1/*
2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2006 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $Id: ar5211_reset.c,v 1.4 2011/03/07 11:25:42 cegger Exp $
18 */
19#include "opt_ah.h"
20
21/*
22 * Chips specific device attachment and device info collection
23 * Connects Init Reg Vectors, EEPROM Data, and device Functions.
24 */
25#include "ah.h"
26#include "ah_internal.h"
27#include "ah_devid.h"
28
29#include "ar5211/ar5211.h"
30#include "ar5211/ar5211reg.h"
31#include "ar5211/ar5211phy.h"
32
33#include "ah_eeprom_v3.h"
34
35/* Add static register initialization vectors */
36#include "ar5211/boss.ini"
37
38/*
39 * Structure to hold 11b tuning information for Beanie/Sombrero
40 * 16 MHz mode, divider ratio = 198 = NP+S. N=16, S=4 or 6, P=12
41 */
42typedef struct {
43	uint32_t	refClkSel;	/* reference clock, 1 for 16 MHz */
44	uint32_t	channelSelect;	/* P[7:4]S[3:0] bits */
45	uint16_t	channel5111;	/* 11a channel for 5111 */
46} CHAN_INFO_2GHZ;
47
48#define CI_2GHZ_INDEX_CORRECTION 19
49static const CHAN_INFO_2GHZ chan2GHzData[] = {
50	{ 1, 0x46, 96  },	/* 2312 -19 */
51	{ 1, 0x46, 97  },	/* 2317 -18 */
52	{ 1, 0x46, 98  },	/* 2322 -17 */
53	{ 1, 0x46, 99  },	/* 2327 -16 */
54	{ 1, 0x46, 100 },	/* 2332 -15 */
55	{ 1, 0x46, 101 },	/* 2337 -14 */
56	{ 1, 0x46, 102 },	/* 2342 -13 */
57	{ 1, 0x46, 103 },	/* 2347 -12 */
58	{ 1, 0x46, 104 },	/* 2352 -11 */
59	{ 1, 0x46, 105 },	/* 2357 -10 */
60	{ 1, 0x46, 106 },	/* 2362  -9 */
61	{ 1, 0x46, 107 },	/* 2367  -8 */
62	{ 1, 0x46, 108 },	/* 2372  -7 */
63	/* index -6 to 0 are pad to make this a nolookup table */
64	{ 1, 0x46, 116 },	/*       -6 */
65	{ 1, 0x46, 116 },	/*       -5 */
66	{ 1, 0x46, 116 },	/*       -4 */
67	{ 1, 0x46, 116 },	/*       -3 */
68	{ 1, 0x46, 116 },	/*       -2 */
69	{ 1, 0x46, 116 },	/*       -1 */
70	{ 1, 0x46, 116 },	/*        0 */
71	{ 1, 0x46, 116 },	/* 2412   1 */
72	{ 1, 0x46, 117 },	/* 2417   2 */
73	{ 1, 0x46, 118 },	/* 2422   3 */
74	{ 1, 0x46, 119 },	/* 2427   4 */
75	{ 1, 0x46, 120 },	/* 2432   5 */
76	{ 1, 0x46, 121 },	/* 2437   6 */
77	{ 1, 0x46, 122 },	/* 2442   7 */
78	{ 1, 0x46, 123 },	/* 2447   8 */
79	{ 1, 0x46, 124 },	/* 2452   9 */
80	{ 1, 0x46, 125 },	/* 2457  10 */
81	{ 1, 0x46, 126 },	/* 2462  11 */
82	{ 1, 0x46, 127 },	/* 2467  12 */
83	{ 1, 0x46, 128 },	/* 2472  13 */
84	{ 1, 0x44, 124 },	/* 2484  14 */
85	{ 1, 0x46, 136 },	/* 2512  15 */
86	{ 1, 0x46, 140 },	/* 2532  16 */
87	{ 1, 0x46, 144 },	/* 2552  17 */
88	{ 1, 0x46, 148 },	/* 2572  18 */
89	{ 1, 0x46, 152 },	/* 2592  19 */
90	{ 1, 0x46, 156 },	/* 2612  20 */
91	{ 1, 0x46, 160 },	/* 2632  21 */
92	{ 1, 0x46, 164 },	/* 2652  22 */
93	{ 1, 0x46, 168 },	/* 2672  23 */
94	{ 1, 0x46, 172 },	/* 2692  24 */
95	{ 1, 0x46, 176 },	/* 2712  25 */
96	{ 1, 0x46, 180 } 	/* 2732  26 */
97};
98
99/* Power timeouts in usec to wait for chip to wake-up. */
100#define POWER_UP_TIME	2000
101
102#define	DELAY_PLL_SETTLE	300		/* 300 us */
103#define	DELAY_BASE_ACTIVATE	100		/* 100 us */
104
105#define NUM_RATES	8
106
107static HAL_BOOL ar5211SetResetReg(struct ath_hal *ah, uint32_t resetMask);
108static HAL_BOOL ar5211SetChannel(struct ath_hal *,  HAL_CHANNEL_INTERNAL *);
109static int16_t ar5211RunNoiseFloor(struct ath_hal *,
110		uint8_t runTime, int16_t startingNF);
111static HAL_BOOL ar5211IsNfGood(struct ath_hal *, HAL_CHANNEL_INTERNAL *chan);
112static HAL_BOOL ar5211SetRf6and7(struct ath_hal *, HAL_CHANNEL *chan);
113static HAL_BOOL ar5211SetBoardValues(struct ath_hal *, HAL_CHANNEL *chan);
114static void ar5211SetPowerTable(struct ath_hal *,
115		PCDACS_EEPROM *pSrcStruct, uint16_t channel);
116static void ar5211SetRateTable(struct ath_hal *,
117		RD_EDGES_POWER *pRdEdgesPower, TRGT_POWER_INFO *pPowerInfo,
118		uint16_t numChannels, HAL_CHANNEL *chan);
119static uint16_t ar5211GetScaledPower(uint16_t channel, uint16_t pcdacValue,
120		const PCDACS_EEPROM *pSrcStruct);
121static HAL_BOOL ar5211FindValueInList(uint16_t channel, uint16_t pcdacValue,
122		const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue);
123static uint16_t ar5211GetInterpolatedValue(uint16_t target,
124		uint16_t srcLeft, uint16_t srcRight,
125		uint16_t targetLeft, uint16_t targetRight, HAL_BOOL scaleUp);
126static void ar5211GetLowerUpperValues(uint16_t value,
127		const uint16_t *pList, uint16_t listSize,
128		uint16_t *pLowerValue, uint16_t *pUpperValue);
129static void ar5211GetLowerUpperPcdacs(uint16_t pcdac,
130		uint16_t channel, const PCDACS_EEPROM *pSrcStruct,
131		uint16_t *pLowerPcdac, uint16_t *pUpperPcdac);
132
133static void ar5211SetRfgain(struct ath_hal *, const GAIN_VALUES *);;
134static void ar5211RequestRfgain(struct ath_hal *);
135static HAL_BOOL ar5211InvalidGainReadback(struct ath_hal *, GAIN_VALUES *);
136static HAL_BOOL ar5211IsGainAdjustNeeded(struct ath_hal *, const GAIN_VALUES *);
137static int32_t ar5211AdjustGain(struct ath_hal *, GAIN_VALUES *);
138static void ar5211SetOperatingMode(struct ath_hal *, int opmode);
139
140/*
141 * Places the device in and out of reset and then places sane
142 * values in the registers based on EEPROM config, initialization
143 * vectors (as determined by the mode), and station configuration
144 *
145 * bChannelChange is used to preserve DMA/PCU registers across
146 * a HW Reset during channel change.
147 */
148HAL_BOOL
149ar5211Reset(struct ath_hal *ah, HAL_OPMODE opmode,
150	HAL_CHANNEL *chan, HAL_BOOL bChannelChange, HAL_STATUS *status)
151{
152uint32_t softLedCfg, softLedState;
153#define	N(a)	(sizeof (a) /sizeof (a[0]))
154#define	FAIL(_code)	do { ecode = _code; goto bad; } while (0)
155	struct ath_hal_5211 *ahp = AH5211(ah);
156	HAL_CHANNEL_INTERNAL *ichan;
157	uint32_t i, ledstate;
158	HAL_STATUS ecode;
159	int q;
160
161	uint32_t		data, synthDelay;
162	uint32_t		macStaId1;
163	uint16_t		modesIndex = 0, freqIndex = 0;
164	uint32_t		saveFrameSeqCount[AR_NUM_DCU];
165	uint32_t		saveTsfLow = 0, saveTsfHigh = 0;
166	uint32_t		saveDefAntenna;
167
168	HALDEBUG(ah, HAL_DEBUG_RESET,
169	     "%s: opmode %u channel %u/0x%x %s channel\n",
170	     __func__, opmode, chan->channel, chan->channelFlags,
171	     bChannelChange ? "change" : "same");
172
173	OS_MARK(ah, AH_MARK_RESET, bChannelChange);
174#define	IS(_c,_f)	(((_c)->channelFlags & _f) || 0)
175	if ((IS(chan, CHANNEL_2GHZ) ^ IS(chan,CHANNEL_5GHZ)) == 0) {
176		HALDEBUG(ah, HAL_DEBUG_ANY,
177		    "%s: invalid channel %u/0x%x; not marked as 2GHz or 5GHz\n",
178		    __func__, chan->channel, chan->channelFlags);
179		FAIL(HAL_EINVAL);
180	}
181	if ((IS(chan, CHANNEL_OFDM) ^ IS(chan, CHANNEL_CCK)) == 0) {
182		HALDEBUG(ah, HAL_DEBUG_ANY,
183		    "%s: invalid channel %u/0x%x; not marked as OFDM or CCK\n",
184		    __func__, chan->channel, chan->channelFlags);
185		FAIL(HAL_EINVAL);
186	}
187#undef IS
188	/*
189	 * Map public channel to private.
190	 */
191	ichan = ath_hal_checkchannel(ah, chan);
192	if (ichan == AH_NULL) {
193		HALDEBUG(ah, HAL_DEBUG_ANY,
194		    "%s: invalid channel %u/0x%x; no mapping\n",
195		    __func__, chan->channel, chan->channelFlags);
196		FAIL(HAL_EINVAL);
197	}
198	switch (opmode) {
199	case HAL_M_STA:
200	case HAL_M_IBSS:
201	case HAL_M_HOSTAP:
202	case HAL_M_MONITOR:
203		break;
204	default:
205		HALDEBUG(ah, HAL_DEBUG_ANY,
206		    "%s: invalid operating mode %u\n", __func__, opmode);
207		FAIL(HAL_EINVAL);
208		break;
209	}
210	HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3);
211
212	/* Preserve certain DMA hardware registers on a channel change */
213	if (bChannelChange) {
214		/*
215		 * Need to save/restore the TSF because of an issue
216		 * that accelerates the TSF during a chip reset.
217		 *
218		 * We could use system timer routines to more
219		 * accurately restore the TSF, but
220		 * 1. Timer routines on certain platforms are
221		 *	not accurate enough (e.g. 1 ms resolution).
222		 * 2. It would still not be accurate.
223		 *
224		 * The most important aspect of this workaround,
225		 * is that, after reset, the TSF is behind
226		 * other STAs TSFs.  This will allow the STA to
227		 * properly resynchronize its TSF in adhoc mode.
