1/*	$NetBSD: nouveau_nvkm_subdev_fb_ramgf100.c,v 1.4 2021/12/19 10:51:58 riastradh Exp $	*/
2
3/*
4 * Copyright 2013 Red Hat Inc.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors: Ben Skeggs
25 */
26#include <sys/cdefs.h>
27__KERNEL_RCSID(0, "$NetBSD: nouveau_nvkm_subdev_fb_ramgf100.c,v 1.4 2021/12/19 10:51:58 riastradh Exp $");
28
29#define gf100_ram(p) container_of((p), struct gf100_ram, base)
30#include "ram.h"
31#include "ramfuc.h"
32
33#include <core/option.h>
34#include <subdev/bios.h>
35#include <subdev/bios/pll.h>
36#include <subdev/bios/rammap.h>
37#include <subdev/bios/timing.h>
38#include <subdev/clk.h>
39#include <subdev/clk/pll.h>
40
41struct gf100_ramfuc {
42	struct ramfuc base;
43
44	struct ramfuc_reg r_0x10fe20;
45	struct ramfuc_reg r_0x10fe24;
46	struct ramfuc_reg r_0x137320;
47	struct ramfuc_reg r_0x137330;
48
49	struct ramfuc_reg r_0x132000;
50	struct ramfuc_reg r_0x132004;
51	struct ramfuc_reg r_0x132100;
52
53	struct ramfuc_reg r_0x137390;
54
55	struct ramfuc_reg r_0x10f290;
56	struct ramfuc_reg r_0x10f294;
57	struct ramfuc_reg r_0x10f298;
58	struct ramfuc_reg r_0x10f29c;
59	struct ramfuc_reg r_0x10f2a0;
60
61	struct ramfuc_reg r_0x10f300;
62	struct ramfuc_reg r_0x10f338;
63	struct ramfuc_reg r_0x10f340;
64	struct ramfuc_reg r_0x10f344;
65	struct ramfuc_reg r_0x10f348;
66
67	struct ramfuc_reg r_0x10f910;
68	struct ramfuc_reg r_0x10f914;
69
70	struct ramfuc_reg r_0x100b0c;
71	struct ramfuc_reg r_0x10f050;
72	struct ramfuc_reg r_0x10f090;
73	struct ramfuc_reg r_0x10f200;
74	struct ramfuc_reg r_0x10f210;
75	struct ramfuc_reg r_0x10f310;
76	struct ramfuc_reg r_0x10f314;
77	struct ramfuc_reg r_0x10f610;
78	struct ramfuc_reg r_0x10f614;
79	struct ramfuc_reg r_0x10f800;
80	struct ramfuc_reg r_0x10f808;
81	struct ramfuc_reg r_0x10f824;
82	struct ramfuc_reg r_0x10f830;
83	struct ramfuc_reg r_0x10f988;
84	struct ramfuc_reg r_0x10f98c;
85	struct ramfuc_reg r_0x10f990;
86	struct ramfuc_reg r_0x10f998;
87	struct ramfuc_reg r_0x10f9b0;
88	struct ramfuc_reg r_0x10f9b4;
89	struct ramfuc_reg r_0x10fb04;
90	struct ramfuc_reg r_0x10fb08;
91	struct ramfuc_reg r_0x137300;
92	struct ramfuc_reg r_0x137310;
93	struct ramfuc_reg r_0x137360;
94	struct ramfuc_reg r_0x1373ec;
95	struct ramfuc_reg r_0x1373f0;
96	struct ramfuc_reg r_0x1373f8;
97
98	struct ramfuc_reg r_0x61c140;
99	struct ramfuc_reg r_0x611200;
100
101	struct ramfuc_reg r_0x13d8f4;
102};
103
104struct gf100_ram {
105	struct nvkm_ram base;
106	struct gf100_ramfuc fuc;
107	struct nvbios_pll refpll;
108	struct nvbios_pll mempll;
109};
110
111static void
112gf100_ram_train(struct gf100_ramfuc *fuc, u32 magic)
113{
114	struct gf100_ram *ram = container_of(fuc, typeof(*ram), fuc);
115	struct nvkm_fb *fb = ram->base.fb;
116	struct nvkm_device *device = fb->subdev.device;
