndef AH_USE_INIPDGAIN
500	uint32_t tpcrg1;
501#endif
502
503	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
504	    __func__, chan->channel,chan->channelFlags);
505
506	if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
507		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
508	else if (IS_CHAN_B(chan))
509		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
510	else {
511		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
512		return AH_FALSE;
513	}
514
515	pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
516					  AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
517
518	numPdGainsUsed = ar2317getGainBoundariesAndPdadcsForPowers(ah,
519		chan->channel, pRawDataset, pdGainOverlap_t2,
520		&minCalPower2317_t2,gainBoundaries, rfXpdGain, pdadcValues);
521	HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
522
523#ifdef AH_USE_INIPDGAIN
524	/*
525	 * Use pd_gains curve from eeprom; Atheros always uses
526	 * the default curve from the ini file but some vendors
527	 * (e.g. Zcomax) want to override this curve and not
528	 * honoring their settings results in tx power 5dBm low.
529	 */
530	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
531			 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
532#else
533	tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
534	tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
535		  | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
536	switch (numPdGainsUsed) {
537	case 3:
538		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
539		tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
540		/* fall thru... */
541	case 2:
542		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
543		tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
544		/* fall thru... */
545	case 1:
546		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
547		tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
548		break;
549	}
550#ifdef AH_DEBUG
551	if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
552		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
553		    "pd_gains (default 0x%x, calculated 0x%x)\n",
554		    __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
555#endif
556	OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
557#endif
558
559	/*
560	 * Note the pdadc table may not start at 0 dBm power, could be
561	 * negative or greater than 0.  Need to offset the power
562	 * values by the amount of minPower for griffin
563	 */
564	if (minCalPower2317_t2 != 0)
565		ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2317_t2);
566	else
567		ahp->ah_txPowerIndexOffset = 0;
568
569	/* Finally, write the power values into the baseband power table */
570	regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
571	for (i = 0; i < 32; i++) {
572		reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  |
573			((pdadcValues[4*i + 1] & 0xFF) << 8)  |
574			((pdadcValues[4*i + 2] & 0xFF) << 16) |
575			((pdadcValues[4*i + 3] & 0xFF) << 24) ;
576		OS_REG_WRITE(ah, regoffset, reg32);
577		regoffset += 4;
578	}
579
580	OS_REG_WRITE(ah, AR_PHY_TPCRG5,
581		     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
582		     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
583		     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
584		     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
585		     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
586
587	return AH_TRUE;
588}
589
590static int16_t
591ar2317GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data)
592{
593	uint32_t ii,jj;
594	uint16_t Pmin=0,numVpd;
595
596	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
597		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
598		/* work backwards 'cause highest pdGain for lowest power */
599		numVpd = data->pDataPerPDGain[jj].numVpd;
600		if (numVpd > 0) {
601			Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
602			return(Pmin);
603		}
604	}
605	return(Pmin);
606}
607
608static int16_t
609ar2317GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data)
610{
611	uint32_t ii;
612	uint16_t Pmax=0,numVpd;
613
614	for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