228		 */
229		saveTsfLow  = OS_REG_READ(ah, AR_TSF_L32);
230		saveTsfHigh = OS_REG_READ(ah, AR_TSF_U32);
231
232		/* Read frame sequence count */
233		if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
234			saveFrameSeqCount[0] = OS_REG_READ(ah, AR_D0_SEQNUM);
235		} else {
236			for (i = 0; i < AR_NUM_DCU; i++)
237				saveFrameSeqCount[i] = OS_REG_READ(ah, AR_DSEQNUM(i));
238		}
239		if (!(ichan->privFlags & CHANNEL_DFS))
240			ichan->privFlags &= ~CHANNEL_INTERFERENCE;
241		chan->channelFlags = ichan->channelFlags;
242		chan->privFlags = ichan->privFlags;
243	}
244
245	/*
246	 * Preserve the antenna on a channel change
247	 */
248	saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
249	if (saveDefAntenna == 0)
250		saveDefAntenna = 1;
251
252	/* Save hardware flag before chip reset clears the register */
253	macStaId1 = OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
254
255	/* Save led state from pci config register */
256	ledstate = OS_REG_READ(ah, AR_PCICFG) &
257		(AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE | AR_PCICFG_LEDBLINK |
258		 AR_PCICFG_LEDSLOW);
259	softLedCfg = OS_REG_READ(ah, AR_GPIOCR);
260	softLedState = OS_REG_READ(ah, AR_GPIODO);
261
262	if (!ar5211ChipReset(ah, chan->channelFlags)) {
263		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
264		FAIL(HAL_EIO);
265	}
266
267	/* Setup the indices for the next set of register array writes */
268	switch (chan->channelFlags & CHANNEL_ALL) {
269	case CHANNEL_A:
270		modesIndex = 1;
271		freqIndex  = 1;
272		break;
273	case CHANNEL_T:
274		modesIndex = 2;
275		freqIndex  = 1;
276		break;
277	case CHANNEL_B:
278		modesIndex = 3;
279		freqIndex  = 2;
280		break;
281	case CHANNEL_PUREG:
282		modesIndex = 4;
283		freqIndex  = 2;
284		break;
285	default:
286		/* Ah, a new wireless mode */
287		HALASSERT(0);
288		break;
289	}
290
291	/* Set correct Baseband to analog shift setting to access analog chips. */
292	if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
293		OS_REG_WRITE(ah, AR_PHY_BASE, 0x00000007);
294	} else {
295		OS_REG_WRITE(ah, AR_PHY_BASE, 0x00000047);
296	}
297
298	/* Write parameters specific to AR5211 */
299	if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
300		if (IS_CHAN_2GHZ(chan) &&
301		    AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1) {
302			HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
303			uint32_t ob2GHz, db2GHz;
304
305			if (IS_CHAN_CCK(chan)) {
306				ob2GHz = ee->ee_ob2GHz[0];
307				db2GHz = ee->ee_db2GHz[0];
308			} else {
309				ob2GHz = ee->ee_ob2GHz[1];
310				db2GHz = ee->ee_db2GHz[1];
311			}
312			ob2GHz = ath_hal_reverseBits(ob2GHz, 3);
313			db2GHz = ath_hal_reverseBits(db2GHz, 3);
314			ar5211Mode2_4[25][freqIndex] =
315				(ar5211Mode2_4[25][freqIndex] & ~0xC0) |
316					((ob2GHz << 6) & 0xC0);
317			ar5211Mode2_4[26][freqIndex] =
318				(ar5211Mode2_4[26][freqIndex] & ~0x0F) |
319					(((ob2GHz >> 2) & 0x1) |
320					 ((db2GHz << 1) & 0x0E));
321		}
322		for (i = 0; i < N(ar5211Mode2_4); i++)
323			OS_REG_WRITE(ah, ar5211Mode2_4[i][0],
324				ar5211Mode2_4[i][freqIndex]);
325	}
326
327	/* Write the analog registers 6 and 7 before other config */
328	ar5211SetRf6and7(ah, chan);
329
330	/* Write registers that vary across all modes */
331	for (i = 0; i < N(ar5211Modes); i++)
332		OS_REG_WRITE(ah, ar5211Modes[i][0], ar5211Modes[i][modesIndex]);
333
334	/* Write RFGain Parameters that differ between 2.4 and 5 GHz */
335	for (i = 0; i < N(ar5211BB_RfGain); i++)
336		OS_REG_WRITE(ah, ar5211BB_RfGain[i][0], ar5211BB_RfGain[i][freqIndex]);
337
338	/* Write Common Array Parameters */
339	for (i = 0; i < N(ar5211Common); i++) {
340		uint32_t reg = ar5211Common[i][0];
341		/* On channel change, don't reset the PCU registers */
342		if (!(bChannelChange && (0x8000 <= reg && reg < 0x9000)))
343			OS_REG_WRITE(ah, reg, ar5211Common[i][1]);
344	}
345
346	/* Fix pre-AR5211 register values, this includes AR5311s. */
347	if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) {
348		/*
349		 * The TX and RX latency values have changed locations
350		 * within the USEC register in AR5211.  Since they're
351		 * set via the .ini, for both AR5211 and AR5311, they
352		 * are written properly here for AR5311.
353		 */
354		data = OS_REG_READ(ah, AR_USEC);
355		/* Must be 0 for proper write in AR5311 */
356		HALASSERT((data & 0x00700000) == 0);
357		OS_REG_WRITE(ah, AR_USEC,
358			(data & (AR_USEC_M | AR_USEC_32_M | AR5311_USEC_TX_LAT_M)) |
359			((29 << AR5311_USEC_RX_LAT_S) & AR5311_USEC_RX_LAT_M));
360		/* The following registers exist only on AR5311. */
361		OS_REG_WRITE(ah, AR5311_QDCLKGATE, 0);
362
363		/* Set proper ADC & DAC delays for AR5311. */
364		OS_REG_WRITE(ah, 0x00009878, 0x00000008);
365
366		/* Enable the PCU FIFO corruption ECO on AR5311. */
367		OS_REG_WRITE(ah, AR_DIAG_SW,
368			OS_REG_READ(ah, AR_DIAG_SW) | AR5311_DIAG_SW_USE_ECO);
369	}
370
371	/* Restore certain DMA hardware registers on a channel change */
372	if (bChannelChange) {
373		/* Restore TSF */
374		OS_REG_WRITE(ah, AR_TSF_L32, saveTsfLow);
375		OS_REG_WRITE(ah, AR_TSF_U32, saveTsfHigh);
376
377		if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
378			OS_REG_WRITE(ah, AR_D0_SEQNUM, saveFrameSeqCount[0]);
379		} else {
380			for (i = 0; i < AR_NUM_DCU; i++)
381				OS_REG_WRITE(ah, AR_DSEQNUM(i), saveFrameSeqCount[i]);
382		}
383	}
384
385	OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
386	OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
387		| macStaId1
388	);
389	ar5211SetOperatingMode(ah, opmode);
390
391	/* Restore previous led state */
392	OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | ledstate);
393	OS_REG_WRITE(ah, AR_GPIOCR, softLedCfg);
394	OS_REG_WRITE(ah, AR_GPIODO, softLedState);
395
396	/* Restore previous antenna */
397	OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
398
399	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
400	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
401
402	/* Restore bmiss rssi & count thresholds */
403	OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
404
405	OS_REG_WRITE(ah, AR_ISR, ~0);		/* cleared on write */
406
407	/*
408	 * for pre-Production Oahu only.
409	 * Disable clock gating in all DMA blocks. Helps when using
410	 * 11B and AES but results in higher power consumption.
411	 */
412	if (AH_PRIVATE(ah)->ah_macVersion == AR_SREV_VERSION_OAHU &&
413	    AH_PRIVATE(ah)->ah_macRev < AR_SREV_OAHU_PROD) {
414		OS_REG_WRITE(ah, AR_CFG,
415			OS_REG_READ(ah, AR_CFG) | AR_CFG_CLK_GATE_DIS);
416	}
417
418	/* Setup the transmit power values. */
419	if (!ar5211SetTransmitPower(ah, chan)) {
420		HALDEBUG(ah, HAL_DEBUG_ANY,
421		    "%s: error init'ing transmit power\n", __func__);
422		FAIL(HAL_EIO);
423	}
424
425	/*
426	 * Configurable OFDM spoofing for 11n compatibility; used
427	 * only when operating in station mode.
428	 */
429	if (opmode != HAL_M_HOSTAP &&
430	    (AH_PRIVATE(ah)->ah_11nCompat & HAL_DIAG_11N_SERVICES) != 0) {
431		/* NB: override the .ini setting */
432		OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
433			AR_PHY_FRAME_CTL_ERR_SERV,
434			MS(AH_PRIVATE(ah)->ah_11nCompat, HAL_DIAG_11N_SERVICES)&1);
435	}
436
437	/* Setup board specific options for EEPROM version 3 */
438	ar5211SetBoardValues(ah, chan);
439
440	if (!ar5211SetChannel(ah, ichan)) {
441		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set channel\n",
442		    __func__);
443		FAIL(HAL_EIO);
444	}
445
446	/* Activate the PHY */
447	if (AH_PRIVATE(ah)->ah_devid == AR5211_FPGA11B && IS_CHAN_2GHZ(chan))
448		OS_REG_WRITE(ah, 0xd808, 0x502); /* required for FPGA */
449	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
450
451	/*
452	 * Wait for the frequency synth to settle (synth goes on
453	 * via AR_PHY_ACTIVE_EN).  Read the phy active delay register.
454	 * Value is in 100ns increments.
455	 */
456	data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_M;
457	if (IS_CHAN_CCK(chan)) {
458		synthDelay = (4 * data) / 22;
459	} else {
460		synthDelay = data / 10;
461	}
462	/*
463	 * There is an issue if the AP starts the calibration before
464	 * the baseband timeout completes.  This could result in the
465	 * rxclear false triggering.  Add an extra delay to ensure this
466	 * this does not happen.
467	 */
468	OS_DELAY(synthDelay + DELAY_BASE_ACTIVATE);
469
470	/* Calibrate the AGC and wait for completion. */
471	OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
472		 OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL);
473	(void) ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0);
474
475	/* Perform noise floor and set status */
476	if (!ar5211CalNoiseFloor(ah, ichan)) {
477		if (!IS_CHAN_CCK(chan))
478			chan->channelFlags |= CHANNEL_CW_INT;
479		HALDEBUG(ah, HAL_DEBUG_ANY,
480		    "%s: noise floor calibration failed\n", __func__);
481		FAIL(HAL_EIO);
482	}
483
484	/* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */
485	if (ahp->ah_calibrationTime != 0) {
486		OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4,
487			AR_PHY_TIMING_CTRL4_DO_IQCAL | (INIT_IQCAL_LOG_COUNT_MAX << AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX_S));
488		ahp->ah_bIQCalibration = AH_TRUE;
489	}
490
491	/* set 1:1 QCU to DCU mapping for all queues */
492	for (q = 0; q < AR_NUM_DCU; q++)
493		OS_REG_WRITE(ah, AR_DQCUMASK(q), 1<<q);
494
495	for (q = 0; q < HAL_NUM_TX_QUEUES; q++)
496		ar5211ResetTxQueue(ah, q);
497
498	/* Setup QCU0 transmit interrupt masks (TX_ERR, TX_OK, TX_DESC, TX_URN) */
499	OS_REG_WRITE(ah, AR_IMR_S0,
500		 (AR_IMR_S0_QCU_TXOK & AR_QCU_0) |
501		 (AR_IMR_S0_QCU_TXDESC & (AR_QCU_0<<AR_IMR_S0_QCU_TXDESC_S)));
502	OS_REG_WRITE(ah, AR_IMR_S1, (AR_IMR_S1_QCU_TXERR & AR_QCU_0));
503	OS_REG_WRITE(ah, AR_IMR_S2, (AR_IMR_S2_QCU_TXURN & AR_QCU_0));
504
505	/*
506	 * GBL_EIFS must always be written after writing
507	 *		to any QCUMASK register.