117	u32 part = nvkm_rd32(device, 0x022438), i;
118	u32 mask = nvkm_rd32(device, 0x022554);
119	u32 addr = 0x110974;
120
121	ram_wr32(fuc, 0x10f910, magic);
122	ram_wr32(fuc, 0x10f914, magic);
123
124	for (i = 0; (magic & 0x80000000) && i < part; addr += 0x1000, i++) {
125		if (mask & (1 << i))
126			continue;
127		ram_wait(fuc, addr, 0x0000000f, 0x00000000, 500000);
128	}
129}
130
131int
132gf100_ram_calc(struct nvkm_ram *base, u32 freq)
133{
134	struct gf100_ram *ram = gf100_ram(base);
135	struct gf100_ramfuc *fuc = &ram->fuc;
136	struct nvkm_subdev *subdev = &ram->base.fb->subdev;
137	struct nvkm_device *device = subdev->device;
138	struct nvkm_clk *clk = device->clk;
139	struct nvkm_bios *bios = device->bios;
140	struct nvbios_ramcfg cfg;
141	u8  ver, cnt, len, strap;
142	struct {
143		u32 data;
144		u8  size;
145	} rammap, ramcfg, timing;
146	int ref, div, out;
147	int from, mode;
148	int N1, M1, P;
149	int ret;
150
151	/* lookup memory config data relevant to the target frequency */
152	rammap.data = nvbios_rammapEm(bios, freq / 1000, &ver, &rammap.size,
153				      &cnt, &ramcfg.size, &cfg);
154	if (!rammap.data || ver != 0x10 || rammap.size < 0x0e) {
155		nvkm_error(subdev, "invalid/missing rammap entry\n");
156		return -EINVAL;
157	}
158
159	/* locate specific data set for the attached memory */
160	strap = nvbios_ramcfg_index(subdev);
161	if (strap >= cnt) {
162		nvkm_error(subdev, "invalid ramcfg strap\n");
163		return -EINVAL;
164	}
165
166	ramcfg.data = rammap.data + rammap.size + (strap * ramcfg.size);
167	if (!ramcfg.data || ver != 0x10 || ramcfg.size < 0x0e) {
168		nvkm_error(subdev, "invalid/missing ramcfg entry\n");
169		return -EINVAL;
170	}
171
172	/* lookup memory timings, if bios says they're present */
173	strap = nvbios_rd08(bios, ramcfg.data + 0x01);
174	if (strap != 0xff) {
175		timing.data = nvbios_timingEe(bios, strap, &ver, &timing.size,
176					      &cnt, &len);
177		if (!timing.data || ver != 0x10 || timing.size < 0x19) {
178			nvkm_error(subdev, "invalid/missing timing entry\n");
179			return -EINVAL;
180		}
181	} else {
182		timing.data = 0;
183	}
184
185	ret = ram_init(fuc, ram->base.fb);
186	if (ret)
187		return ret;
188
189	/* determine current mclk configuration */
190	from = !!(ram_rd32(fuc, 0x1373f0) & 0x00000002); /*XXX: ok? */
191
192	/* determine target mclk configuration */
193	if (!(ram_rd32(fuc, 0x137300) & 0x00000100))
194		ref = nvkm_clk_read(clk, nv_clk_src_sppll0);
195	else
196		ref = nvkm_clk_read(clk, nv_clk_src_sppll1);
197	div = max(min((ref * 2) / freq, (u32)65), (u32)2) - 2;
198	out = (ref * 2) / (div + 2);
199	mode = freq != out;
200
201	ram_mask(fuc, 0x137360, 0x00000002, 0x00000000);
202
203	if ((ram_rd32(fuc, 0x132000) & 0x00000002) || 0 /*XXX*/) {