615		/* work forwards cuase lowest pdGain for highest power */
616		numVpd = data->pDataPerPDGain[ii].numVpd;
617		if (numVpd > 0) {
618			Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
619			return(Pmax);
620		}
621	}
622	return(Pmax);
623}
624
625static HAL_BOOL
626ar2317GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
627	int16_t *maxPow, int16_t *minPow)
628{
629	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
630	const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL;
631	const RAW_DATA_PER_CHANNEL_2317 *data=AH_NULL;
632	uint16_t numChannels;
633	int totalD,totalF, totalMin,last, i;
634
635	*maxPow = 0;
636
637	if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
638		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
639	else if (IS_CHAN_B(chan))
640		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
641	else
642		return(AH_FALSE);
643
644	numChannels = pRawDataset->numChannels;
645	data = pRawDataset->pDataPerChannel;
646
647	/* Make sure the channel is in the range of the TP values
648	 *  (freq piers)
649	 */
650	if (numChannels < 1)
651		return(AH_FALSE);
652
653	if ((chan->channel < data[0].channelValue) ||
654	    (chan->channel > data[numChannels-1].channelValue)) {
655		if (chan->channel < data[0].channelValue) {
656			*maxPow = ar2317GetMaxPower(ah, &data[0]);
657			*minPow = ar2317GetMinPower(ah, &data[0]);
658			return(AH_TRUE);
659		} else {
660			*maxPow = ar2317GetMaxPower(ah, &data[numChannels - 1]);
661			*minPow = ar2317GetMinPower(ah, &data[numChannels - 1]);
662			return(AH_TRUE);
663		}
664	}
665
666	/* Linearly interpolate the power value now */
667	for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue);
668	     last = i++);
669	totalD = data[i].channelValue - data[last].channelValue;
670	if (totalD > 0) {
671		totalF = ar2317GetMaxPower(ah, &data[i]) - ar2317GetMaxPower(ah, &data[last]);
672		*maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) +
673				     ar2317GetMaxPower(ah, &data[last])*totalD)/totalD);
674		totalMin = ar2317GetMinPower(ah, &data[i]) - ar2317GetMinPower(ah, &data[last]);
675		*minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) +
676				     ar2317GetMinPower(ah, &data[last])*totalD)/totalD);
677		return(AH_TRUE);
678	} else {
679		if (chan->channel == data[i].channelValue) {
680			*maxPow = ar2317GetMaxPower(ah, &data[i]);
681			*minPow = ar2317GetMinPower(ah, &data[i]);
682			return(AH_TRUE);
683		} else
684			return(AH_FALSE);
685	}
686}
687
688/*
689 * Free memory for analog bank scratch buffers
690 */
691static void
692ar2317RfDetach(struct ath_hal *ah)
693{
694	struct ath_hal_5212 *ahp = AH5212(ah);
695
696	HALASSERT(ahp->ah_rfHal != AH_NULL);
697	ath_hal_free(ahp->ah_rfHal);
698	ahp->ah_rfHal = AH_NULL;
699}
700
701/*
702 * Allocate memory for analog bank scratch buffers
703 * Scratch Buffer will be reinitialized every reset so no need to zero now
704 */
705static HAL_BOOL
706ar2317RfAttach(struct ath_hal *ah, HAL_STATUS *status)
707{
708	struct ath_hal_5212 *ahp = AH5212(ah);
709	struct ar2317State *priv;
710
711	HALASSERT(ah->ah_magic == AR5212_MAGIC);
712
713	HALASSERT(ahp->ah_rfHal == AH_NULL);
714	priv = ath_hal_malloc(sizeof(struct ar2317State));
715	if (priv == AH_NULL) {
716		HALDEBUG(ah, HAL_DEBUG_ANY,
717		    "%s: cannot allocate private state\n", __func__);
718		*status = HAL_ENOMEM;		/* XXX */
719		return AH_FALSE;
720	}
721	priv->base.rfDetach		= ar2317RfDetach;
722	priv->base.writeRegs		= ar2317WriteRegs;
723	priv->base.getRfBank		= ar2317GetRfBank;
724	priv->base.setChannel		= ar2317SetChannel;
725	priv->base.setRfRegs		= ar2317SetRfRegs;
726	priv->base.setPowerTable	= ar2317SetPowerTable;
727	priv->base.getChannelMaxMinPower = ar2317GetChannelMaxMinPower;
728	priv->base.getNfAdjust		= ar5212GetNfAdjust;
729
730	ahp->ah_pcdacTable = priv->pcdacTable;
731	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
732	ahp->ah_rfHal = &priv->base;
733
734	return AH_TRUE;
735}
736
737static HAL_BOOL
738ar2317Probe(struct ath_hal *ah)
739{
740	return IS_2317(ah);
741}
742AH_RF(RF2317, ar2317Probe, ar2317RfAttach);
743