508	 */
509	OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, OS_REG_READ(ah, AR_D_GBL_IFS_EIFS));
510
511	/* Now set up the Interrupt Mask Register and save it for future use */
512	OS_REG_WRITE(ah, AR_IMR, INIT_INTERRUPT_MASK);
513	ahp->ah_maskReg = INIT_INTERRUPT_MASK;
514
515	/* Enable bus error interrupts */
516	OS_REG_WRITE(ah, AR_IMR_S2, OS_REG_READ(ah, AR_IMR_S2) |
517		 AR_IMR_S2_MCABT | AR_IMR_S2_SSERR | AR_IMR_S2_DPERR);
518
519	/* Enable interrupts specific to AP */
520	if (opmode == HAL_M_HOSTAP) {
521		OS_REG_WRITE(ah, AR_IMR, OS_REG_READ(ah, AR_IMR) | AR_IMR_MIB);
522		ahp->ah_maskReg |= AR_IMR_MIB;
523	}
524
525	if (AH_PRIVATE(ah)->ah_rfkillEnabled)
526		ar5211EnableRfKill(ah);
527
528	/*
529	 * Writing to AR_BEACON will start timers. Hence it should
530	 * be the last register to be written. Do not reset tsf, do
531	 * not enable beacons at this point, but preserve other values
532	 * like beaconInterval.
533	 */
534	OS_REG_WRITE(ah, AR_BEACON,
535		(OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_EN | AR_BEACON_RESET_TSF)));
536
537	/* Restore user-specified slot time and timeouts */
538	if (ahp->ah_sifstime != (u_int) -1)
539		ar5211SetSifsTime(ah, ahp->ah_sifstime);
540	if (ahp->ah_slottime != (u_int) -1)
541		ar5211SetSlotTime(ah, ahp->ah_slottime);
542	if (ahp->ah_acktimeout != (u_int) -1)
543		ar5211SetAckTimeout(ah, ahp->ah_acktimeout);
544	if (ahp->ah_ctstimeout != (u_int) -1)
545		ar5211SetCTSTimeout(ah, ahp->ah_ctstimeout);
546	if (AH_PRIVATE(ah)->ah_diagreg != 0)
547		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
548
549	AH_PRIVATE(ah)->ah_opmode = opmode;	/* record operating mode */
550
551	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
552
553	return AH_TRUE;
554bad:
555	if (status != AH_NULL)
556		*status = ecode;
557	return AH_FALSE;
558#undef FAIL
559#undef N
560}
561
562/*
563 * Places the PHY and Radio chips into reset.  A full reset
564 * must be called to leave this state.  The PCI/MAC/PCU are
565 * not placed into reset as we must receive interrupt to
566 * re-enable the hardware.
567 */
568HAL_BOOL
569ar5211PhyDisable(struct ath_hal *ah)
570{
571	return ar5211SetResetReg(ah, AR_RC_BB);
572}
573
574/*
575 * Places all of hardware into reset
576 */
577HAL_BOOL
578ar5211Disable(struct ath_hal *ah)
579{
580	if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
581		return AH_FALSE;
582	/*
583	 * Reset the HW - PCI must be reset after the rest of the
584	 * device has been reset.
585	 */
586	if (!ar5211SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
587		return AH_FALSE;
588	OS_DELAY(2100);	   /* 8245 @ 96Mhz hangs with 2000us. */
589
590	return AH_TRUE;
591}
592
593/*
594 * Places the hardware into reset and then pulls it out of reset
595 *
596 * Only write the PLL if we're changing to or from CCK mode
597 *
598 * Attach calls with channelFlags = 0, as the coldreset should have
599 * us in the correct mode and we cannot check the hwchannel flags.
600 */
601HAL_BOOL
602ar5211ChipReset(struct ath_hal *ah, uint16_t channelFlags)
603{
604	if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
605		return AH_FALSE;
606
607	/* Set CCK and Turbo modes correctly */
608	switch (channelFlags & CHANNEL_ALL) {
609	case CHANNEL_2GHZ|CHANNEL_CCK:
610	case CHANNEL_2GHZ|CHANNEL_CCK|CHANNEL_TURBO:
611		OS_REG_WRITE(ah, AR_PHY_TURBO, 0);
612		OS_REG_WRITE(ah, AR5211_PHY_MODE,
613			AR5211_PHY_MODE_CCK | AR5211_PHY_MODE_RF2GHZ);
614		OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_44);
615		/* Wait for the PLL to settle */
616		OS_DELAY(DELAY_PLL_SETTLE);
617		break;
618	case CHANNEL_2GHZ|CHANNEL_OFDM:
619	case CHANNEL_2GHZ|CHANNEL_OFDM|CHANNEL_TURBO:
620		OS_REG_WRITE(ah, AR_PHY_TURBO, 0);
621		if (AH_PRIVATE(ah)->ah_devid == AR5211_DEVID) {
622			OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_40);
623			OS_DELAY(DELAY_PLL_SETTLE);
624			OS_REG_WRITE(ah, AR5211_PHY_MODE,
625				AR5211_PHY_MODE_OFDM | AR5211_PHY_MODE_RF2GHZ);
626		}
627		break;
628	case CHANNEL_A:
629	case CHANNEL_T:
630		if (channelFlags & CHANNEL_TURBO) {
631			OS_REG_WRITE(ah, AR_PHY_TURBO,
632				AR_PHY_FC_TURBO_MODE | AR_PHY_FC_TURBO_SHORT);
633		} else {				/* 5 GHZ OFDM Mode */
634			OS_REG_WRITE(ah, AR_PHY_TURBO, 0);
635		}
636		if (AH_PRIVATE(ah)->ah_devid == AR5211_DEVID) {
637			OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_40);
638			OS_DELAY(DELAY_PLL_SETTLE);
639			OS_REG_WRITE(ah, AR5211_PHY_MODE,
640				AR5211_PHY_MODE_OFDM | AR5211_PHY_MODE_RF5GHZ);
641		}
642		break;
643	}
644	/* NB: else no flags set - must be attach calling - do nothing */
645
646	/*
647	 * Reset the HW - PCI must be reset after the rest of the
648	 * device has been reset
649	 */
650	if (!ar5211SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
651		return AH_FALSE;
652	OS_DELAY(2100);	   /* 8245 @ 96Mhz hangs with 2000us. */
653
654	/* Bring out of sleep mode (AGAIN) */
655	if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
656		return AH_FALSE;
657
658	/* Clear warm reset register */
659	return ar5211SetResetReg(ah, 0);
660}
661
662/*
663 * Recalibrate the lower PHY chips to account for temperature/environment
664 * changes.
665 */
666HAL_BOOL
667ar5211PerCalibrationN(struct ath_hal *ah,  HAL_CHANNEL *chan, u_int chainMask,
668	HAL_BOOL longCal, HAL_BOOL *isCalDone)
669{
670	struct ath_hal_5211 *ahp = AH5211(ah);
671	HAL_CHANNEL_INTERNAL *ichan;
672	int32_t qCoff, qCoffDenom;
673	uint32_t data;
674	int32_t iqCorrMeas;
675	int32_t iCoff, iCoffDenom;
676	uint32_t powerMeasQ, powerMeasI;
677
678	ichan = ath_hal_checkchannel(ah, chan);
679	if (ichan == AH_NULL) {
680		HALDEBUG(ah, HAL_DEBUG_ANY,
681		    "%s: invalid channel %u/0x%x; no mapping\n",
682		    __func__, chan->channel, chan->channelFlags);
683		return AH_FALSE;
684	}
685	/* IQ calibration in progress. Check to see if it has finished. */
686	if (ahp->ah_bIQCalibration &&
687	    !(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_DO_IQCAL)) {
688		/* IQ Calibration has finished. */
689		ahp->ah_bIQCalibration = AH_FALSE;
690
691		/* Read calibration results. */
692		powerMeasI = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_I);
693		powerMeasQ = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_Q);
694		iqCorrMeas = OS_REG_READ(ah, AR_PHY_IQCAL_RES_IQ_CORR_MEAS);
695
696		/*
697		 * Prescale these values to remove 64-bit operation requirement at the loss
698		 * of a little precision.
699		 */
700		iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128;
701		qCoffDenom = powerMeasQ / 64;
702
703		/* Protect against divide-by-0. */
704		if (iCoffDenom != 0 && qCoffDenom != 0) {
705			iCoff = (-iqCorrMeas) / iCoffDenom;
706			/* IQCORR_Q_I_COFF is a signed 6 bit number */
707			iCoff = iCoff & 0x3f;
708
709			qCoff = ((int32_t)powerMeasI / qCoffDenom) - 64;
710			/* IQCORR_Q_Q_COFF is a signed 5 bit number */
711			qCoff = qCoff & 0x1f;
712
713			HALDEBUG(ah, HAL_DEBUG_PERCAL, "powerMeasI = 0x%08x\n",
714			    powerMeasI);
715			HALDEBUG(ah, HAL_DEBUG_PERCAL, "powerMeasQ = 0x%08x\n",
716			    powerMeasQ);
717			HALDEBUG(ah, HAL_DEBUG_PERCAL, "iqCorrMeas = 0x%08x\n",
718			    iqCorrMeas);
719			HALDEBUG(ah, HAL_DEBUG_PERCAL, "iCoff	  = %d\n",
720			    iCoff);
721			HALDEBUG(ah, HAL_DEBUG_PERCAL, "qCoff	  = %d\n",
722			    qCoff);
723
724			/* Write IQ */
725			data  = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) |
726				AR_PHY_TIMING_CTRL4_IQCORR_ENABLE |
727				(((uint32_t)iCoff) << AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF_S) |
728				((uint32_t)qCoff);
729			OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4, data);
730		}
731	}
732	*isCalDone = !ahp->ah_bIQCalibration;
733
734	if (longCal) {
735		/* Perform noise floor and set status */
736		if (!ar5211IsNfGood(ah, ichan)) {
737			/* report up and clear internal state */
738			chan->channelFlags |= CHANNEL_CW_INT;
739			ichan->channelFlags &= ~CHANNEL_CW_INT;
740			return AH_FALSE;
741		}
742		if (!ar5211CalNoiseFloor(ah, ichan)) {
743			/*
744			 * Delay 5ms before retrying the noise floor
745			 * just to make sure, as we are in an error
746			 * condition here.
747			 */
748			OS_DELAY(5000);
749			if (!ar5211CalNoiseFloor(ah, ichan)) {
750				if (!IS_CHAN_CCK(chan))
751					chan->channelFlags |= CHANNEL_CW_INT;
752				return AH_FALSE;
753			}
754		}
755		ar5211RequestRfgain(ah);
756	}
757	return AH_TRUE;
758}
759
760HAL_BOOL
761ar5211PerCalibration(struct ath_hal *ah, HAL_CHANNEL *chan, HAL_BOOL *isIQdone)
762{
763	return ar5211PerCalibrationN(ah,  chan, 0x1, AH_TRUE, isIQdone);
764}
765
766HAL_BOOL
767ar5211ResetCalValid(struct ath_hal *ah, HAL_CHANNEL *chan)
768{
769	/* XXX */
770	return AH_TRUE;
771}
772
773/*
774 * Writes the given reset bit mask into the reset register
775 */
776static HAL_BOOL
777ar5211SetResetReg(struct ath_hal *ah, uint32_t resetMask)
778{
779	uint32_t mask = resetMask ? resetMask : ~0;
780	HAL_BOOL rt;
781
782	(void) OS_REG_READ(ah, AR_RXDP);/* flush any pending MMR writes */
783	OS_REG_WRITE(ah, AR_RC, resetMask);
784
785	/* need to wait at least 128 clocks when reseting PCI before read */
786	OS_DELAY(15);
787
788	resetMask &= AR_RC_MAC | AR_RC_BB;
789	mask &= AR_RC_MAC | AR_RC_BB;
790	rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
791        if ((resetMask & AR_RC_MAC) == 0) {
792		if (isBigEndian()) {
793			/*
794			 * Set CFG, little-endian for register
795			 * and descriptor accesses.