204		ram_nuke(fuc, 0x132000);
205		ram_mask(fuc, 0x132000, 0x00000002, 0x00000002);
206		ram_mask(fuc, 0x132000, 0x00000002, 0x00000000);
207	}
208
209	if (mode == 1) {
210		ram_nuke(fuc, 0x10fe20);
211		ram_mask(fuc, 0x10fe20, 0x00000002, 0x00000002);
212		ram_mask(fuc, 0x10fe20, 0x00000002, 0x00000000);
213	}
214
215// 0x00020034 // 0x0000000a
216	ram_wr32(fuc, 0x132100, 0x00000001);
217
218	if (mode == 1 && from == 0) {
219		/* calculate refpll */
220		ret = gt215_pll_calc(subdev, &ram->refpll, ram->mempll.refclk,
221				     &N1, NULL, &M1, &P);
222		if (ret <= 0) {
223			nvkm_error(subdev, "unable to calc refpll\n");
224			return ret ? ret : -ERANGE;
225		}
226
227		ram_wr32(fuc, 0x10fe20, 0x20010000);
228		ram_wr32(fuc, 0x137320, 0x00000003);
229		ram_wr32(fuc, 0x137330, 0x81200006);
230		ram_wr32(fuc, 0x10fe24, (P << 16) | (N1 << 8) | M1);
231		ram_wr32(fuc, 0x10fe20, 0x20010001);
232		ram_wait(fuc, 0x137390, 0x00020000, 0x00020000, 64000);
233
234		/* calculate mempll */
235		ret = gt215_pll_calc(subdev, &ram->mempll, freq,
236				     &N1, NULL, &M1, &P);
237		if (ret <= 0) {
238			nvkm_error(subdev, "unable to calc refpll\n");
239			return ret ? ret : -ERANGE;
240		}
241
242		ram_wr32(fuc, 0x10fe20, 0x20010005);
243		ram_wr32(fuc, 0x132004, (P << 16) | (N1 << 8) | M1);
244		ram_wr32(fuc, 0x132000, 0x18010101);
245		ram_wait(fuc, 0x137390, 0x00000002, 0x00000002, 64000);
246	} else
247	if (mode == 0) {
248		ram_wr32(fuc, 0x137300, 0x00000003);
249	}
250
251	if (from == 0) {
252		ram_nuke(fuc, 0x10fb04);
253		ram_mask(fuc, 0x10fb04, 0x0000ffff, 0x00000000);
254		ram_nuke(fuc, 0x10fb08);
255		ram_mask(fuc, 0x10fb08, 0x0000ffff, 0x00000000);
256		ram_wr32(fuc, 0x10f988, 0x2004ff00);
257		ram_wr32(fuc, 0x10f98c, 0x003fc040);
258		ram_wr32(fuc, 0x10f990, 0x20012001);
259		ram_wr32(fuc, 0x10f998, 0x00011a00);
260		ram_wr32(fuc, 0x13d8f4, 0x00000000);
261	} else {
262		ram_wr32(fuc, 0x10f988, 0x20010000);
263		ram_wr32(fuc, 0x10f98c, 0x00000000);
264		ram_wr32(fuc, 0x10f990, 0x20012001);
265		ram_wr32(fuc, 0x10f998, 0x00010a00);
266	}
267
268	if (from == 0) {
269// 0x00020039 // 0x000000ba
270	}
271
272// 0x0002003a // 0x00000002
273	ram_wr32(fuc, 0x100b0c, 0x00080012);
274// 0x00030014 // 0x00000000 // 0x02b5f070
275// 0x00030014 // 0x00010000 // 0x02b5f070
276	ram_wr32(fuc, 0x611200, 0x00003300);
277// 0x00020034 // 0x0000000a
278// 0x00030020 // 0x00000001 // 0x00000000
279
280	ram_mask(fuc, 0x10f200, 0x00000800, 0x00000000);
281	ram_wr32(fuc, 0x10f210, 0x00000000);
282	ram_nsec(fuc, 1000);
283	if (mode == 0)
284		gf100_ram_train(fuc, 0x000c1001);
285	ram_wr32(fuc, 0x10f310, 0x00000001);
286	ram_nsec(fuc, 1000);
287	ram_wr32(fuc, 0x10f090, 0x00000061);
288	ram_wr32(fuc, 0x10f090, 0xc000007f);