796			 */
797			mask = INIT_CONFIG_STATUS |
798				AR_CFG_SWTD | AR_CFG_SWRD | AR_CFG_SWRG;
799			OS_REG_WRITE(ah, AR_CFG, LE_READ_4(&mask));
800		} else
801			OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
802	}
803	return rt;
804}
805
806/*
807 * Takes the MHz channel value and sets the Channel value
808 *
809 * ASSUMES: Writes enabled to analog bus before AGC is active
810 *   or by disabling the AGC.
811 */
812static HAL_BOOL
813ar5211SetChannel(struct ath_hal *ah,  HAL_CHANNEL_INTERNAL *chan)
814{
815	uint32_t refClk, reg32, data2111;
816	int16_t chan5111, chanIEEE;
817
818	chanIEEE = ath_hal_mhz2ieee(ah, chan->channel, chan->channelFlags);
819	if (IS_CHAN_2GHZ(chan)) {
820		const CHAN_INFO_2GHZ* ci =
821			&chan2GHzData[chanIEEE + CI_2GHZ_INDEX_CORRECTION];
822
823		data2111 = ((ath_hal_reverseBits(ci->channelSelect, 8) & 0xff)
824				<< 5)
825			 | (ci->refClkSel << 4);
826		chan5111 = ci->channel5111;
827	} else {
828		data2111 = 0;
829		chan5111 = chanIEEE;
830	}
831
832	/* Rest of the code is common for 5 GHz and 2.4 GHz. */
833	if (chan5111 >= 145 || (chan5111 & 0x1)) {
834		reg32 = ath_hal_reverseBits(chan5111 - 24, 8) & 0xFF;
835		refClk = 1;
836	} else {
837		reg32 = ath_hal_reverseBits(((chan5111 - 24) / 2), 8) & 0xFF;
838		refClk = 0;
839	}
840
841	reg32 = (reg32 << 2) | (refClk << 1) | (1 << 10) | 0x1;
842	OS_REG_WRITE(ah, AR_PHY(0x27), ((data2111 & 0xff) << 8) | (reg32 & 0xff));
843	reg32 >>= 8;
844	OS_REG_WRITE(ah, AR_PHY(0x34), (data2111 & 0xff00) | (reg32 & 0xff));
845
846	AH_PRIVATE(ah)->ah_curchan = chan;
847	return AH_TRUE;
848}
849
850static int16_t
851ar5211GetNoiseFloor(struct ath_hal *ah)
852{
853	int16_t nf;
854
855	nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
856	if (nf & 0x100)
857		nf = 0 - ((nf ^ 0x1ff) + 1);
858	return nf;
859}
860
861/*
862 * Peform the noisefloor calibration for the length of time set
863 * in runTime (valid values 1 to 7)
864 *
865 * Returns: The NF value at the end of the given time (or 0 for failure)
866 */
867int16_t
868ar5211RunNoiseFloor(struct ath_hal *ah, uint8_t runTime, int16_t startingNF)
869{
870	int i, searchTime;
871
872	HALASSERT(runTime <= 7);
873
874	/* Setup  noise floor run time and starting value */
875	OS_REG_WRITE(ah, AR_PHY(25),
876		(OS_REG_READ(ah, AR_PHY(25)) & ~0xFFF) |
877			 ((runTime << 9) & 0xE00) | (startingNF & 0x1FF));
878	/* Calibrate the noise floor */
879	OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
880		OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_NF);
881
882	/* Compute the required amount of searchTime needed to finish NF */
883	if (runTime == 0) {
884		/* 8 search windows * 6.4us each */
885		searchTime = 8  * 7;
886	} else {
887		/* 512 * runtime search windows * 6.4us each */
888		searchTime = (runTime * 512)  * 7;
889	}
890
891	/*
892	 * Do not read noise floor until it has been updated
893	 *
894	 * As a guesstimate - we may only get 1/60th the time on
895	 * the air to see search windows  in a heavily congested
896	 * network (40 us every 2400 us of time)
897	 */
898	for (i = 0; i < 60; i++) {
899		if ((OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) == 0)
900			break;
901		OS_DELAY(searchTime);
902	}
903	if (i >= 60) {
904		HALDEBUG(ah, HAL_DEBUG_NFCAL,
905		    "NF with runTime %d failed to end on channel %d\n",
906		    runTime, AH_PRIVATE(ah)->ah_curchan->channel);
907		HALDEBUG(ah, HAL_DEBUG_NFCAL,
908		    "  PHY NF Reg state:	 0x%x\n",
909		    OS_REG_READ(ah, AR_PHY_AGC_CONTROL));
910		HALDEBUG(ah, HAL_DEBUG_NFCAL,
911		    "  PHY Active Reg state: 0x%x\n",
912		    OS_REG_READ(ah, AR_PHY_ACTIVE));
913		return 0;
914	}
915
916	return ar5211GetNoiseFloor(ah);
917}
918
919static HAL_BOOL
920getNoiseFloorThresh(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, int16_t *nft)
921{
922	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
923
924	switch (chan->channelFlags & CHANNEL_ALL_NOTURBO) {
925	case CHANNEL_A:
926		*nft = ee->ee_noiseFloorThresh[0];
927		break;
928	case CHANNEL_CCK|CHANNEL_2GHZ:
929		*nft = ee->ee_noiseFloorThresh[1];
930		break;
931	case CHANNEL_OFDM|CHANNEL_2GHZ:
932		*nft = ee->ee_noiseFloorThresh[2];
933		break;
934	default:
935		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
936		    __func__, chan->channelFlags);
937		return AH_FALSE;
938	}
939	return AH_TRUE;
940}
941
942/*
943 * Read the NF and check it against the noise floor threshhold
944 *
945 * Returns: TRUE if the NF is good
946 */
947static HAL_BOOL
948ar5211IsNfGood(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
949{
950	int16_t nf, nfThresh;
951
952	if (!getNoiseFloorThresh(ah, chan, &nfThresh))
953		return AH_FALSE;
954#ifdef AH_DEBUG
955	if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF)
956		HALDEBUG(ah, HAL_DEBUG_ANY,
957		    "%s: NF did not complete in calibration window\n", __func__);
958#endif
959	nf = ar5211GetNoiseFloor(ah);
960	if (nf > nfThresh) {
961		HALDEBUG(ah, HAL_DEBUG_ANY,
962		    "%s: noise floor failed; detected %u, threshold %u\n",
963		    __func__, nf, nfThresh);
964		/*
965		 * NB: Don't discriminate 2.4 vs 5Ghz, if this
966		 *     happens it indicates a problem regardless
967		 *     of the band.
968		 */
969		chan->channelFlags |= CHANNEL_CW_INT;
970	}
971	chan->rawNoiseFloor = nf;
972	return (nf <= nfThresh);
973}
974
975/*
976 * Peform the noisefloor calibration and check for any constant channel
977 * interference.
978 *
979 * NOTE: preAR5211 have a lengthy carrier wave detection process - hence
980 * it is if'ed for MKK regulatory domain only.
981 *
982 * Returns: TRUE for a successful noise floor calibration; else FALSE
983 */
984HAL_BOOL
985ar5211CalNoiseFloor(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
986{
987#define	N(a)	(sizeof (a) / sizeof (a[0]))
988	/* Check for Carrier Wave interference in MKK regulatory zone */
989	if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU &&
990	    ath_hal_getnfcheckrequired(ah, (HAL_CHANNEL *) chan)) {
991		static const uint8_t runtime[3] = { 0, 2, 7 };
992		int16_t nf, nfThresh;
993		int i;
994
995		if (!getNoiseFloorThresh(ah, chan, &nfThresh))
996			return AH_FALSE;
997		/*
998		 * Run a quick noise floor that will hopefully
999		 * complete (decrease delay time).
1000		 */
1001		for (i = 0; i < N(runtime); i++) {
1002			nf = ar5211RunNoiseFloor(ah, runtime[i], 0);
1003			if (nf > nfThresh) {
1004				HALDEBUG(ah, HAL_DEBUG_ANY,
1005				    "%s: run failed with %u > threshold %u "
1006				    "(runtime %u)\n", __func__,
1007				    nf, nfThresh, runtime[i]);
1008				chan->rawNoiseFloor = 0;
1009			} else
1010				chan->rawNoiseFloor = nf;
1011		}
1012		return (i <= N(runtime));
1013	} else {
1014		/* Calibrate the noise floor */
1015		OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
1016			OS_REG_READ(ah, AR_PHY_AGC_CONTROL) |
1017				 AR_PHY_AGC_CONTROL_NF);
1018	}
1019	return AH_TRUE;
1020#undef N
1021}
1022
1023/*
1024 * Adjust NF based on statistical values for 5GHz frequencies.
1025 */
1026int16_t
1027ar5211GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
1028{
1029	static const struct {
1030		uint16_t freqLow;
1031		int16_t	  adjust;
1032	} adjust5111[] = {
1033		{ 5790,	11 },	/* NB: ordered high -> low */
1034		{ 5730, 10 },
1035		{ 5690,  9 },
1036		{ 5660,  8 },
1037		{ 5610,  7 },
1038		{ 5530,  5 },
1039		{ 5450,  4 },
1040		{ 5379,  2 },
1041		{ 5209,  0 },	/* XXX? bogus but doesn't matter */
1042		{    0,  1 },
1043	};
1044	int i;
1045
1046	for (i = 0; c->channel <= adjust5111[i].freqLow; i++)
1047		;
1048	/* NB: placeholder for 5111's less severe requirement */
1049	return adjust5111[i].adjust / 3;
1050}
1051
1052/*
1053 * Reads EEPROM header info from device structure and programs
1054 * analog registers 6 and 7
1055 *
1056 * REQUIRES: Access to the analog device
1057 */
1058static HAL_BOOL
1059ar5211SetRf6and7(struct ath_hal *ah, HAL_CHANNEL *chan)
1060{
1061#define	N(a)	(sizeof (a) / sizeof (a[0]))
1062	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1063	struct ath_hal_5211 *ahp = AH5211(ah);
1064	uint16_t rfXpdGain, rfPloSel, rfPwdXpd;
1065	uint16_t tempOB, tempDB;
1066	uint16_t freqIndex;
1067	int i;
1068
1069	freqIndex = (chan->channelFlags & CHANNEL_2GHZ) ? 2 : 1;
1070
1071	/*
1072	 * TODO: This array mode correspondes with the index used
1073	 *	 during the read.
1074	 * For readability, this should be changed to an enum or #define
1075	 */
1076	switch (chan->channelFlags & CHANNEL_ALL_NOTURBO) {
1077	case CHANNEL_A:
1078		if (chan->channel > 4000 && chan->channel < 5260) {
1079			tempOB = ee->ee_ob1;
1080			tempDB = ee->ee_db1;
1081		} else if (chan->channel >= 5260 && chan->channel < 5500) {
1082			tempOB = ee->ee_ob2;
1083			tempDB = ee->ee_db2;
1084		} else if (chan->channel >= 5500 && chan->channel < 5725) {
1085			tempOB = ee->ee_ob3;
1086			tempDB = ee->ee_db3;
1087		} else if (chan->channel >= 5725) {
1088			tempOB = ee->ee_ob4;
1089			tempDB = ee->ee_db4;
1090		} else {
1091			/* XXX panic?? */
1092			tempOB = tempDB = 0;
1093		}
1094
1095		rfXpdGain = ee->ee_xgain[0];
1096		rfPloSel  = ee->ee_xpd[0];
1097		rfPwdXpd  = !ee->ee_xpd[0];
1098
1099		ar5211Rf6n7[5][freqIndex]  =
1100			(ar5211Rf6n7[5][freqIndex] & ~0x10000000) |
1101				(ee->ee_cornerCal.pd84<< 28);
1102		ar5211Rf6n7[6][freqIndex]  =
1103			(ar5211Rf6n7[6][freqIndex] & ~0x04000000) |
1104				(ee->ee_cornerCal.pd90 << 26);
1105		ar5211Rf6n7[21][freqIndex] =
1106			(ar5211Rf6n7[21][freqIndex] & ~0x08) |
1107				(ee->ee_cornerCal.gSel << 3);
1108		break;
1109	case CHANNEL_CCK|CHANNEL_2GHZ:
1110		tempOB = ee->ee_obFor24;
1111		tempDB = ee->ee_dbFor24;
1112		rfXpdGain = ee->ee_xgain[1];
1113		rfPloSel  = ee->ee_xpd[1];
1114		rfPwdXpd  = !ee->ee_xpd[1];
1115		break;
1116	case CHANNEL_OFDM|CHANNEL_2GHZ:
1117		tempOB = ee->ee_obFor24g;
1118		tempDB = ee->ee_dbFor24g;
1119		rfXpdGain = ee->ee_xgain[2];
1120		rfPloSel  = ee->ee_xpd[2];
1121		rfPwdXpd  = !ee->ee_xpd[2];
1122		break;
1123	default:
1124		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1125		    __func__, chan->channelFlags);
1126		return AH_FALSE;
1127	}
1128
1129	HALASSERT(1 <= tempOB && tempOB <= 5);
1130	HALASSERT(1 <= tempDB && tempDB <= 5);
1131
1132	/* Set rfXpdGain and rfPwdXpd */
1133	ar5211Rf6n7[11][freqIndex] =  (ar5211Rf6n7[11][freqIndex] & ~0xC0) |
1134		(((ath_hal_reverseBits(rfXpdGain, 4) << 7) | (rfPwdXpd << 6)) & 0xC0);
1135	ar5211Rf6n7[12][freqIndex] =  (ar5211Rf6n7[12][freqIndex] & ~0x07) |
1136		((ath_hal_reverseBits(rfXpdGain, 4) >> 1) & 0x07);
1137
1138	/* Set OB */
1139	ar5211Rf6n7[12][freqIndex] =  (ar5211Rf6n7[12][freqIndex] & ~0x80) |
1140		((ath_hal_reverseBits(tempOB, 3) << 7) & 0x80);
1141	ar5211Rf6n7[13][freqIndex] =  (ar5211Rf6n7[13][freqIndex] & ~0x03) |
1142		((ath_hal_reverseBits(tempOB, 3) >> 1) & 0x03);
1143
1144	/* Set DB */
1145	ar5211Rf6n7[13][freqIndex] =  (ar5211Rf6n7[13][freqIndex] & ~0x1C) |
1146		((ath_hal_reverseBits(tempDB, 3) << 2) & 0x1C);
1147
1148	/* Set rfPloSel */
1149	ar5211Rf6n7[17][freqIndex] =  (ar5211Rf6n7[17][freqIndex] & ~0x08) |
1150		((rfPloSel << 3) & 0x08);
1151
1152	/* Write the Rf registers 6 & 7 */
1153	for (i = 0; i < N(ar5211Rf6n7); i++)
1154		OS_REG_WRITE(ah, ar5211Rf6n7[i][0], ar5211Rf6n7[i][freqIndex]);
1155
1156	/* Now that we have reprogrammed rfgain value, clear the flag. */
1157	ahp->ah_rfgainState = RFGAIN_INACTIVE;
1158
1159	return AH_TRUE;
1160#undef N
1161}
1162
1163HAL_BOOL
1164ar5211SetAntennaSwitchInternal(struct ath_hal *ah, HAL_ANT_SETTING settings,
1165                       const HAL_CHANNEL *chan)
1166{
1167#define	ANT_SWITCH_TABLE1	0x9960
1168#define	ANT_SWITCH_TABLE2	0x9964
1169	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1170	struct ath_hal_5211 *ahp = AH5211(ah);
1171	uint32_t antSwitchA, antSwitchB;
1172	int ix;
1173
1174	switch (chan->channelFlags & CHANNEL_ALL_NOTURBO) {
1175	case CHANNEL_A:		ix = 0; break;
1176	case CHANNEL_B:		ix = 1; break;
1177	case CHANNEL_PUREG:	ix = 2; break;
1178	default:
1179		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1180		    __func__, chan->channelFlags);
1181		return AH_FALSE;
1182	}
1183
1184	antSwitchA =  ee->ee_antennaControl[1][ix]
1185		   | (ee->ee_antennaControl[2][ix] << 6)
1186		   | (ee->ee_antennaControl[3][ix] << 12)
1187		   | (ee->ee_antennaControl[4][ix] << 18)
1188		   | (ee->ee_antennaControl[5][ix] << 24)
1189		   ;
1190	antSwitchB =  ee->ee_antennaControl[6][ix]
1191		   | (ee->ee_antennaControl[7][ix] << 6)
1192		   | (ee->ee_antennaControl[8][ix] << 12)
1193		   | (ee->ee_antennaControl[9][ix] << 18)
1194		   | (ee->ee_antennaControl[10][ix] << 24)
1195		   ;
1196	/*
1197	 * For fixed antenna, give the same setting for both switch banks
1198	 */
1199	switch (settings) {
1200	case HAL_ANT_FIXED_A:
1201		antSwitchB = antSwitchA;
1202		break;
1203	case HAL_ANT_FIXED_B:
1204		antSwitchA = antSwitchB;
1205		break;
1206	case HAL_ANT_VARIABLE:
1207		break;
1208	default:
1209		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad antenna setting %u\n",
1210		    __func__, settings);
1211		return AH_FALSE;
1212	}
1213	ahp->ah_diversityControl = settings;
1214
1215	OS_REG_WRITE(ah, ANT_SWITCH_TABLE1, antSwitchA);
1216	OS_REG_WRITE(ah, ANT_SWITCH_TABLE2, antSwitchB);
1217
1218	return AH_TRUE;
1219#undef ANT_SWITCH_TABLE1
1220#undef ANT_SWITCH_TABLE2
1221}
1222
1223/*
1224 * Reads EEPROM header info and programs the device for correct operation
1225 * given the channel value
1226 */
1227static HAL_BOOL
1228ar5211SetBoardValues(struct ath_hal *ah, HAL_CHANNEL *chan)
1229{
1230	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1231	struct ath_hal_5211 *ahp = AH5211(ah);
1232	int arrayMode, falseDectectBackoff;
1233
1234	switch (chan->channelFlags & CHANNEL_ALL_NOTURBO) {
1235	case CHANNEL_A:
1236		arrayMode = 0;
1237		OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
1238			AR_PHY_FRAME_CTL_TX_CLIP, ee->ee_cornerCal.clip);
1239		break;
1240	case CHANNEL_CCK|CHANNEL_2GHZ:
1241		arrayMode = 1;
1242		break;
1243	case CHANNEL_OFDM|CHANNEL_2GHZ:
1244		arrayMode = 2;
1245		break;
1246	default:
1247		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1248		    __func__, chan->channelFlags);
1249		return AH_FALSE;
1250	}
1251
1252	/* Set the antenna register(s) correctly for the chip revision */
1253	if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) {
1254		OS_REG_WRITE(ah, AR_PHY(68),
1255			(OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFFFC) | 0x3);
1256	} else {
1257		OS_REG_WRITE(ah, AR_PHY(68),
1258			(OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFC06) |
1259			(ee->ee_antennaControl[0][arrayMode] << 4) | 0x1);
1260
1261		ar5211SetAntennaSwitchInternal(ah,
1262			ahp->ah_diversityControl, chan);
1263
1264		/* Set the Noise Floor Thresh on ar5211 devices */
1265		OS_REG_WRITE(ah, AR_PHY_BASE + (90 << 2),
1266			(ee->ee_noiseFloorThresh[arrayMode] & 0x1FF) | (1<<9));
1267	}
1268	OS_REG_WRITE(ah, AR_PHY_BASE + (17 << 2),
1269		(OS_REG_READ(ah, AR_PHY_BASE + (17 << 2)) & 0xFFFFC07F) |
1270		((ee->ee_switchSettling[arrayMode] << 7) & 0x3F80));
1271	OS_REG_WRITE(ah, AR_PHY_BASE + (18 << 2),
1272		(OS_REG_READ(ah, AR_PHY_BASE + (18 << 2)) & 0xFFFC0FFF) |
1273		((ee->ee_txrxAtten[arrayMode] << 12) & 0x3F000));
1274	OS_REG_WRITE(ah, AR_PHY_BASE + (20 << 2),
1275		(OS_REG_READ(ah, AR_PHY_BASE + (20 << 2)) & 0xFFFF0000) |
1276		((ee->ee_pgaDesiredSize[arrayMode] << 8) & 0xFF00) |
1277		(ee->ee_adcDesiredSize[arrayMode] & 0x00FF));
1278	OS_REG_WRITE(ah, AR_PHY_BASE + (13 << 2),
1279		(ee->ee_txEndToXPAOff[arrayMode] << 24) |
1280		(ee->ee_txEndToXPAOff[arrayMode] << 16) |
1281		(ee->ee_txFrameToXPAOn[arrayMode] << 8) |
1282		ee->ee_txFrameToXPAOn[arrayMode]);
1283	OS_REG_WRITE(ah, AR_PHY_BASE + (10 << 2),
1284		(OS_REG_READ(ah, AR_PHY_BASE + (10 << 2)) & 0xFFFF00FF) |
1285		(ee->ee_txEndToXLNAOn[arrayMode] << 8));
1286	OS_REG_WRITE(ah, AR_PHY_BASE + (25 << 2),
1287		(OS_REG_READ(ah, AR_PHY_BASE + (25 << 2)) & 0xFFF80FFF) |
1288		((ee->ee_thresh62[arrayMode] << 12) & 0x7F000));
1289
1290#define NO_FALSE_DETECT_BACKOFF   2
1291#define CB22_FALSE_DETECT_BACKOFF 6
1292	/*
1293	 * False detect backoff - suspected 32 MHz spur causes
1294	 * false detects in OFDM, causing Tx Hangs.  Decrease
1295	 * weak signal sensitivity for this card.
1296	 */
1297	falseDectectBackoff = NO_FALSE_DETECT_BACKOFF;
1298	if (AH_PRIVATE(ah)->ah_eeversion < AR_EEPROM_VER3_3) {
1299		if (AH_PRIVATE(ah)->ah_subvendorid == 0x1022 &&
1300		    IS_CHAN_OFDM(chan))
1301			falseDectectBackoff += CB22_FALSE_DETECT_BACKOFF;
1302	} else {
1303		uint32_t remainder = chan->channel % 32;
1304
1305		if (remainder && (remainder < 10 || remainder > 22))
1306			falseDectectBackoff += ee->ee_falseDetectBackoff[arrayMode];
1307	}
1308	OS_REG_WRITE(ah, 0x9924,
1309		(OS_REG_READ(ah, 0x9924) & 0xFFFFFF01)
1310		| ((falseDectectBackoff << 1) & 0xF7));
1311
1312	return AH_TRUE;
1313#undef NO_FALSE_DETECT_BACKOFF
1314#undef CB22_FALSE_DETECT_BACKOFF
1315}
1316
1317/*
1318 * Set the limit on the overall output power.  Used for dynamic
1319 * transmit power control and the like.
1320 *
1321 * NOTE: The power is passed in is in units of 0.5 dBm.
1322 */
1323HAL_BOOL
1324ar5211SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
1325{
1326
1327	AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
1328	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, limit);
1329	return AH_TRUE;
1330}
1331
1332/*
1333 * Sets the transmit power in the baseband for the given
1334 * operating channel and mode.