289	ram_nsec(fuc, 1000);
290
291	if (from == 0) {
292		ram_wr32(fuc, 0x10f824, 0x00007fd4);
293	} else {
294		ram_wr32(fuc, 0x1373ec, 0x00020404);
295	}
296
297	if (mode == 0) {
298		ram_mask(fuc, 0x10f808, 0x00080000, 0x00000000);
299		ram_mask(fuc, 0x10f200, 0x00008000, 0x00008000);
300		ram_wr32(fuc, 0x10f830, 0x41500010);
301		ram_mask(fuc, 0x10f830, 0x01000000, 0x00000000);
302		ram_mask(fuc, 0x132100, 0x00000100, 0x00000100);
303		ram_wr32(fuc, 0x10f050, 0xff000090);
304		ram_wr32(fuc, 0x1373ec, 0x00020f0f);
305		ram_wr32(fuc, 0x1373f0, 0x00000003);
306		ram_wr32(fuc, 0x137310, 0x81201616);
307		ram_wr32(fuc, 0x132100, 0x00000001);
308// 0x00020039 // 0x000000ba
309		ram_wr32(fuc, 0x10f830, 0x00300017);
310		ram_wr32(fuc, 0x1373f0, 0x00000001);
311		ram_wr32(fuc, 0x10f824, 0x00007e77);
312		ram_wr32(fuc, 0x132000, 0x18030001);
313		ram_wr32(fuc, 0x10f090, 0x4000007e);
314		ram_nsec(fuc, 2000);
315		ram_wr32(fuc, 0x10f314, 0x00000001);
316		ram_wr32(fuc, 0x10f210, 0x80000000);
317		ram_wr32(fuc, 0x10f338, 0x00300220);
318		ram_wr32(fuc, 0x10f300, 0x0000011d);
319		ram_nsec(fuc, 1000);
320		ram_wr32(fuc, 0x10f290, 0x02060505);
321		ram_wr32(fuc, 0x10f294, 0x34208288);
322		ram_wr32(fuc, 0x10f298, 0x44050411);
323		ram_wr32(fuc, 0x10f29c, 0x0000114c);
324		ram_wr32(fuc, 0x10f2a0, 0x42e10069);
325		ram_wr32(fuc, 0x10f614, 0x40044f77);
326		ram_wr32(fuc, 0x10f610, 0x40044f77);
327		ram_wr32(fuc, 0x10f344, 0x00600009);
328		ram_nsec(fuc, 1000);
329		ram_wr32(fuc, 0x10f348, 0x00700008);
330		ram_wr32(fuc, 0x61c140, 0x19240000);
331		ram_wr32(fuc, 0x10f830, 0x00300017);
332		gf100_ram_train(fuc, 0x80021001);
333		gf100_ram_train(fuc, 0x80081001);
334		ram_wr32(fuc, 0x10f340, 0x00500004);
335		ram_nsec(fuc, 1000);
336		ram_wr32(fuc, 0x10f830, 0x01300017);
337		ram_wr32(fuc, 0x10f830, 0x00300017);
338// 0x00030020 // 0x00000000 // 0x00000000
339// 0x00020034 // 0x0000000b
340		ram_wr32(fuc, 0x100b0c, 0x00080028);
341		ram_wr32(fuc, 0x611200, 0x00003330);
342	} else {
343		ram_wr32(fuc, 0x10f800, 0x00001800);
344		ram_wr32(fuc, 0x13d8f4, 0x00000000);
345		ram_wr32(fuc, 0x1373ec, 0x00020404);
346		ram_wr32(fuc, 0x1373f0, 0x00000003);
347		ram_wr32(fuc, 0x10f830, 0x40700010);
348		ram_wr32(fuc, 0x10f830, 0x40500010);
349		ram_wr32(fuc, 0x13d8f4, 0x00000000);
350		ram_wr32(fuc, 0x1373f8, 0x00000000);
351		ram_wr32(fuc, 0x132100, 0x00000101);
352		ram_wr32(fuc, 0x137310, 0x89201616);
353		ram_wr32(fuc, 0x10f050, 0xff000090);
354		ram_wr32(fuc, 0x1373ec, 0x00030404);
355		ram_wr32(fuc, 0x1373f0, 0x00000002);
356	// 0x00020039 // 0x00000011
357		ram_wr32(fuc, 0x132100, 0x00000001);
358		ram_wr32(fuc, 0x1373f8, 0x00002000);
359		ram_nsec(fuc, 2000);
360		ram_wr32(fuc, 0x10f808, 0x7aaa0050);
361		ram_wr32(fuc, 0x10f830, 0x00500010);