1335 */
1336HAL_BOOL
1337ar5211SetTransmitPower(struct ath_hal *ah, HAL_CHANNEL *chan)
1338{
1339	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1340	TRGT_POWER_INFO *pi;
1341	RD_EDGES_POWER *rep;
1342	PCDACS_EEPROM eepromPcdacs;
1343	u_int nchan, cfgCtl;
1344	int i;
1345
1346	/* setup the pcdac struct to point to the correct info, based on mode */
1347	switch (chan->channelFlags & CHANNEL_ALL_NOTURBO) {
1348	case CHANNEL_A:
1349		eepromPcdacs.numChannels = ee->ee_numChannels11a;
1350		eepromPcdacs.pChannelList= ee->ee_channels11a;
1351		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11a;
1352		nchan = ee->ee_numTargetPwr_11a;
1353		pi = ee->ee_trgtPwr_11a;
1354		break;
1355	case CHANNEL_OFDM|CHANNEL_2GHZ:
1356		eepromPcdacs.numChannels = ee->ee_numChannels2_4;
1357		eepromPcdacs.pChannelList= ee->ee_channels11g;
1358		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11g;
1359		nchan = ee->ee_numTargetPwr_11g;
1360		pi = ee->ee_trgtPwr_11g;
1361		break;
1362	case CHANNEL_CCK|CHANNEL_2GHZ:
1363		eepromPcdacs.numChannels = ee->ee_numChannels2_4;
1364		eepromPcdacs.pChannelList= ee->ee_channels11b;
1365		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11b;
1366		nchan = ee->ee_numTargetPwr_11b;
1367		pi = ee->ee_trgtPwr_11b;
1368		break;
1369	default:
1370		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1371		    __func__, chan->channelFlags);
1372		return AH_FALSE;
1373	}
1374
1375	ar5211SetPowerTable(ah, &eepromPcdacs, chan->channel);
1376
1377	rep = AH_NULL;
1378	/* Match CTL to EEPROM value */
1379	cfgCtl = ath_hal_getctl(ah, chan);
1380	for (i = 0; i < ee->ee_numCtls; i++)
1381		if (ee->ee_ctl[i] != 0 && ee->ee_ctl[i] == cfgCtl) {
1382			rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
1383			break;
1384		}
1385	ar5211SetRateTable(ah, rep, pi, nchan, chan);
1386
1387	return AH_TRUE;
1388}
1389
1390/*
1391 * Read the transmit power levels from the structures taken
1392 * from EEPROM. Interpolate read transmit power values for
1393 * this channel. Organize the transmit power values into a
1394 * table for writing into the hardware.
1395 */
1396void
1397ar5211SetPowerTable(struct ath_hal *ah, PCDACS_EEPROM *pSrcStruct, uint16_t channel)
1398{
1399	static FULL_PCDAC_STRUCT pcdacStruct;
1400	static uint16_t pcdacTable[PWR_TABLE_SIZE];
1401
1402	uint16_t	 i, j;
1403	uint16_t	 *pPcdacValues;
1404	int16_t	  *pScaledUpDbm;
1405	int16_t	  minScaledPwr;
1406	int16_t	  maxScaledPwr;
1407	int16_t	  pwr;
1408	uint16_t	 pcdacMin = 0;
1409	uint16_t	 pcdacMax = 63;
1410	uint16_t	 pcdacTableIndex;
1411	uint16_t	 scaledPcdac;
1412	uint32_t	 addr;
1413	uint32_t	 temp32;
1414
1415	OS_MEMZERO(&pcdacStruct, sizeof(FULL_PCDAC_STRUCT));
1416	OS_MEMZERO(pcdacTable, sizeof(uint16_t) * PWR_TABLE_SIZE);
1417	pPcdacValues = pcdacStruct.PcdacValues;
1418	pScaledUpDbm = pcdacStruct.PwrValues;
1419
1420	/* Initialize the pcdacs to dBM structs pcdacs to be 1 to 63 */
1421	for (i = PCDAC_START, j = 0; i <= PCDAC_STOP; i+= PCDAC_STEP, j++)
1422		pPcdacValues[j] = i;
1423
1424	pcdacStruct.numPcdacValues = j;
1425	pcdacStruct.pcdacMin = PCDAC_START;
1426	pcdacStruct.pcdacMax = PCDAC_STOP;
1427
1428	/* Fill out the power values for this channel */
1429	for (j = 0; j < pcdacStruct.numPcdacValues; j++ )
1430		pScaledUpDbm[j] = ar5211GetScaledPower(channel, pPcdacValues[j], pSrcStruct);
1431
1432	/* Now scale the pcdac values to fit in the 64 entry power table */
1433	minScaledPwr = pScaledUpDbm[0];
1434	maxScaledPwr = pScaledUpDbm[pcdacStruct.numPcdacValues - 1];
1435
1436	/* find minimum and make monotonic */
1437	for (j = 0; j < pcdacStruct.numPcdacValues; j++) {
1438		if (minScaledPwr >= pScaledUpDbm[j]) {
1439			minScaledPwr = pScaledUpDbm[j];
1440			pcdacMin = j;
1441		}
1442		/*
1443		 * Make the full_hsh monotonically increasing otherwise
1444		 * interpolation algorithm will get fooled gotta start
1445		 * working from the top, hence i = 63 - j.
1446		 */
1447		i = (uint16_t)(pcdacStruct.numPcdacValues - 1 - j);
1448		if (i == 0)
1449			break;
1450		if (pScaledUpDbm[i-1] > pScaledUpDbm[i]) {
1451			/*
1452			 * It could be a glitch, so make the power for
1453			 * this pcdac the same as the power from the
1454			 * next highest pcdac.
1455			 */
1456			pScaledUpDbm[i - 1] = pScaledUpDbm[i];
1457		}
1458	}
1459
1460	for (j = 0; j < pcdacStruct.numPcdacValues; j++)
1461		if (maxScaledPwr < pScaledUpDbm[j]) {
1462			maxScaledPwr = pScaledUpDbm[j];
1463			pcdacMax = j;
1464		}
1465
1466	/* Find the first power level with a pcdac */
1467	pwr = (uint16_t)(PWR_STEP * ((minScaledPwr - PWR_MIN + PWR_STEP / 2) / PWR_STEP)  + PWR_MIN);
1468
1469	/* Write all the first pcdac entries based off the pcdacMin */
1470	pcdacTableIndex = 0;
1471	for (i = 0; i < (2 * (pwr - PWR_MIN) / EEP_SCALE + 1); i++)
1472		pcdacTable[pcdacTableIndex++] = pcdacMin;
1473
1474	i = 0;
1475	while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1]) {
1476		pwr += PWR_STEP;
1477		/* stop if dbM > max_power_possible */
1478		while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
1479		       (pwr - pScaledUpDbm[i])*(pwr - pScaledUpDbm[i+1]) > 0)
1480			i++;
1481		/* scale by 2 and add 1 to enable round up or down as needed */
1482		scaledPcdac = (uint16_t)(ar5211GetInterpolatedValue(pwr,
1483				pScaledUpDbm[i], pScaledUpDbm[i+1],
1484				(uint16_t)(pPcdacValues[i] * 2),
1485				(uint16_t)(pPcdacValues[i+1] * 2), 0) + 1);
1486
1487		pcdacTable[pcdacTableIndex] = scaledPcdac / 2;
1488		if (pcdacTable[pcdacTableIndex] > pcdacMax)
1489			pcdacTable[pcdacTableIndex] = pcdacMax;
1490		pcdacTableIndex++;
1491	}
1492
1493	/* Write all the last pcdac entries based off the last valid pcdac */
1494	while (pcdacTableIndex < PWR_TABLE_SIZE) {
1495		pcdacTable[pcdacTableIndex] = pcdacTable[pcdacTableIndex - 1];
1496		pcdacTableIndex++;
1497	}
1498
1499	/* Finally, write the power values into the baseband power table */
1500	addr = AR_PHY_BASE + (608 << 2);
1501	for (i = 0; i < 32; i++) {
1502		temp32 = 0xffff & ((pcdacTable[2 * i + 1] << 8) | 0xff);
1503		temp32 = (temp32 << 16) | (0xffff & ((pcdacTable[2 * i] << 8) | 0xff));
1504		OS_REG_WRITE(ah, addr, temp32);
1505		addr += 4;
1506	}
1507
1508}
1509
1510/*
1511 * Set the transmit power in the baseband for the given
1512 * operating channel and mode.
1513 */
1514void
1515ar5211SetRateTable(struct ath_hal *ah, RD_EDGES_POWER *pRdEdgesPower,
1516	TRGT_POWER_INFO *pPowerInfo, uint16_t numChannels,
1517	HAL_CHANNEL *chan)
1518{
1519	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1520	struct ath_hal_5211 *ahp = AH5211(ah);
1521	static uint16_t ratesArray[NUM_RATES];
1522	static const uint16_t tpcScaleReductionTable[5] =
1523		{ 0, 3, 6, 9, MAX_RATE_POWER };
1524
1525	uint16_t	*pRatesPower;
1526	uint16_t	lowerChannel = 0, lowerIndex=0, lowerPower=0;
1527	uint16_t	upperChannel = 0, upperIndex=0, upperPower=0;
1528	uint16_t	twiceMaxEdgePower=63;
1529	uint16_t	twicePower = 0;
1530	uint16_t	i, numEdges;
1531	uint16_t	tempChannelList[NUM_EDGES]; /* temp array for holding edge channels */
1532	uint16_t	twiceMaxRDPower;
1533	int16_t	 scaledPower = 0;		/* for gcc -O2 */
1534	uint16_t	mask = 0x3f;
1535	HAL_BOOL	  paPreDEnable = 0;
1536	int8_t	  twiceAntennaGain, twiceAntennaReduction = 0;
1537
1538	pRatesPower = ratesArray;
1539	twiceMaxRDPower = chan->maxRegTxPower * 2;
1540
1541	if (IS_CHAN_5GHZ(chan)) {
1542		twiceAntennaGain = ee->ee_antennaGainMax[0];
1543	} else {
1544		twiceAntennaGain = ee->ee_antennaGainMax[1];
1545	}
1546
1547	twiceAntennaReduction = ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
1548
1549	if (pRdEdgesPower) {
1550		/* Get the edge power */
1551		for (i = 0; i < NUM_EDGES; i++) {
1552			if (pRdEdgesPower[i].rdEdge == 0)
1553				break;
1554			tempChannelList[i] = pRdEdgesPower[i].rdEdge;
1555		}
1556		numEdges = i;
1557
1558		ar5211GetLowerUpperValues(chan->channel, tempChannelList,
1559			numEdges, &lowerChannel, &upperChannel);
1560		/* Get the index for this channel */
1561		for (i = 0; i < numEdges; i++)
1562			if (lowerChannel == tempChannelList[i])
1563				break;
1564		HALASSERT(i != numEdges);
1565
1566		if ((lowerChannel == upperChannel &&
1567		     lowerChannel == chan->channel) ||
1568		    pRdEdgesPower[i].flag) {
1569			twiceMaxEdgePower = pRdEdgesPower[i].twice_rdEdgePower;
1570			HALASSERT(twiceMaxEdgePower > 0);
1571		}
1572	}
1573
1574	/* extrapolate the power values for the test Groups */
1575	for (i = 0; i < numChannels; i++)
1576		tempChannelList[i] = pPowerInfo[i].testChannel;
1577
1578	ar5211GetLowerUpperValues(chan->channel, tempChannelList,
1579		numChannels, &lowerChannel, &upperChannel);
1580
1581	/* get the index for the channel */
1582	for (i = 0; i < numChannels; i++) {
1583		if (lowerChannel == tempChannelList[i])
1584			lowerIndex = i;
1585		if (upperChannel == tempChannelList[i]) {
1586			upperIndex = i;
1587			break;
1588		}
1589	}
1590
1591	for (i = 0; i < NUM_RATES; i++) {
1592		if (IS_CHAN_OFDM(chan)) {
1593			/* power for rates 6,9,12,18,24 is all the same */
1594			if (i < 5) {
1595				lowerPower = pPowerInfo[lowerIndex].twicePwr6_24;
1596				upperPower = pPowerInfo[upperIndex].twicePwr6_24;
1597			} else if (i == 5) {
1598				lowerPower = pPowerInfo[lowerIndex].twicePwr36;
1599				upperPower = pPowerInfo[upperIndex].twicePwr36;
1600			} else if (i == 6) {
1601				lowerPower = pPowerInfo[lowerIndex].twicePwr48;
1602				upperPower = pPowerInfo[upperIndex].twicePwr48;
1603			} else if (i == 7) {
1604				lowerPower = pPowerInfo[lowerIndex].twicePwr54;
1605				upperPower = pPowerInfo[upperIndex].twicePwr54;
1606			}
1607		} else {
1608			switch (i) {
1609			case 0:
1610			case 1:
1611				lowerPower = pPowerInfo[lowerIndex].twicePwr6_24;
1612				upperPower = pPowerInfo[upperIndex].twicePwr6_24;
1613				break;
1614			case 2:
1615			case 3:
1616				lowerPower = pPowerInfo[lowerIndex].twicePwr36;
1617				upperPower = pPowerInfo[upperIndex].twicePwr36;
1618				break;
1619			case 4:
1620			case 5:
1621				lowerPower = pPowerInfo[lowerIndex].twicePwr48;
1622				upperPower = pPowerInfo[upperIndex].twicePwr48;
1623				break;
1624			case 6:
1625			case 7:
1626				lowerPower = pPowerInfo[lowerIndex].twicePwr54;
1627				upperPower = pPowerInfo[upperIndex].twicePwr54;
1628				break;
1629			}
1630		}
1631
1632		twicePower = ar5211GetInterpolatedValue(chan->channel,
1633			lowerChannel, upperChannel, lowerPower, upperPower, 0);
1634
1635		/* Reduce power by band edge restrictions */
1636		twicePower = AH_MIN(twicePower, twiceMaxEdgePower);
1637
1638		/*
1639		 * If turbo is set, reduce power to keep power
1640		 * consumption under 2 Watts.  Note that we always do
1641		 * this unless specially configured.  Then we limit
1642		 * power only for non-AP operation.