362		ram_wr32(fuc, 0x10f200, 0x00ce1000);
363		ram_wr32(fuc, 0x10f090, 0x4000007e);
364		ram_nsec(fuc, 2000);
365		ram_wr32(fuc, 0x10f314, 0x00000001);
366		ram_wr32(fuc, 0x10f210, 0x80000000);
367		ram_wr32(fuc, 0x10f338, 0x00300200);
368		ram_wr32(fuc, 0x10f300, 0x0000084d);
369		ram_nsec(fuc, 1000);
370		ram_wr32(fuc, 0x10f290, 0x0b343825);
371		ram_wr32(fuc, 0x10f294, 0x3483028e);
372		ram_wr32(fuc, 0x10f298, 0x440c0600);
373		ram_wr32(fuc, 0x10f29c, 0x0000214c);
374		ram_wr32(fuc, 0x10f2a0, 0x42e20069);
375		ram_wr32(fuc, 0x10f200, 0x00ce0000);
376		ram_wr32(fuc, 0x10f614, 0x60044e77);
377		ram_wr32(fuc, 0x10f610, 0x60044e77);
378		ram_wr32(fuc, 0x10f340, 0x00500000);
379		ram_nsec(fuc, 1000);
380		ram_wr32(fuc, 0x10f344, 0x00600228);
381		ram_nsec(fuc, 1000);
382		ram_wr32(fuc, 0x10f348, 0x00700000);
383		ram_wr32(fuc, 0x13d8f4, 0x00000000);
384		ram_wr32(fuc, 0x61c140, 0x09a40000);
385
386		gf100_ram_train(fuc, 0x800e1008);
387
388		ram_nsec(fuc, 1000);
389		ram_wr32(fuc, 0x10f800, 0x00001804);
390	// 0x00030020 // 0x00000000 // 0x00000000
391	// 0x00020034 // 0x0000000b
392		ram_wr32(fuc, 0x13d8f4, 0x00000000);
393		ram_wr32(fuc, 0x100b0c, 0x00080028);
394		ram_wr32(fuc, 0x611200, 0x00003330);
395		ram_nsec(fuc, 100000);
396		ram_wr32(fuc, 0x10f9b0, 0x05313f41);
397		ram_wr32(fuc, 0x10f9b4, 0x00002f50);
398
399		gf100_ram_train(fuc, 0x010c1001);
400	}
401
402	ram_mask(fuc, 0x10f200, 0x00000800, 0x00000800);
403// 0x00020016 // 0x00000000
404
405	if (mode == 0)
406		ram_mask(fuc, 0x132000, 0x00000001, 0x00000000);
407
408	return 0;
409}
410
411int
412gf100_ram_prog(struct nvkm_ram *base)
413{
414	struct gf100_ram *ram = gf100_ram(base);
415	struct nvkm_device *device = ram->base.fb->subdev.device;
416	ram_exec(&ram->fuc, nvkm_boolopt(device->cfgopt, "NvMemExec", true));
417	return 0;
418}
419
420void
421gf100_ram_tidy(struct nvkm_ram *base)
422{
423	struct gf100_ram *ram = gf100_ram(base);
424	ram_exec(&ram->fuc, false);
425}
426
427int
428gf100_ram_init(struct nvkm_ram *base)
429{
430	static const u8  train0[] = {
431		0x00, 0xff, 0x55, 0xaa, 0x33, 0xcc,
432		0x00, 0xff, 0xff, 0x00, 0xff, 0x00,
433	};
434	static const u32 train1[] = {
435		0x00000000, 0xffffffff,
436		0x55555555, 0xaaaaaaaa,
437		0x33333333, 0xcccccccc,
438		0xf0f0f0f0, 0x0f0f0f0f,
439		0x00ff00ff, 0xff00ff00,
440		0x0000ffff, 0xffff0000,
441	};
442	struct gf100_ram *ram = gf100_ram(base);
443	struct nvkm_device *device = ram->base.fb->subdev.device;
444	int i;
445
446	switch (ram->base.type) {
447	case NVKM_RAM_TYPE_GDDR5:
448		break;
449	default:
450		return 0;
451	}
452
453	/* prepare for ddr link training, and load training patterns */
454	for (i = 0; i < 0x30; i++) {
455		nvkm_wr32(device, 0x10f968, 0x00000000 | (i << 8));
456		nvkm_wr32(device, 0x10f96c, 0x00000000 | (i << 8));
457		nvkm_wr32(device, 0x10f920, 0x00000100 | train0[i % 12]);
458		nvkm_wr32(device, 0x10f924, 0x00000100 | train0[i % 12]);
459		nvkm_wr32(device, 0x10f918,              train1[i % 12]);
460		nvkm_wr32(device, 0x10f91c,              train1[i % 12]);
461		nvkm_wr32(device, 0x10f920, 0x00000000 | train0[i % 12]);
462		nvkm_wr32(device, 0x10f924, 0x00000000 | train0[i % 12]);
463		nvkm_wr32(device, 0x10f918,              train1[i % 12]);
464		nvkm_wr32(device, 0x10f91c,              train1[i % 12]);
465	}
466
467	return 0;
468}
469
470u32
471gf100_ram_probe_fbpa_amount(struct nvkm_device *device, int fbpa)
472{
473	return nvkm_rd32(device, 0x11020c + (fbpa * 0x1000));
474}
475
476u32
477gf100_ram_probe_fbp_amount(const struct nvkm_ram_func *func, u32 fbpao,
478			   struct nvkm_device *device, int fbp, int *pltcs)
479{
480	if (!(fbpao & BIT(fbp))) {
481		*pltcs = 1;
482		return func->probe_fbpa_amount(device, fbp);
483	}
484	return 0;
485}
486
487u32
488gf100_ram_probe_fbp(const struct nvkm_ram_func *func,
489		    struct nvkm_device *device, int fbp, int *pltcs)
490{
491	u32 fbpao = nvkm_rd32(device, 0x022554);
492	return func->probe_fbp_amount(func, fbpao, device, fbp, pltcs);
493}
494
495int
496gf100_ram_ctor(const struct nvkm_ram_func *func, struct nvkm_fb *fb,
497	       struct nvkm_ram *ram)
498{
499	struct nvkm_subdev *subdev = &fb->subdev;
500	struct nvkm_device *device = subdev->device;
501	struct nvkm_bios *bios = device->bios;
502	const u32 rsvd_head = ( 256 * 1024); /* vga memory */
503	const u32 rsvd_tail = (1024 * 1024); /* vbios etc */
504	enum nvkm_ram_type type = nvkm_fb_bios_memtype(bios);
505	u32 fbps = nvkm_rd32(device, 0x022438);
506	u64 total = 0, lcomm = ~0, lower, ubase, usize;
507	int ret, fbp, ltcs, ltcn = 0;
508
509	nvkm_debug(subdev, "%d FBP(s)\n", fbps);
510	for (fbp = 0; fbp < fbps; fbp++) {
511		u32 size = func->probe_fbp(func, device, fbp, &ltcs);
512		if (size) {
513			nvkm_debug(subdev, "FBP %d: %4d MiB, %d LTC(s)\n",
514				   fbp, size, ltcs);
515			lcomm  = min(lcomm, (u64)(size / ltcs) << 20);
516			total += (u64) size << 20;
517			ltcn  += ltcs;
518		} else {
519			nvkm_debug(subdev, "FBP %d: disabled\n", fbp);
520		}
521	}
522
523	lower = lcomm * ltcn;
524	ubase = lcomm + func->upper;
525	usize = total - lower;
526
527	nvkm_debug(subdev, "Lower: %4"PRId64" MiB @ %010llx\n", lower >> 20, 0ULL);
528	nvkm_debug(subdev, "Upper: %4"PRId64" MiB @ %010"PRIx64"\n", usize >> 20, ubase);
529	nvkm_debug(subdev, "Total: %4"PRId64" MiB\n", total >> 20);
530
531	ret = nvkm_ram_ctor(func, fb, type, total, ram);
532	if (ret)
533		return ret;
534
535	nvkm_mm_fini(&ram->vram);
536
537	/* Some GPUs are in what's known as a "mixed memory" configuration.