1643		 */
1644		if (IS_CHAN_TURBO(chan) &&
1645		    AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1
1646#ifdef AH_ENABLE_AP_SUPPORT
1647		    && AH_PRIVATE(ah)->ah_opmode != HAL_M_HOSTAP
1648#endif
1649		) {
1650			twicePower = AH_MIN(twicePower, ee->ee_turbo2WMaxPower5);
1651		}
1652
1653		/* Reduce power by max regulatory domain allowed restrictions */
1654		pRatesPower[i] = AH_MIN(twicePower, twiceMaxRDPower - twiceAntennaReduction);
1655
1656		/* Use 6 Mb power level for transmit power scaling reduction */
1657		/* We don't want to reduce higher rates if its not needed */
1658		if (i == 0) {
1659			scaledPower = pRatesPower[0] -
1660				(tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale] * 2);
1661			if (scaledPower < 1)
1662				scaledPower = 1;
1663		}
1664
1665		pRatesPower[i] = AH_MIN(pRatesPower[i], scaledPower);
1666	}
1667
1668	/* Record txPower at Rate 6 for info gathering */
1669	ahp->ah_tx6PowerInHalfDbm = pRatesPower[0];
1670
1671#ifdef AH_DEBUG
1672	HALDEBUG(ah, HAL_DEBUG_RESET,
1673	    "%s: final output power setting %d MHz:\n",
1674	    __func__, chan->channel);
1675	HALDEBUG(ah, HAL_DEBUG_RESET,
1676	    "6 Mb %d dBm, MaxRD: %d dBm, MaxEdge %d dBm\n",
1677	    scaledPower / 2, twiceMaxRDPower / 2, twiceMaxEdgePower / 2);
1678	HALDEBUG(ah, HAL_DEBUG_RESET, "TPC Scale %d dBm - Ant Red %d dBm\n",
1679	    tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale] * 2,
1680	    twiceAntennaReduction / 2);
1681	if (IS_CHAN_TURBO(chan) &&
1682	    AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1)
1683		HALDEBUG(ah, HAL_DEBUG_RESET, "Max Turbo %d dBm\n",
1684		    ee->ee_turbo2WMaxPower5);
1685	HALDEBUG(ah, HAL_DEBUG_RESET,
1686	    "  %2d | %2d | %2d | %2d | %2d | %2d | %2d | %2d dBm\n",
1687	    pRatesPower[0] / 2, pRatesPower[1] / 2, pRatesPower[2] / 2,
1688	    pRatesPower[3] / 2, pRatesPower[4] / 2, pRatesPower[5] / 2,
1689	    pRatesPower[6] / 2, pRatesPower[7] / 2);
1690#endif /* AH_DEBUG */
1691
1692	/* Write the power table into the hardware */
1693	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1694		 ((paPreDEnable & 1)<< 30) | ((pRatesPower[3] & mask) << 24) |
1695		 ((paPreDEnable & 1)<< 22) | ((pRatesPower[2] & mask) << 16) |
1696		 ((paPreDEnable & 1)<< 14) | ((pRatesPower[1] & mask) << 8) |
1697		 ((paPreDEnable & 1)<< 6 ) |  (pRatesPower[0] & mask));
1698	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1699		 ((paPreDEnable & 1)<< 30) | ((pRatesPower[7] & mask) << 24) |
1700		 ((paPreDEnable & 1)<< 22) | ((pRatesPower[6] & mask) << 16) |
1701		 ((paPreDEnable & 1)<< 14) | ((pRatesPower[5] & mask) << 8) |
1702		 ((paPreDEnable & 1)<< 6 ) |  (pRatesPower[4] & mask));
1703
1704	/* set max power to the power value at rate 6 */
1705	ar5211SetTxPowerLimit(ah, pRatesPower[0]);
1706
1707	AH_PRIVATE(ah)->ah_maxPowerLevel = pRatesPower[0];
1708}
1709
1710/*
1711 * Get or interpolate the pcdac value from the calibrated data
1712 */
1713uint16_t
1714ar5211GetScaledPower(uint16_t channel, uint16_t pcdacValue, const PCDACS_EEPROM *pSrcStruct)
1715{
1716	uint16_t powerValue;
1717	uint16_t lFreq = 0, rFreq = 0;		/* left and right frequency values */
1718	uint16_t llPcdac = 0, ulPcdac = 0;	/* lower and upper left pcdac values */
1719	uint16_t lrPcdac = 0, urPcdac = 0;	/* lower and upper right pcdac values */
1720	uint16_t lPwr = 0, uPwr = 0;		/* lower and upper temp pwr values */
1721	uint16_t lScaledPwr, rScaledPwr; /* left and right scaled power */
1722
1723	if (ar5211FindValueInList(channel, pcdacValue, pSrcStruct, &powerValue))
1724		/* value was copied from srcStruct */
1725		return powerValue;
1726
1727	ar5211GetLowerUpperValues(channel, pSrcStruct->pChannelList,
1728		pSrcStruct->numChannels, &lFreq, &rFreq);
1729	ar5211GetLowerUpperPcdacs(pcdacValue, lFreq, pSrcStruct,
1730		&llPcdac, &ulPcdac);
1731	ar5211GetLowerUpperPcdacs(pcdacValue, rFreq, pSrcStruct,
1732		&lrPcdac, &urPcdac);
1733
1734	/* get the power index for the pcdac value */
1735	ar5211FindValueInList(lFreq, llPcdac, pSrcStruct, &lPwr);
1736	ar5211FindValueInList(lFreq, ulPcdac, pSrcStruct, &uPwr);
1737	lScaledPwr = ar5211GetInterpolatedValue(pcdacValue,
1738				llPcdac, ulPcdac, lPwr, uPwr, 0);
1739
1740	ar5211FindValueInList(rFreq, lrPcdac, pSrcStruct, &lPwr);
1741	ar5211FindValueInList(rFreq, urPcdac, pSrcStruct, &uPwr);
1742	rScaledPwr = ar5211GetInterpolatedValue(pcdacValue,
1743				lrPcdac, urPcdac, lPwr, uPwr, 0);
1744
1745	return ar5211GetInterpolatedValue(channel, lFreq, rFreq,
1746		lScaledPwr, rScaledPwr, 0);
1747}
1748
1749/*
1750 * Find the value from the calibrated source data struct
1751 */
1752HAL_BOOL
1753ar5211FindValueInList(uint16_t channel, uint16_t pcdacValue,
1754	const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue)
1755{
1756	const DATA_PER_CHANNEL *pChannelData;
1757	const uint16_t *pPcdac;
1758	uint16_t i, j;
1759
1760	pChannelData = pSrcStruct->pDataPerChannel;
1761	for (i = 0; i < pSrcStruct->numChannels; i++ ) {
1762		if (pChannelData->channelValue == channel) {
1763			pPcdac = pChannelData->PcdacValues;
1764			for (j = 0; j < pChannelData->numPcdacValues; j++ ) {
1765				if (*pPcdac == pcdacValue) {
1766					*powerValue = pChannelData->PwrValues[j];
1767					return AH_TRUE;
1768				}
1769				pPcdac++;
1770			}
1771		}
1772		pChannelData++;
1773	}
1774	return AH_FALSE;
1775}
1776
1777/*
1778 * Returns interpolated or the scaled up interpolated value
1779 */
1780uint16_t
1781ar5211GetInterpolatedValue(uint16_t target,
1782	uint16_t srcLeft, uint16_t srcRight,
1783	uint16_t targetLeft, uint16_t targetRight,
1784	HAL_BOOL scaleUp)
1785{
1786	uint16_t rv;
1787	int16_t lRatio;
1788	uint16_t scaleValue = EEP_SCALE;
1789
1790	/* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
1791	if ((targetLeft * targetRight) == 0)
1792		return 0;
1793	if (scaleUp)
1794		scaleValue = 1;
1795
1796	if (srcRight != srcLeft) {
1797		/*
1798		 * Note the ratio always need to be scaled,
1799		 * since it will be a fraction.