538	 *
539	 * This is either where some FBPs have more memory than the others,
540	 * or where LTCs have been disabled on a FBP.
541	 */
542	if (lower != total) {
543		/* The common memory amount is addressed normally. */
544		ret = nvkm_mm_init(&ram->vram, NVKM_RAM_MM_NORMAL,
545				   rsvd_head >> NVKM_RAM_MM_SHIFT,
546				   (lower - rsvd_head) >> NVKM_RAM_MM_SHIFT, 1);
547		if (ret)
548			return ret;
549
550		/* And the rest is much higher in the physical address
551		 * space, and may not be usable for certain operations.
552		 */
553		ret = nvkm_mm_init(&ram->vram, NVKM_RAM_MM_MIXED,
554				   ubase >> NVKM_RAM_MM_SHIFT,
555				   (usize - rsvd_tail) >> NVKM_RAM_MM_SHIFT, 1);
556		if (ret)
557			return ret;
558	} else {
559		/* GPUs without mixed-memory are a lot nicer... */
560		ret = nvkm_mm_init(&ram->vram, NVKM_RAM_MM_NORMAL,
561				   rsvd_head >> NVKM_RAM_MM_SHIFT,
562				   (total - rsvd_head - rsvd_tail) >>
563				   NVKM_RAM_MM_SHIFT, 1);
564		if (ret)
565			return ret;
566	}
567
568	return 0;
569}
570
571int
572gf100_ram_new_(const struct nvkm_ram_func *func,
573	       struct nvkm_fb *fb, struct nvkm_ram **pram)
574{
575	struct nvkm_subdev *subdev = &fb->subdev;
576	struct nvkm_bios *bios = subdev->device->bios;
577	struct gf100_ram *ram;
578	int ret;
579
580	if (!(ram = kzalloc(sizeof(*ram), GFP_KERNEL)))
581		return -ENOMEM;
582	*pram = &ram->base;
583
584	ret = gf100_ram_ctor(func, fb, &ram->base);
585	if (ret)
586		return ret;
587
588	ret = nvbios_pll_parse(bios, 0x0c, &ram->refpll);
589	if (ret) {
590		nvkm_error(subdev, "mclk refpll data not found\n");
591		return ret;
592	}
593
594	ret = nvbios_pll_parse(bios, 0x04, &ram->mempll);
595	if (ret) {
596		nvkm_error(subdev, "mclk pll data not found\n");
597		return ret;
598	}
599
600	ram->fuc.r_0x10fe20 = ramfuc_reg(0x10fe20);
601	ram->fuc.r_0x10fe24 = ramfuc_reg(0x10fe24);
602	ram->fuc.r_0x137320 = ramfuc_reg(0x137320);
603	ram->fuc.r_0x137330 = ramfuc_reg(0x137330);
604
605	ram->fuc.r_0x132000 = ramfuc_reg(0x132000);
606	ram->fuc.r_0x132004 = ramfuc_reg(0x132004);
607	ram->fuc.r_0x132100 = ramfuc_reg(0x132100);
608
609	ram->fuc.r_0x137390 = ramfuc_reg(0x137390);
610
611	ram->fuc.r_0x10f290 = ramfuc_reg(0x10f290);
612	ram->fuc.r_0x10f294 = ramfuc_reg(0x10f294);
613	ram->fuc.r_0x10f298 = ramfuc_reg(0x10f298);
614	ram->fuc.r_0x10f29c = ramfuc_reg(0x10f29c);
615	ram->fuc.r_0x10f2a0 = ramfuc_reg(0x10f2a0);
616
617	ram->fuc.r_0x10f300 = ramfuc_reg(0x10f300);
618	ram->fuc.r_0x10f338 = ramfuc_reg(0x10f338);
619	ram->fuc.r_0x10f340 = ramfuc_reg(0x10f340);
620	ram->fuc.r_0x10f344 = ramfuc_reg(0x10f344);
621	ram->fuc.r_0x10f348 = ramfuc_reg(0x10f348);
622
623	ram->fuc.r_0x10f910 = ramfuc_reg(0x10f910);
624	ram->fuc.r_0x10f914 = ramfuc_reg(0x10f914);
625
626	ram->fuc.r_0x100b0c = ramfuc_reg(0x100b0c);
627	ram->fuc.r_0x10f050 = ramfuc_reg(0x10f050);
628	ram->fuc.r_0x10f090 = ramfuc_reg(0x10f090);
629	ram->fuc.r_0x10f200 = ramfuc_reg(0x10f200);
630	ram->fuc.r_0x10f210 = ramfuc_reg(0x10f210);
631	ram->fuc.r_0x10f310 = ramfuc_reg(0x10f310);
632	ram->fuc.r_0x10f314 = ramfuc_reg(0x10f314);
633	ram->fuc.r_0x10f610 = ramfuc_reg(0x10f610);
634	ram->fuc.r_0x10f614 = ramfuc_reg(0x10f614);
635	ram->fuc.r_0x10f800 = ramfuc_reg(0x10f800);
636	ram->fuc.r_0x10f808 = ramfuc_reg(0x10f808);
637	ram->fuc.r_0x10f824 = ramfuc_reg(0x10f824);
638	ram->fuc.r_0x10f830 = ramfuc_reg(0x10f830);
639	ram->fuc.r_0x10f988 = ramfuc_reg(0x10f988);
640	ram->fuc.r_0x10f98c = ramfuc_reg(0x10f98c);
641	ram->fuc.r_0x10f990 = ramfuc_reg(0x10f990);
642	ram->fuc.r_0x10f998 = ramfuc_reg(0x10f998);
643	ram->fuc.r_0x10f9b0 = ramfuc_reg(0x10f9b0);
644	ram->fuc.r_0x10f9b4 = ramfuc_reg(0x10f9b4);
645	ram->fuc.r_0x10fb04 = ramfuc_reg(0x10fb04);
646	ram->fuc.r_0x10fb08 = ramfuc_reg(0x10fb08);
647	ram->fuc.r_0x137310 = ramfuc_reg(0x137300);
648	ram->fuc.r_0x137310 = ramfuc_reg(0x137310);
649	ram->fuc.r_0x137360 = ramfuc_reg(0x137360);
650	ram->fuc.r_0x1373ec = ramfuc_reg(0x1373ec);
651	ram->fuc.r_0x1373f0 = ramfuc_reg(0x1373f0);
652	ram->fuc.r_0x1373f8 = ramfuc_reg(0x1373f8);
653
654	ram->fuc.r_0x61c140 = ramfuc_reg(0x61c140);
655	ram->fuc.r_0x611200 = ramfuc_reg(0x611200);
656
657	ram->fuc.r_0x13d8f4 = ramfuc_reg(0x13d8f4);
658	return 0;
659}
660
661static const struct nvkm_ram_func
662gf100_ram = {
663	.upper = 0x0200000000ULL,
664	.probe_fbp = gf100_ram_probe_fbp,
665	.probe_fbp_amount = gf100_ram_probe_fbp_amount,
666	.probe_fbpa_amount = gf100_ram_probe_fbpa_amount,
667	.init = gf100_ram_init,
668	.calc = gf100_ram_calc,
669	.prog = gf100_ram_prog,
670	.tidy = gf100_ram_tidy,
671};
672
673int
674gf100_ram_new(struct nvkm_fb *fb, struct nvkm_ram **pram)
675{
676	return gf100_ram_new_(&gf100_ram, fb, pram);
677}
678