1800		 */
1801		lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
1802		if (lRatio < 0) {
1803		    /* Return as Left target if value would be negative */
1804		    rv = targetLeft * (scaleUp ? EEP_SCALE : 1);
1805		} else if (lRatio > EEP_SCALE) {
1806		    /* Return as Right target if Ratio is greater than 100% (SCALE) */
1807		    rv = targetRight * (scaleUp ? EEP_SCALE : 1);
1808		} else {
1809			rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
1810					targetLeft) / scaleValue;
1811		}
1812	} else {
1813		rv = targetLeft;
1814		if (scaleUp)
1815			rv *= EEP_SCALE;
1816	}
1817	return rv;
1818}
1819
1820/*
1821 *  Look for value being within 0.1 of the search values
1822 *  however, NDIS can't do float calculations, so multiply everything
1823 *  up by EEP_SCALE so can do integer arithmatic
1824 *
1825 * INPUT  value	   -value to search for
1826 * INPUT  pList	   -ptr to the list to search
1827 * INPUT  listSize	-number of entries in list
1828 * OUTPUT pLowerValue -return the lower value
1829 * OUTPUT pUpperValue -return the upper value
1830 */
1831void
1832ar5211GetLowerUpperValues(uint16_t value,
1833	const uint16_t *pList, uint16_t listSize,
1834	uint16_t *pLowerValue, uint16_t *pUpperValue)
1835{
1836	const uint16_t listEndValue = *(pList + listSize - 1);
1837	uint32_t target = value * EEP_SCALE;
1838	int i;
1839
1840	/*
1841	 * See if value is lower than the first value in the list
1842	 * if so return first value
1843	 */
1844	if (target < (uint32_t)(*pList * EEP_SCALE - EEP_DELTA)) {
1845		*pLowerValue = *pList;
1846		*pUpperValue = *pList;
1847		return;
1848	}
1849
1850	/*
1851	 * See if value is greater than last value in list
1852	 * if so return last value
1853	 */
1854	if (target > (uint32_t)(listEndValue * EEP_SCALE + EEP_DELTA)) {
1855		*pLowerValue = listEndValue;
1856		*pUpperValue = listEndValue;
1857		return;
1858	}
1859
1860	/* look for value being near or between 2 values in list */
1861	for (i = 0; i < listSize; i++) {
1862		/*
1863		 * If value is close to the current value of the list
1864		 * then target is not between values, it is one of the values
1865		 */
1866		if (abs(pList[i] * EEP_SCALE - (int32_t) target) < EEP_DELTA) {
1867			*pLowerValue = pList[i];
1868			*pUpperValue = pList[i];
1869			return;
1870		}
1871
1872		/*
1873		 * Look for value being between current value and next value
1874		 * if so return these 2 values
1875		 */
1876		if (target < (uint32_t)(pList[i + 1] * EEP_SCALE - EEP_DELTA)) {
1877			*pLowerValue = pList[i];
1878			*pUpperValue = pList[i + 1];
1879			return;
1880		}
1881	}
1882}
1883
1884/*
1885 * Get the upper and lower pcdac given the channel and the pcdac
1886 * used in the search
1887 */
1888void
1889ar5211GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
1890	const PCDACS_EEPROM *pSrcStruct,
1891	uint16_t *pLowerPcdac, uint16_t *pUpperPcdac)
1892{
1893	const DATA_PER_CHANNEL *pChannelData;
1894	int i;
1895
1896	/* Find the channel information */
1897	pChannelData = pSrcStruct->pDataPerChannel;
1898	for (i = 0; i < pSrcStruct->numChannels; i++) {
1899		if (pChannelData->channelValue == channel)
1900			break;
1901		pChannelData++;
1902	}
1903	ar5211GetLowerUpperValues(pcdac, pChannelData->PcdacValues,
1904		pChannelData->numPcdacValues, pLowerPcdac, pUpperPcdac);
1905}
1906
1907#define	DYN_ADJ_UP_MARGIN	15
1908#define	DYN_ADJ_LO_MARGIN	20
1909
1910static const GAIN_OPTIMIZATION_LADDER gainLadder = {
1911	9,					/* numStepsInLadder */
1912	4,					/* defaultStepNum */
1913	{ { {4, 1, 1, 1},  6, "FG8"},
1914	  { {4, 0, 1, 1},  4, "FG7"},
1915	  { {3, 1, 1, 1},  3, "FG6"},
1916	  { {4, 0, 0, 1},  1, "FG5"},
1917	  { {4, 1, 1, 0},  0, "FG4"},	/* noJack */
1918	  { {4, 0, 1, 0}, -2, "FG3"},	/* halfJack */
1919	  { {3, 1, 1, 0}, -3, "FG2"},	/* clip3 */
1920	  { {4, 0, 0, 0}, -4, "FG1"},	/* noJack */
1921	  { {2, 1, 1, 0}, -6, "FG0"} 	/* clip2 */
1922	}
1923};
1924
1925/*
1926 * Initialize the gain structure to good values
1927 */
1928void
1929ar5211InitializeGainValues(struct ath_hal *ah)
1930{
1931	struct ath_hal_5211 *ahp = AH5211(ah);
1932	GAIN_VALUES *gv = &ahp->ah_gainValues;
1933
1934	/* initialize gain optimization values */
1935	gv->currStepNum = gainLadder.defaultStepNum;
1936	gv->currStep = &gainLadder.optStep[gainLadder.defaultStepNum];
1937	gv->active = AH_TRUE;
1938	gv->loTrig = 20;
1939	gv->hiTrig = 35;
1940}
1941
1942static HAL_BOOL
1943ar5211InvalidGainReadback(struct ath_hal *ah, GAIN_VALUES *gv)
1944{
1945	HAL_CHANNEL_INTERNAL *chan = AH_PRIVATE(ah)->ah_curchan;
1946	uint32_t gStep, g;
1947	uint32_t L1, L2, L3, L4;
1948
1949	if (IS_CHAN_CCK(chan)) {
1950		gStep = 0x18;
1951		L1 = 0;
1952		L2 = gStep + 4;
1953		L3 = 0x40;
1954		L4 = L3 + 50;
1955
1956		gv->loTrig = L1;
1957		gv->hiTrig = L4+5;
1958	} else {
1959		gStep = 0x3f;
1960		L1 = 0;
1961		L2 = 50;
1962		L3 = L1;
1963		L4 = L3 + 50;
1964
1965		gv->loTrig = L1 + DYN_ADJ_LO_MARGIN;
1966		gv->hiTrig = L4 - DYN_ADJ_UP_MARGIN;
1967	}
1968	g = gv->currGain;
1969
1970	return !((g >= L1 && g<= L2) || (g >= L3 && g <= L4));
1971}
1972
1973/*
1974 * Enable the probe gain check on the next packet
1975 */
1976static void
1977ar5211RequestRfgain(struct ath_hal *ah)
1978{
1979	struct ath_hal_5211 *ahp = AH5211(ah);
1980
1981	/* Enable the gain readback probe */
1982	OS_REG_WRITE(ah, AR_PHY_PAPD_PROBE,
1983		  SM(ahp->ah_tx6PowerInHalfDbm, AR_PHY_PAPD_PROBE_POWERTX)
1984		| AR_PHY_PAPD_PROBE_NEXT_TX);
1985
1986	ahp->ah_rfgainState = HAL_RFGAIN_READ_REQUESTED;
1987}
1988
1989/*
1990 * Exported call to check for a recent gain reading and return
1991 * the current state of the thermal calibration gain engine.
1992 */
1993HAL_RFGAIN
1994ar5211GetRfgain(struct ath_hal *ah)
1995{
1996	struct ath_hal_5211 *ahp = AH5211(ah);
1997	GAIN_VALUES *gv = &ahp->ah_gainValues;
1998	uint32_t rddata;
1999
2000	if (!gv->active)
2001		return HAL_RFGAIN_INACTIVE;
2002
2003	if (ahp->ah_rfgainState == HAL_RFGAIN_READ_REQUESTED) {
2004		/* Caller had asked to setup a new reading. Check it. */
2005		rddata = OS_REG_READ(ah, AR_PHY_PAPD_PROBE);
2006
2007		if ((rddata & AR_PHY_PAPD_PROBE_NEXT_TX) == 0) {
2008			/* bit got cleared, we have a new reading. */
2009			gv->currGain = rddata >> AR_PHY_PAPD_PROBE_GAINF_S;
2010			/* inactive by default */
2011			ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
2012
2013			if (!ar5211InvalidGainReadback(ah, gv) &&
2014			    ar5211IsGainAdjustNeeded(ah, gv) &&
2015			    ar5211AdjustGain(ah, gv) > 0) {
2016				/*
2017				 * Change needed. Copy ladder info
2018				 * into eeprom info.
2019				 */
2020				ar5211SetRfgain(ah, gv);
2021				ahp->ah_rfgainState = HAL_RFGAIN_NEED_CHANGE;
2022			}
2023		}
2024	}
2025	return ahp->ah_rfgainState;
2026}
2027
2028/*
2029 * Check to see if our readback gain level sits within the linear
2030 * region of our current variable attenuation window
2031 */
2032static HAL_BOOL
2033ar5211IsGainAdjustNeeded(struct ath_hal *ah, const GAIN_VALUES *gv)
2034{
2035	return (gv->currGain <= gv->loTrig || gv->currGain >= gv->hiTrig);
2036}
2037
2038/*
2039 * Move the rabbit ears in the correct direction.
2040 */
2041static int32_t
2042ar5211AdjustGain(struct ath_hal *ah, GAIN_VALUES *gv)
2043{
2044	/* return > 0 for valid adjustments. */
2045	if (!gv->active)
2046		return -1;
2047
2048	gv->currStep = &gainLadder.optStep[gv->currStepNum];
2049	if (gv->currGain >= gv->hiTrig) {
2050		if (gv->currStepNum == 0) {
2051			HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2052			    "%s: Max gain limit.\n", __func__);
2053			return -1;
2054		}
2055		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2056		    "%s: Adding gain: currG=%d [%s] --> ",
2057		    __func__, gv->currGain, gv->currStep->stepName);
2058		gv->targetGain = gv->currGain;
2059		while (gv->targetGain >= gv->hiTrig && gv->currStepNum > 0) {
2060			gv->targetGain -= 2 * (gainLadder.optStep[--(gv->currStepNum)].stepGain -
2061				gv->currStep->stepGain);
2062			gv->currStep = &gainLadder.optStep[gv->currStepNum];
2063		}
2064		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n",
2065		    gv->targetGain, gv->currStep->stepName);
2066		return 1;
2067	}
2068	if (gv->currGain <= gv->loTrig) {
2069		if (gv->currStepNum == gainLadder.numStepsInLadder-1) {
2070			HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2071			    "%s: Min gain limit.\n", __func__);
2072			return -2;
2073		}
2074		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2075		    "%s: Deducting gain: currG=%d [%s] --> ",
2076		    __func__, gv->currGain, gv->currStep->stepName);
2077		gv->targetGain = gv->currGain;
2078		while (gv->targetGain <= gv->loTrig &&
2079		      gv->currStepNum < (gainLadder.numStepsInLadder - 1)) {
2080			gv->targetGain -= 2 *
2081				(gainLadder.optStep[++(gv->currStepNum)].stepGain - gv->currStep->stepGain);
2082			gv->currStep = &gainLadder.optStep[gv->currStepNum];
2083		}
2084		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n",
2085		    gv->targetGain, gv->currStep->stepName);
2086		return 2;
2087	}
2088	return 0;		/* caller didn't call needAdjGain first */
2089}
2090
2091/*
2092 * Adjust the 5GHz EEPROM information with the desired calibration values.
2093 */
2094static void
2095ar5211SetRfgain(struct ath_hal *ah, const GAIN_VALUES *gv)
2096{
2097	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
2098
2099	if (!gv->active)
2100		return;
2101	ee->ee_cornerCal.clip = gv->currStep->paramVal[0]; /* bb_tx_clip */
2102	ee->ee_cornerCal.pd90 = gv->currStep->paramVal[1]; /* rf_pwd_90 */
2103	ee->ee_cornerCal.pd84 = gv->currStep->paramVal[2]; /* rf_pwd_84 */
2104	ee->ee_cornerCal.gSel = gv->currStep->paramVal[3]; /* rf_rfgainsel */
2105}
2106
2107static void
2108ar5211SetOperatingMode(struct ath_hal *ah, int opmode)
2109{
2110	struct ath_hal_5211 *ahp = AH5211(ah);
2111	uint32_t val;
2112
2113	val = OS_REG_READ(ah, AR_STA_ID1) & 0xffff;
2114	switch (opmode) {
2115	case HAL_M_HOSTAP:
2116		OS_REG_WRITE(ah, AR_STA_ID1, val
2117			| AR_STA_ID1_STA_AP
2118			| AR_STA_ID1_RTS_USE_DEF
2119			| ahp->ah_staId1Defaults);
2120		break;
2121	case HAL_M_IBSS:
2122		OS_REG_WRITE(ah, AR_STA_ID1, val
2123			| AR_STA_ID1_ADHOC
2124			| AR_STA_ID1_DESC_ANTENNA
2125			| ahp->ah_staId1Defaults);
2126		break;
2127	case HAL_M_STA:
2128	case HAL_M_MONITOR:
2129		OS_REG_WRITE(ah, AR_STA_ID1, val
2130			| AR_STA_ID1_DEFAULT_ANTENNA
2131			| ahp->ah_staId1Defaults);
2132		break;
2133	}
2134}
2135
2136void
2137ar5211SetPCUConfig(struct ath_hal *ah)
2138{
2139	ar5211SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);
2140}
2141